
DSMSim: A DISTRIBUTED SHARED MEMORY SIMULATOR
FOR CLUSTERS OF SYMMETRIC MULTI-PROCESSORS

Darshan Thaker Vipin Chaudhary
Institute Of Scientific Computing

Wayne State University
Detroit, MI 48202

Abstract

Distributed shared memory systems have become
popular as a means of utilizing clusters of com-
puters for solving large applications. We have de-
veloped a high-performance DSM at Wayne State
University. To improve the performance of our
DSM, we have developed a memory hierarchy sim-
ulator that allows us to compare various techniques
very quickly and with much less effort. This pa-
per describes our simulator, DSMSim. We show
that the simulator’s performance closely matches
the real system and demonstrate potential perfor-
mance gains of up to 60 percent after adding op-
timization features to the simulator. The simula-
tor also accepts the same code as the Software Dis-
tributed Shared Memory.

1 Introduction

In recent years, single processor based com-
puters have evolved rapidly. Processor speeds
are now in excess of 2GHz. Yet, they are not
able to solve increasingly large and complex
scientific and engineering problems. Another
trend is the decline in the number of special-
ized parallel machines being built to solve such
problems. Instead, many vendors of traditional
workstations have adopted a design strategy
wherein multiple state-of-the-art microproces-
sors are used to build high performance shared-
memory parallel workstations. From a com-
puter architecture point of view, such ma-
chines could use tightly coupled processors that

access the same shared memory, known as
symmetrical multiprocessors (SMPs), or one
could cluster multiple computing nodes with a
high-performance interconnect. The latter ap-
proach has been extended by combining multi-
ple SMPs to provide a scalable computing en-
vironment. Examples of this important class
of machines include the IBM SP2, SUN Enter-
prise and SUNFire Series and machines from
HP.

These symmetrical multiprocessors (SMPs)
are then connected through high speed net-
works or switches to form a scalable computing
cluster. A suitable runtime system should
allow parallel programs to exploit fast shared
memory when exchanging data within nodes
and using the slower network only when
necessary. Existing sequential application
programs can be automatically converted to
run on a single SMP node through the use of
parallelizing compilers such as SUIF [1], etc.
However, using multiple nodes requires the
programmer to either write explicit message
passing programs, using libraries like MPI[5]
or PVM[6]; or to rewrite the code using a
new language with parallel constructs ex.
OpenMP[3], HPF and Fortran 90. Message
passing programs are cumbersome to write
and have to be tuned for each individual archi-
tecture to get the best possible performance.
Parallel languages work well with code that
has regular data access patterns. In both cases
the programmer has to be intimately familiar
with the application program as well as the

1

target architecture. The shared memory model
is easier to program since the programmer
does not have to worry about the data layout
and does not have to explicitly send data from
one process to another. However, hardware
shared memory machines do not scale that
well and/or are very expensive to build.
Hence, an alternate approach to using these
computing clusters is to provide an illusion
of logically shared memory over physically
distributed memory, known as a Distributed
Shared Memory (DSM) or Shared Virtual
Memory (SVM). Recent research projects
with DSMs have shown good performance, for
example IVY [9], TreadMarks [4], Quarks[8],
and CVM[10].

At Wayne State University, we developed a
DSM called Strings. The Strings system con-
sists of a library that is linked with a shared
memory parallel program. Strings is a page
based DSM, that uses an update protocol for
Release Consistency. The performance and ca-
pabilities of Strings are described in detail in
previous work[1]. Currently, our effort is to en-
hance the performance of Strings. This effort
includes studying in detail how Strings man-
ages memory and designing different methods
to alleviate the areas that act as a drag on ef-
ficiency. Towards this end we have developed
an execution driven memory hierarchy simula-
tor that closely mimics the behavior of Strings.
The simulator allows us to test different ap-
proaches and ideas quickly and at a cost far
lesser than what we would have incurred if we
had modified Strings itself. In the rest of this
paper, we review some features of Strings in
section 2, describe the simulator and how it
works in sections 3 and 4. Section 5 deals with
the performance of the simulator and we con-
clude in section 6.

2 Strings

The Strings distributed shared memory was
derived from the publicly available Quarks[8].
It consists of a library that is linked with a
shared memory parallel program. The system

allows the creation of multiple application
threads on a single node, thus increasing the
concurrency level on an SMP cluster. Shared
memory in the system is implemented by
using the UNIX mmap call to map a file
to the bottom of the stack segment. The
mprotect call is used to control access to the
shared memory region. When a thread faults
while accessing a page, a page handler is
invoked to fetch the contents from the owning
node. Strings currently supports sequential
consistency using an invalidate protocol, as
well as release consistency using an update
protocol [5, 14].

Strings utilizes the concepts of twins and
diffs to allow multiple application threads
on the same node. All shared regions are
mapped to two different addresses. This
makes it possible to write to the secondary
region, without changing the protection of the
primary region. The copy of the page that
is mapped to the secondary region is called
a twin. The thread then modifies the twin.
When the pages have to be synchronized, the
difference between the original page and its
twin is computed. These are called the diffs,
which are then sent to the remote nodes that
share the page.

For further details, we invite you to refer
to a previous paper[1] that discuss Strings in
greater detail.

3 Simulator for Strings

Previous work has demonstrated the per-
formance capabilities of Strings. Nonethe-
less, there exist various areas where improve-
ments and performance enhancements can be
achieved. Some of these improvements can be
in the area of networking, memory manage-
ment, etc. With regard to memory manage-
ment there are various approaches that can
potentially change and improve the manner in
which Strings behaves.

3.1 Motivation

To experiment with certain memory man-
agement functions in Strings would be time
consuming. And consider that even after the
change was accomplished there is no guarantee
that this would positively effect the outcome
in terms of performance enhancement. It is
with this in mind that we decided to build
a simulator for Strings. It would be easy to
make a modification in the simulator and see
the effects it would produce. Provided the
performance enhancement was satisfactory,
the changes could then be incorporated into
Strings. Thus, it would function as a test bed
for nascent ideas and design philosophies.

The simulator could also serve as a teach-
ing tool, in that it would allow a student unfa-
miliar with the complexities of the distributed
shared memory system, to understand the un-
derlying principles and reasons behind certain
design decisions.

3.2 Simulation system details

The simulator is based on Augmint[7].
Nonetheless, it is portable and can also be used
on SUN machines with UltraSparc Architec-
tures (using ABSS[11]). Some of the features
of the simulator are -

• Accurately mimics the behavior of Strings
• It works with real applications that inter-

act with the environment
• Applications that work on the simulator

will work on Strings.
• Provides ’ease of use’ with respect to un-

derstanding and modifying the simulation
architecture

• Runs on both Intel and UltraSparc archi-
tectures.

• Manages the scheduling of events.
• Recognizes memory references.

The subsystems of the simulator are -

• Augmint Doctor - the x86 code augmenter

• Simulation Infrastructure (Augmint) - in-
cluding event management, task schedul-
ing and thread switching.
• The Distributed Shared Memory model

under study.
• Applications - written using ANL m4

macros.

3.3 Augmint

Augmint is a software package on top of
which multiprocessor memory hierarchy sim-
ulators can be constructed. Augmint consists
of a front end memory event generator and a
simulation infrastructure which damages the
scheduling of events.

3.4 Augmint Doctor

The Doctor takes an x86 assembly source file
as input and analyzes it for memory references.
Each instruction that performs a memory ref-
erence causes additional code to be added be-
fore or after that instruction. This code han-
dles details like saving state and setting up the
simulation event structure.

3.5 The Simulation Infrastructure

The infrastructure provides the mechanisms
for scheduling events and accounting for the
passing of time. The important concepts here
are: events, tasks, and the task scheduler.

3.6 Simulator Build and Execution Model

DSMSim is an execution based simulator.
The simulator build process (Figure 1)creates
an executable. The build process is as follows
- The source code of the application under
study is passed through the macro m4 pre-
processor where all the ANL like macros are
expanded. (This is another advantage of the
simulator, that all the applications that run
on the simulator, run on Strings. The same
application source code can be used for both
the simulator and Strings. The difference
is at the m4 preprocessor stage). Following
this, the C compiler is run that converts the

Application
Code

M4 macro
preprocessor

Compiler

C Code

Macro
Definations

X86 Code

Object Code

Instrumented
x86 Code

LinkerInfrastructure Strings model

Executable
Simulation

'Doctor'

X86 ASM

Figure 1. Dsm Sim Build Process for the
Intel Architecture.

C code into assembler code. The Augmint
Doctor is then used to augment the assembler
code. This is then lined with the simulation
libraries. The final result is an executable that
contains the application code, the distributed
shared memory system under study, and the
simulation infrastructure. When running,
this executable consists of several user level
threads that act as simulated processors and a
simulation thread that acts as the scheduler.

4 Implementation Details

When developing DSMSim, the first goal
was to replicate the behavior of Strings as accu-
rately as possible. When running a simulation
executable, the programmer passes the simula-
tor arguments and the application arguments.
When the simulation binary is executed, the
first thing that is done is that all the shared
memory is allocated. The simulator uses hash
tables to keep track of the pages that reside on
each node. Thus every node in the simulation

has a hash table, the entries of which are the
pages that reside on that node. The base ad-
dress of the page is used when inserting into
the tables. Every page is owned by one node.
Page ownership is migratory at first fault.

4.1 Memory References and Synchronization

Every memory reference has to be analyzed.
An access may either be a read or a write and
may either be to a shared memory location or
to one that is not shared. If it is not an ac-
cess to a shared region, execution continues.
However, if it is a read or write to a shared
region, the simulator looks up the page asso-
ciated with the reference. Depending on the
page permissions for that node, a hit or a fault
is determined to have occurred. When it is
a page fault, a clean copy of the page is re-
trieved. The consistency model in the simula-
tor was the release consistency model using the
update protocol. The simulator provides locks,
barriers, and condition variables. In the up-
date protocol, diffs are sent to all pages in the
copy-set when a node releases a lock. When a
barrier is acquired, all dirty pages are flushed.
This technical report describes in greater de-
tail the implementation of the simulator and
how it can be used.

5 Performance Analysis

We used applications from the Splash-2 [2]
Benchmark Suite. FFT performs a transform
of n complex data points and requires three
all-to-all interprocessor communication phases
for a matrix transpose. The data access is
regular. LU-c and LU-n perform factorization
of a dense matrix. The non-contiguous version
has a single producer and multiple consumers.
It suffers from considerable fragmentation
and false sharing. The contiguous version
uses an array of blocks to improve spatial
locality. Radix performs an integer radix sort
and suffers from a high-degree of false sharing
at page granularity during a permutation
phase. The matrix multiplication program
uses a block-wise distribution of the resultant

matrix. Each application thread computes a
block of contiguous values, hence there is no
false sharing.

2x1 2x2 2x4 4x2 4x4
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

LU-n and FFT

STR-pf (LU-n) SIM-pf (LU-n) STR-pf (FFT)

SIM-pf (FFT) STR-Diffs (LU-n) SIM-Diffs (LU-n)

STR-Diffs (FFT) SIM-Diffs (FFT)

Nodes X Threads

N
o.

 o
f P

ag
e

F
au

lts
 /

 D
iff

s

Figure 2. LU-n and FFT: Strings and
DsmSim

As stated earlier, the simulator can run on
the Intel and the Sparc platforms. In most
cases, a single CPU (600MHz Pentium) with
192MB RAM was used for the runs. Strings
on the other hand was run on a cluster of
SUN Enterprise 3500s each with 4 UltraSparc
II processors at 330MHz and with 512MB of
RAM. The following programs were utilized
for our experiments - LU-c, FFT, Radix, LU-n
and Matrix Multiplication. We judged our re-
sults by how closely the number of page faults
in DSMSim matched that of the real system.
Since every memory access was trapped by
DSMSim, this gave us the ability to collect
great amounts of data that gave details of
the behavior of the different applications. We
could collect details on the number of hits,
faults, types of accesses, etc., for each page,

2x1 2x2 2x4 4x2 4x4
0

50

100

150

200

250

300

350

400

450

Matmult and LU-c

STR-pf (MM) SIM-pf (MM) STR-pf (LU-c) SIM-pf (LU-c)

STR-Diff (MM) SIM-Diff (MM) STR-Diff (LU-c) SIM-Diff (LU-c)

Nodes X Threads

N
o.

 o
f P

ag
e

F
au

lts
/D

iff
s

Figure 3. MatMult and LU-c: Strings and
DsmSim

each thread, and each node. In addition we
could calculate the number of diffs that would
be generated. It was also possible to see when,
as a result of the update protocol, a thread
releasing a lock would send diffs to another
thread that was no longer interested in them.
The biggest advantage of gathering such vast
amounts of data is that it gives the application
developer an idea of how to partition the data,
to boost performance.

Figures 2 and 3 show the results comparing
DSMSim and Strings. It can be observed
that most of the runs resulted in a negligible
difference between Strings and DSMSim. The
runs shown in the figure are 128x128 matrix
multiplication; FFT with 65536 complex dou-
bles, LU decomposition on a 512x512 matrix
with a 16x16 block size. We show the number
of page faults in the simulator(SIM-PF) and
in Strings(STR-PF), the locks and barriers
for the simulator (SIM-L and SIM-B) and for

2x2 2x4 2x8 4x2 4x4
0

10

20

30

40

50

60

70

80

90

100

110

Radix Sort (1024)

Orig Inv A1-U A1-I

Nodes x Threads

N
o.

 o
f P

ag
e

F
au

lts

Figure 4. Perf. Enhanacements: Radix

Strings (STR-L and STR-B). In the legend,
STR is for strings and SIM is for DSMSim.
The average difference in number of page
faults is 1.2 percent, with the worst case being
a difference of twelve percent. The difference
in the page fault reading stems from the fact
that DSMSim runs as a single process, whereas
Strings spawns multiple processes that in turn
spawn threads on multiple machines. As a
result, in Strings, if two threads on the same
node access the same page (causing a fault)
at the same time, this is regarded as just one
fault. However, in DSMSim, this would be
considered two faults. From our results we
can deduce that DSMSim accurately mimics
Strings.

From the accompanying figures 2 and 3, it
can be observed that most of the runs resulted
in a negligible difference between the Strings
and the simulator. The runs shown in the
figure are 128x128 matrix for matrix multipli-
cation. For FFT 65536 complex doubles, for
Lu 512x512 matrix and a 16x16 block size.

2x2 2x4 2x8 4x2 4x4
0

10

20

30

40

50

60

70

80

90

100

110

120

Matrix Mult

Orig (128) Orig (256) Inv (128) Inv (256)

A1-U (128) A1-U (256) A1-I (128) A1-I (256)

Nodes x Threads

P
ag

e
F

au
lts

Figure 5. Perf. Enhancements: Matmult

The messages measured are protocol messages.
Messages that are sent as a result of UDP
based networking in Strings are not considered
in the simulator. Thus we could deduce that
the simulator was behaving very much like
Strings would. The next challenge was to add
features to the simulator that would yield an
increase in performance.

The following features were added to the
simulator. We changed the relationship be-
tween the threads and the nodes. Since the
ownership of the pages is based on the nodes,
this changed the manner in which the threads
were accessing the pages. We included an in-
validate protocol. Another change was the
manner in which owners are assigned to pages.
In Strings, pages are initially assigned to node
zero, thereafter on first fault the ownership
changes hands. We kept this feature and also
assigned pages in a round robin fashion with-
out changing ownership at first fault. The user
can select either of the new options or the orig-
inal system behavior by selecting the appropri-
ate command line arguments at runtime. Fig-

ures 4 and 5 show the effect of the different fea-
tures that were added. On the ’y axis’ we plot
the number of page faults(normalized). The
original version uses a update protocol and re-
lease consistency. The second column is an
invalidate protocol and the last two columns
are both the update(A1-U) and invalidate(A1-
I) protocols with a different scheme of assigning
data. It can be observed that the most effec-
tive feature added was the first one. For matrix
multiplication there is a significant improve-
ment when we have more threads per node.
The same trend is seen in radix, although the
improvements are not so significant. It can be
seen that the invalidate protocol when com-
pared to the update does not always give an
improvement in the number of faults.

6 Conclusions and Future Work

We developed a distributed shared memory
simulator, DSMSim that effectively matches
the behavior of Strings. It also provides a
portable platform for conducting research in
memory consistency models and protocols.
In addition, the simulator can be used as a
teaching tool to understand the complexities
of a DSM. DSMSim is portable across both
Sparc and Intel platforms. Various applica-
tions can easily be ported for the simulator. It
is also very modular and allows a researcher
to easily add features and change its behavior.
Its ability to run on a single CPU machine
is invaluable as one does not need expensive
SMP machines to study DSM characteristics.

Our future work includes changes that we
have observed as advantageous, into Strings.
We plan on adding features related to mem-
ory consistency models and coherency proto-
cols and comparing their characteristics. In
addition, features like data visualization will
be added in the future to effectively study and
understand the data that is generated by the
simulator.

References

[1] S. Roy and V. Chaudhary, “Strings: A
High-Performance Distributed Shared Mem-
ory for Symmetrical Multiprocessor Clusters,”
in Proceedings of the Seventh IEEE Interna-
tional Symposium on High Performance Dis-
tributed Computing, (Chicago, IL), pp. 90 –97,
July 1998.

[2] S. C. Woo, M. Ohara, E. Torri, J. P. Singh,
and A. Gupta, “The SPLASH-2 Programs:
Characterization and Methodological Con-
siderations,” in Proceedings of the Interna-
tional Symposium on Computer Architecture,
pp. 24–36, June 1995.

[3] The OpenMP Forum, OpenMP: Simple,
Portable, Scalable SMP Programming,
http://www.openmp.org/.

[4] P. Keleher, A. Cox, S. Dwarkadas and W.
Zwaenepoel, TreadMarks: Distributed Shared
Memory on Standard Workstations and Op-
erating Systems, Proc. of the Winter 1994
USENIX Conference, 1994.

[5] Message Passing Interface (MPI) Forum,
MPI: A message-passing interface standard,
International Journal of Supercomputing Ap-
plications, 8(3/4), 1994.

[6] V. S. Sunderam, ”PVM: A framework for par-
allel distributed computing,” in Concurrency:
Practice and Experience, vol. 2(4), pp. 315–
339, Dec. 1990.

[7] A.-T. Nguyen, M. Michael, A. Sharma, and J.
Torrellas. The Augmint Multiprocessor Simu-
lation Toolkit for Intel x86 Architectures.In
Proceedings of the 1996 IEEE International
Conference on Computer Design (ICCD), Oc-
tober 1996

[8] D. Khandekar. Quarks: Distributed shared
memory as a basic building block for com-
plex parallel and distributed systems. Tech-
nical Report, University of Utah, March 1996.

[9] K. Li, ”IVY: A Shared Virtual Memory Sys-
tem for Parallel Computing,” in Proceedings
of the 1988 International Conference on Par-
allel Processing, August 1988, pp. 94-101.

[10] H. Han, C.-W. Tseng, and P. Keleher. Elim-
inating barrier synchronization for compiler-
parallelized codes on software DSMs. In In-
ternational Journal of Parallel Programming,
October 1998

[11] D. Sunada, D. Glasco, M. Flynn. ABSS v2.0:
a SPARC simulator in The proceedings of the
8th Workshop on Synthesis And System Inte-
gration of Mixed Technologies, 1998

