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Eighth to sixteenth virial coefficients of the Lennard-Jones model
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We calculated virial coefficients By, 8 < N < 16, of the Lennard-Jones (LJ) model using both
the Mayer-sampling Monte Carlo method and direct generation of configurations, with Wheatley’s
algorithm for summation of clusters. For N = 8, 24 values are reported, and for N =9, 12 values
are reported, both for temperatures 7 in the range 0.6 < T < 40.0 (in LJ units). For each N in
10 < N < 16, one to four values are reported for 0.6 <7 < 0.9. An approximate functional form
for the temperature dependence of By was developed, and fits of LJ By(T) based on this form
are presented for each coefficient, 4 < N < 9, using new and previously reported data. © 2015 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4927339]

. INTRODUCTION

The virial equation of state (VEOS) is a density expansion
with respect to an ideal-gas reference that builds a bridge
between molecular and macro-scale descriptions of fluid-
phase behavior.! It can be expressed as follows, where we
write the compressibility factor Z in powers of the number
density p,

Z=pBP/p
=1+ ByT)p+ By(T)p* + -+ + By(T)p" ' +---. [D)

Here, B = 1/kgT with T the absolute temperature and kg
Boltzmann’s constant, P is the pressure, and By is the
(temperature-dependent) Nth virial coefficient. Although most
often written in the context of the pressure-density relation,
the VEOS framework can describe a much broader range
of behaviors while accommodating a variety of complicating
phenomena, such as inhomogeneities,”™ non-pairwise inter-
actions,”” electrostatics,® and nuclear quantum effects.”!!
An appealing feature of the VEOS is that it can provide a
description of the bulk-phase behavior in the thermodynamic
limit, through consideration of the interactions of just a few
molecules. This positions it as a route to derive thermodynamic
behavior from first-principles methods.'?> The prospects of
accomplishing this are limited by issues related to the
convergence of the virial series, and progress in understanding
these issues can benefit from knowledge of the behavior of the
virial coefficients with increasing order. Moreover, interesting
questions have resurfaced recently concerning how the virial
series relates to condensation,'>™'> and these may be better
addressed with knowledge of high-order coefficients.
Unfortunately, the difficulty'® of computing the coefficient
By—the amount of computational effort required to evaluate
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it to a given precision—increases exponentially'”!8 with N,
and consequently the known virial coefficients do not reach to
very high order. For a long time, data were available only
for very simple models, and even for those cases it was
unusual to find values of By for N > 5 (the hard-sphere
(HS) model being a notable exception). The advent of Mayer-
sampling Monte Carlo!'® (MSMC) made it possible to evaluate
coeflicients for much more complex models, but calculations
are still practically restricted to N < ~8. Thus, we now have,
for example, values of By for water using models both
non-polarizable (N < 6)?%?! and polarizable (N < 5);>° short
n-alkanes (N < 6), and longer chains of up to 20 carbon atoms
(N < 4);* and helium-4 using both a semiclassical treatment
(N < 5)* and a full quantum Boltzmann representation based
on path-integral methods (N < 4),!' both approaches using
ab initio based 2- and 3-body interactions for the helium
atoms. Other examples can be cited, reporting By for N in
the range of about 3 to 8.

Another breakthrough in methodology was offered
recently by Wheatley.!” His algorithm, reviewed below, greatly
improves the efficiency of calculations for N > 6 and makes
possible calculations beyond the N = 8 “barrier.” Calculation
of virial coefficients from a molecular model entails evaluation
of a high-dimensional integral, and Wheatley’s algorithm
focuses on efficient evaluation of the integrand. It thus comple-
ments MSMC, which is focused on sampling of configurations
and defining averages that yield the integral reliably and
efficiently. Wheatley’s algorithm scales exponentially with N
in time and memory, which is much better (for larger N) than
the scaling obtained by the direct sum of clusters that defines
the integrand. Application of the method has so far focused
on simple models, but the technique is in no way restricted
to such cases. Virial coefficients have been computed up to
N = 12 for the three-dimensional HS model;'7'#?* Zhang and
Pettitt>* have computed very high-order coefficients for HS in
high dimensions using a combination of Wheatley’s algorithm
and other methods; and Wheatley used his method to compute
By for N =5 to 10 for a soft-sphere model.

©2015 AIP Publishing LLC
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The present work focuses on the Lennard-Jones (LJ)
model, whereby the spherically symmetric pair potential u(r)
for two LJ particles at a separation r is

o=t (2)"- (2]

where o is the diameter of the atom and ey is the depth of
the attractive energy well. Henceforth, we adopt units such
that oy and epy/kp are both unity (LJ units). It is worth
emphasizing that our calculations employ the full potential,
and no truncation is applied either explicitly or implicitly.
Such truncation would affect the virial coefficients, as has
been shown in other studies.?

Evaluation of virial coefficients for the LJ model has a
long history. Barker et al.?® described a numerical method
for evaluating virial coefficients of the LJ model and reported
values up to Bs. Henderson and Oden?’ calculated coefficients
up to By for many temperatures. Kim et al.?® then provided
more precise results than Barker. Sun and Teja?® calculated
coefficients from N =2 to 5 for many temperatures. Dyer
et al.>* applied Fourier methods and direct quadrature to obtain
very precise values of By. In proposing MSMC, Singh and
Kofke'® demonstrated the method for LJ virial coefficients
from B, to Bg. Schultz and Kofke3! then calculated coefficients
for B; and Bg, while reporting improved values for N =4, 5,
and 6. Later, Schultz et al.?? reported values of Bg, By, and Bg
with better precision and for more temperatures.

The present work is related to our recent study>® exam-
ining the performance of graphics processing units (GPUs)
to calculate the 8th, 9th, and 10th virial coefficients of the
LJ model by MSMC and Wheatley’s algorithm. The focus
of that study was on the performance of the algorithm on
GPUs, and on presenting a mixed-precision approach to
address potential complications related to precision loss when
using Wheatley’s algorithm. In the course of that work, we
calculated virial coefficients up to Bjg, but we did not report
them. However, we noticed that the relative difficulty'® of the
calculations decreased sharply with decreasing temperature,
such that Bjg at T = 0.6 (LJ units) could be evaluated with less
relative difficulty than Bg at T = 1.0. This has prompted us to
investigate higher-order coefficients at lower temperatures, so
as to gather data that can be used to study convergence of the
virial series.

Accordingly, in this work, we report more precise values
for Bg and new values for Bg to B¢ for the LJ potential.
The higher-order coefficients are increasingly focused on low
temperatures, where the calculations are most feasible. Our
attention is on detailing these calculations and presenting the
results. In Section II, we describe the models and techniques,
and in Section III, we present and discuss our results before
concluding in Section IV.

Il. METHODS

The Nth order classical virial coefficient By is formally
expressed as a multi-dimensional integral over the coordinates
of N particles. Specifically, for a spherically symmetric
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1’34

1-N
By = /.../fB(rN)drlz...drlN, 3)

potentia

N!

where dry,...dr |y indicates integration over the positions
of N — 1 molecules with respect to the position of molecule
1, which defines the origin. Here, fz(r") is the sum of
biconnected graphs on N vertices, with each vertex corre-
sponding to a molecule. For a pairwise-additive potential,
each biconnected graph corresponds to a product of Mayer
functions,

fa(™) = Z H fij-
G ijeG
The Mayer function f;;, which is the basic component of
the integrand, is a function of distance (r;;) between vertices
labeled i and j in the configuration r™. It is given in terms of
the pair potential u(r;;) by

fij = g Bulrij) _ 1. )

A. Overlap sampling

Monte Carlo (MC) methods for evaluation of multi-
dimensional integrals (such as that in are based
on calculation of the ratio of the target integral to a
known reference integral, one defined over the same set of
coordinates. For an accurate result, it is essential that the
MC sampling allows for exploration of all configurations of
importance to both integrals.®® This is accomplished most
reliably via separate processes, each performing importance
sampling on the respective integrals. The appropriate way to
combine these separate averages was given by Bennett*® and
adapted by us?*2! for calculation of virial coefficients,

Y/l (Yos/7)x
Y0/ T0) g/ {YOS5/T0)

where the angle brackets specify an ensemble average
weighted by 7 or mp, as indicated, and the subscript O indicates
a quantity corresponding to the reference integral. Here, vy is
the integrand of the target integral (which in the present case
is fp), and the reference integral By o is

By = Bn,o

BN,0=/u-/)’o(l‘N)dl'lz-udl‘lN, @)

which gives By o in terms of the reference-system integrand
vo- The choice of the reference is discussed in Sec. II B. There
are four averages appearing in[Eq. (6)] In what follows, we will
refer to (y/n), as the “target-system average,” and (yos/7), as
the “target-system overlap average.” The corresponding terms
in the denominator of will be called the “reference-
system average” and “reference-system overlap average,”
respectively.

The integrand y can exhibit negative values, so we cannot
use it directly for the importance-sampling weight, but must
instead use its absolute value: 7 = || (a consequence of this
is that gives By in terms of a ratio of ratios, rather
than via a simple ratio); likewise, 7y = |yo|. With this choice
of sampling weight, the target- and reference-system averages
are both taken over quantities that can equal only +1.


Chao Feng
Rectangle

Chao Feng
Rectangle

Chao Feng
Rectangle

Chao Feng
Rectangle

Chao Feng
Rectangle

Chao Feng
Rectangle

Chao Feng
Rectangle

Chao Feng
Rectangle


044504-3 Feng et al.

Finally, yos is the overlap function given by

)

®)

Yos = amy+n’
where « is a parameter selected to optimize the convergence
of the calculation.?! Additional optimization is achieved by
distributing the computational effort expended on the target
versus reference systems such that their marginal contribution
to the stochastic error of By is equalized.

B. Choice of reference and generation
of configurations

For the target system, the importance sampling required
by can be accomplished using MSMC." Such a
simulation is performed in an infinite volume without any
periodic boundaries, and no cutoff is applied to the potential.
Configurations of particles are generated as a Markov chain
via a Metropolis Monte Carlo process’” to sample 7, which has
the effect of naturally confining the molecules to the vicinity
of the origin, where molecule 1 is fixed.

The reference system is defined by y,, which in turn can be
defined via a graph or sum of graphs, and a reference potential
uo(r). The choice of 7y considers its similarity to the target, y,
how easily it can be importance-sampled, and availability of
By 0. Common practice selects the HS potential for 1y, and we
did that as well. From here, we employed two different choices
of the graphs defining . In the first choice, which we used
for N =8 and 9, it is equal to graph sum for fz: yo = f};s;
in the second, which we used for N > 10, it is a single graph
G¢ formed by joining N vertices with N — 1 bonds to make a
chain: yo = G{.

Foryy = f£°, we employed MSMC to importance-sample
the reference. For increasing N, the expense required to
evaluate yp makes it desirable to use a rejection-free algorithm
and to reduce the time required for samples in the Markov
chain to decorrelate. Moreover, for N > 11, good values of
By o are not available for yo = f5°. For these reasons, we
turned to yg = Ggs for larger N. This reference is sufficiently
simple that we could generate configurations directly, de novo,
in proportion to their weight my: starting with sphere 1 at the
origin, we placed a second sphere at random uniformly in the
spherical region of diameter oy centered on the first sphere.
The third sphere was placed likewise about sphere 2, and so
on until we finished with sphere N, placing it at a point of
overlap with sphere N — 1. In general, the configuration that
results is one that could have been generated instead with
the spheres placed in a different sequence, and its probability
of generation (its weight mp) is proportional to the number
of such sequences. This number must be evaluated for each
configuration, because m appears in the averages taken in the
target and reference simulations, via. The algorithm we
used to count the number of placement sequences consistent
with a given configuration has been detailed elsewhere'® and
will not be repeated here. We will point out though that it is
a central processing unit (CPU)-intensive calculation, similar
to evaluation of fp, so computational simplicity of 7y is not
the primary benefit of using Ggs. Instead, the advantages are
(1) it allows for direct generation of a series of uncorrelated
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importance-sampled configurations; (2) Ggs does not switch
sign, so (yo/no)ﬂo = 1; and (3) By, is trivial for this reference,
and is equal to (3mo3)V .

Direct generation of configurations without overlap-
sampling the averages is the conventional method for eval-
uation of HS virial coefficients,® although in that case it is
necessary to generate on additional graph structures to ensure
that all relevant target-system configurations are accessible.
In our calculation of HS virial coefficients,'® we generated on
trees and rings, as well, while Wheatley'” used just a chain,
but added a tail to the HS potential to enable a broader sample
of configurations. In the present case, the chain structure for
standard HS was sufficient because of our use of overlap
sampling to compute the averages, which requires only that the
directly generated configurations sample the reference system
well.

C. Wheatley’s algorithm

The conventional approach to evaluation of fp is through
summing of the terms of directly. There are in total
2N(N=1)/2 possible graphs for N particles, which grows faster
than exponentially with N, and the vast majority of these are
biconnected and thus contribute to fz.'® As a consequence,
it becomes impractical to calculate the integrand directly for
N > 8.

As a remedy, Wheatley proposed an algorithm'” that
evaluates the integrand fp in a less obvious, indirect manner.
Wheatley’s algorithm begins by calculating the sum of all
2N(N=D/2 oraphs, which is easily accomplished by computing
the graph of N points with an f + 1 bond joining each pair
of vertices. The desired sum is obtained from this by first
subtracting contributions made by the disconnected graphs,
leaving a sum of all connected graphs, and then subtracting
from this the contributions made by graphs having articulation
points (singly connected graphs). The final sum obtained is that
for biconnected graphs only. A recursive approach is employed
throughout.

The recursive nature of Wheatley’s method introduces a
potential problem with loss of precision for configurations
where particles are far apart and fp is near zero. Wheatley
circumvented this problem for his soft-sphere calculations
through a simple truncation scheme,'” and we showed?? that
this scheme—in which f is set to zero for any configuration
where it is calculated to be less than a threshold value—can
be safely applied up to Bjo for the LJ model using a 1072
threshold. We used this same threshold in the present work
and examined its suitability for calculations up to Bis.

D. Computational details

All calculations were based on the overlap-sampling
averaging method detailed in . A hard-sphere
reference potential with diameter oy = 1.5 was employed for
all calculations (except as described below). For Bg and By,
we used yo = f5°, and for Bjg to Bjs, we used yo = GHS.

Many independent MSMC runs were performed for each
temperature and each coefficient, and for each case the

averages appearing in [Eq. (6)| were combined to compute
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the reported By values. This parallelization was essential to
completing the CPU-years of computational effort required
to obtain the coefficients with good precision. In almost all
cases, at least 80 such independent runs were performed, and
in some cases as many as 5661 were used (more simulations
were performed at temperatures near the critical temperature).
Sampling of reference and target systems was completed
independently, and the amount of sampling allotted to each
was balanced to optimize the precision of the resulting By
for a given total amount of sampling. Generally, the reference
reached the desired precision with less sampling than the target
system. Configurational averages were monitored through the
course of the sampling process to guard against problems
with ergodicity, wherein the system gets trapped in a single
high-weight basin; such difficulties were observed only at
temperatures below about 7' = 0.2, which are much lower than
those reported here.

For Bg, each temperature totaled somewhere between 10

and 707.5 x 10° steps across all independent runs, requiring
11.9 to 815 CPU days of computational effort. Calculation of
By included 200 to 1500 simulations of 20 to 150 x 10° steps,
ranging from 80.6 to 563.2 CPU days. For By, coefficients
at four low temperatures were calculated, where 420 x 10° to
16.47 x 10° steps were performed with 5.6 to 216.5 CPU days.
For By, we sampled 1161 to 6174 x 10° configurations, using
46.4 to 229.6 CPU days. For By,, B3, and B4, coefficients at
T = 0.6 and 0.7 were calculated at each order, where for By,
the steps were, respectively, 867 and 1716 x 10°, using 98 and
200.3 CPU days; for B;3, 866 and 1289.6 x 10° steps using
305.9 and 448.6 CPU days; for B4, 273 and 271.8 X 100 steps
for each temperature spent 286.6 and 309.3 CPU days. For
Bis and Byg, only the value at T = 0.6 was calculated, where
111.4 x 10° steps were used for B;s with 416.2 CPU days, and
66.4 x 10° steps ran for Bjs using 808.9 CPU days.
For Bg and By, yo= ';S, and we used Wheatley’s
algorithm to calculate this quantity for each configuration
of the reference and target simulations. While (yo/70), is
independent of temperature, (705/770)”0 is not, so reference-
system simulations had to be run at each temperature of
interest. To improve the reference-system precision for By,
we averaged (yo/ m)),,o across all temperatures. The reduction
in uncertainty obtained by combining these averages was
especially useful for low temperatures, where the target
system was easier to compute and precision of the reference
calculations was limiting. With the use of yy = Glés for Bjg
and higher, we did not need to do this, as (yo/), is exactly
unity.

The uncertainties on all calculations were computed from
the uncertainties in the four averages appearing in[Eq. (6)} and
propagating them to By while accounting for the correlation
in the target- and reference-system averages, respectively. The
required variances and covariances were computed from the
multiple independent runs performed at each condition, as
described above. For Bg and By, we further broke up the runs
into sub-block averages to generate more data to improve the
precision of the variance. We did not do this for By to Bjg,
because the independent simulations were each too short to
provide independent sub-blocks. All uncertainties are reported
as one standard deviation of the mean (68% confidence limits).

J. Chem. Phys. 143, 044504 (2015)

Calculations were performed on Intel Xeon CPUs with
speed ranging from 2.13 to 2.67 GHz and having 8 to 32 cores.
The code was written in C. Random numbers were generated
using the MT 19937 implementation of the Mersenne Twister>”
pseudorandom number generator (PRNG). MT19937 was
seeded at the beginning of each simulation with four 4-byte
integers from the Linux kernel’s /dev/urandom PRNG. When
running with multiple threads, each thread had its own PRNG
initialized with different seeds.

IIl. RESULTS AND DISCUSSION
A. Performance of calculation

The difficulty D is a measure that quantifies the compu-
tational effort needed to evaluate a stochastic average. It is
defined!® in terms of the CPU time ¢ (excluding any time
used for equilibration) required to obtain an average with
uncertainty o,

D =1"%c. 9)

This quantity is asymptotically independent of ¢ for a
sufficiently large amount of sampling. It is of interest to
examine the difficulty of the calculation of By as a function
of temperature and coefficient order N. However, study of the
absolute difficulty is not particularly worthwhile, because its
behavior is dominated by the huge variation in the magnitude
of the coefficients with 7 and N. A more useful comparison
is found by working with the relative difficulty D, which
divides the uncertainty by a characteristic scale factor, which
we choose here to be the magnitude of the coefficient itself.
The relative difficulty is preferably expressed in terms of its
logarithm, which we have called'® the difficulty index, Dy,
thus defined for coefficient By,

Dy =logo(Dn/IBNI), (10)

where Dy is the difficulty for calculation of coefficient By,
with a convention that 7 is given in units of seconds. Note
that every unit increase in Dy corresponds to a two-order-of-
magnitude increase in CPU time to achieve the same relative
precision.

The difficulty index for the obtained virial coefficients is
shown in [Fig. 1. The plot shows first that, unsurprisingly,
the relative difficulty increases with N; it also exhibits a
sharp increase with 7, which explains our focus on low-
temperature calculations in this work. Beyond this, Dy peaks
at intermediate temperatures, then drops and levels off with
increasing T. The virial coefficients themselves go through
zero in this vicinity, which has much to do with the increase in
Dy over this range—the absolute difficulty Dy (not shown)
does not exhibit any unusual behavior near 7. It is worth
noting that the trends in Dg and Dy differ from the others at
low temperature. This is a consequence of the use of a different
reference 7y, for these coefficients, and it suggests that Bg and
By could have been computed more efficiently using yg = Ggs,
rather than fES.

We now turn to consideration of the choice of the hard-
sphere diameter o that defined the reference system. In

principle, the value of By computed according to [Eq. (6)|is
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FIG. 1. Difficulty index Dy for calculation of the virial coefficients. For
By, the value is based on the time for each calculation and does not reflect
any economy obtained by exploiting the independence of (yo/mo),, with
temperature.

independent of o, but in practice this choice does affect the
efficiency of the calculation. For the purpose of demonstrating
how we selected o, the relationship between o and relative
uncertainty of the optimization parameter « is plotted in,
taking Bg and Bjpat T = 0.6 as the examples. We observe that
for both Bg and By, the relative uncertainty of @ reached
a minimum at oo = 1.5. When the relative uncertainty of
a goes through a minimum, the relative uncertainty of the
virial coefficient will also be a minimum. So we concluded
that the best choice for o is 1.5, and we used this value
for all other calculations. For higher temperatures, one can
expect that smaller values of oy would be optimal, considering
the increasing relevance of the core region with increasing
temperature. In our experience, such effects do not become
significant until the temperature is increased substantially, say
for T > 10; however, at such conditions, the reference averages
add little to the overall computational cost, so the choice of
0 is not particularly important.

All calculations were begun from an initial configuration
in which all particles were placed at the origin. It was necessary

o
=

=3
(=)
—_

Relative Uncertainty of o

1 I
08 09 1
Hard Sphere Diameter, o, (LJ units)

1 1 1 1 1 1 1
1.1 12 13 14 15 16 17 18

FIG. 2. The relationship between hard sphere diameter of the reference
system (o) and relative uncertainty of « (Eq. (8)), for T =0.6.
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FIG. 3. Target block averages (y/x), with increasing Monte Carlo steps,
showing the initial equilibration phase of the simulation. Results are presented
for T =0.6.

to perform a period of equilibration before the data collection
began to allow the spheres to move to positions that were more
appropriate to the importance-sampled average. To find the
proper number of steps for equilibration, we examined block
averages as a function of the number of MC trials, looking for
the point where these averages ceased to exhibit a systematic
trend. Fig. 3 shows that block averages of (y/x), increased
initially and then fluctuated within a stable range after 180 MC
steps. In Fig. 4, we show that for (yos/m), block averages, the
number of steps required to reach a stable point increased with
increasing order from Bg to Bjg: about 7800 MC steps were
required for Bg, and up to 16 500 steps for Bjs. The need for
more equilibration steps was one of the reasons that the target
system for high-order virial coefficients was more expensive
to execute.

Itis known that Wheatley’s method can fail if the recursive
calculation is not carried to sufficient precision.'’* The
problem arises, in particular, for configurations where the
atoms are distant from each other and their energy is small. In
this circumstance, y may be smaller than can be resolved by
the precision used for the calculation, and effectively a lower
bound is imposed on its magnitude. Although the failure may

10° T T T T T T T

10777 7770 N

10" 8500 =8 -

10°% AWEiss

10 11100 &
7 N A 1 4

1% 13300 I

107 14440 i

15800 iy

N A (T M

Target Overlap Block Average Value

ol 16500 1/ 1216

1 |
30000

13 1 | 1
107, 10000

20000
Numer of Monte Carlo Steps

40000

FIG. 4. Target overlap block averages (yos/7), with increasing Monte Carlo
steps, for T'=0.6. Traces are provided representing each virial-coefficient
order examined in this work.
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occur as only a rare event, its effect can be disproportionate,
causing failure of the simulation. In some situations, the
precision loss can lead to anomalously large contributions
to the simulation averages, but with the use of overlap
sampling for averaging, this mode of failure is less of an issue.
Instead, here the primary concern is the effect on importance
sampling—if the system enters a region of configuration space
where the precision problem prevents accurate evaluation of
weights, the landscape effectively becomes flat, and it is very
unlikely that the Markov process will find its way back to the
relevant configurations. Notably, y, for the HS reference does
not suffer from this problem, because all calculations of fgs
and Ggs are completed with integer arithmetic. So it is an
issue only for the target-system sampling.

It has been found that a simple and effective remedy to
the precision problem is to set fz to zero when its computed
magnitude falls below a pre-set lower bound.'”** In our
previous work,*® we compared the integrand calculated using
the data type “double” (having 64 bits of precision) with that
computed using “__float128” (having 128 bits), and showed
that for Bg, By, and By, 107! is an appropriate truncation level.
For values of fp below this threshold, we observed significant
differences between the 64- and 128-bit calculations, and
above it we did not. We also performed 128-bit calculations
to determine the contribution to the averages made by the
configurations having fp below the truncation level. We
showed that their contribution was less than the uncertainty
of the virial-coefficient averages that we computed, so no
correction for the truncation was needed.*

Here, we extend this experiment up to Bjg. [Fig. 5| plots
values of fp computed using 64-bit arithmetic versus values
for the same configurations computed using 128 bits. Any
point falling significantly away from the line y = x indicates
an anomaly due to loss of precision. The figure shows that
for B4 and Bjg, many anomalous points lie above 10712
as computed using 64 bits. This indicates that for these
coefficients, we encountered configurations affected by the
precision problem (when computed with 64 bits) that were

aul = B8 | |
10 * B6
— Y=X
10°° =
1 1 1 1 1 1 1 1 1
107 10 10?0 10 10® 10" 1w 10”10
T

Construction used to determine proper truncation for integrand value
calculated using 64-bit arithmetic. x-axis is configuration weight as computed
by 128-bit arithmetic, and y-axis is the same value computed using 64 bits.
Points are values observed in configurations with weights falling in the plotted
range, from simulations of the indicated coefficient. Solid black line is y = x.

J. Chem. Phys. 143, 044504 (2015)

TABLE 1.| Eighth virial coefficient of the Lennard-Jones model. All quanti-

ties given in LJ units.

T Bg Bg (Ref. 32)
0.6 -1.357(15) x 10'° -1.3(5) x 10'0
0.65 -1.84(2) x 10°

0.7 -3.03(4) x 108

0.75 —-5.79(9) x 107

0.8 —-1.30(3) x 107 —1.48(19) x 107
0.85 -3.11(4) x 106

0.9 -7.95(12) x 10°

0.95 —-2.18(4) x 10°

1.0 -6.11(16) x 10* -6.4(19) x 10*
1.05 -1.63(8) x 10*

1.1 -3.7(3) x 103

1.2 —-20(10) x 10!

14 18(16)

1.6 13(5)

2.0 5.4(8) 5(2)

24 1.3(3)

3.0 -0.02(6)

4.0 -0.09(2)

5.0 —-8.7(7) x 1072 -10.1(8) x 1072
7.0 -6.8(3) x 1072

10.0 —-3.79(18) x 1072

15.0 -1.81(6) x 1072

20.0 -9.4(3) x 1073

40.0 -2.41(9) x 1073 -2.29(6) x 1073

not blocked by the truncation of f at 107'2. The figure shows
that instead 107! was an appropriate truncation for these
higher coefficients. We in fact made this observation only after
completing our calculations, having performed them using
the 107!2 truncation. Nevertheless, we know that the problem
did not taint our calculations because we never observed the
expected mode of failure, in which the system gets lost in a
low-precision landscape. This is understandable, because for
the N > 10 low-temperature calculations, fg was typically of
order 10'°, and consequently there was effectively no chance
that it would find its way into a configuration where it is 1071
or smaller.

B. Virial coefficients

Calculated values of By are reported in [Table 1. For B,
we achieved good precision for low and high temperatures. As
shown in, it was difficult to obtain values with small rela-
tive uncertainty in the vicinity of the LJ critical temperature (T
~ 1.3). Comparison of the new values of Bg with lower-
precision data at a few temperatures reported by us previ-
ously?? finds good mutual consistency.

report all coefficients computed here for
By to Big. There are no literature data published before for
values at these orders. As for Bg, we obtained values for By
with good precision at low and high temperatures and found
difficulty getting good precision at intermediate temperatures.
From By to By, we attempted calculation of coefficients only
at low temperatures because it was increasingly difficult to get
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TABLE II] Ninth to thirteenth virial coefficients of the Lennard-Jones model. All quantities given in LJ units.

T By Bio

B B> B3

0.6 -9.75(11) x 10" -7.51(14) x 1013

0.7 —1.155(15) x 10'0 —4.89(9) x 101
0.8 -3.00(6) x 108 -7.3(2) x 10°
0.9 —-1.18(5) x 107 —-1.6(4) x 108
1.0 -7.6(7) x 10°

1.2 —-1.4(4) x 10*

2.0 -6(14)

3.0 —1.4(6)

5.0 -0.21(3)

10.0 -3.3(3) x 1072

20.0 -3.3(4) x 1073

40.0 —4.6(7) x 1074

—6.31(9) x 1015
—2.14(6) x 10'3
-2.05(15) x 10

-5.18(13) x 101°
—4.1(4) x 10'°

—-5.46(12) x 107
-9.3(5) x 10

useful precision for the target system at intermediate and high
temperatures.

presents a plot of the coeflicients as a function of
N for several temperatures. The plot includes the values in
[Tables I, 11, and IT|, and others that we obtained previously for
the lower-order coefficients.>!*> The dependence is clearly
linear on this logarithmic scale, indicating an exponential
increase in the magnitude of the coefficients with order.

For practical applications, it can be useful to have
accurate expressions for the virial coefficients as a function
of temperature. This allows the coefficients to be estimated
for temperatures where MSMC data are not available, and
it enables evaluation of temperature derivatives needed to
compute quantities related to the thermodynamic energy and
its derivatives. The development of an effective temperature-
dependent form can be aided by a bit of analysis of
which give By in terms of the LJ potential.

We start by separating the LJ form into its repulsive
and attractive components, u(r) = ug(r) + ua(r), for which
ur(r) = dery(r/oy) "2, and ua(r) = —4ery(r/oLy)™®. We then
consider a separation of the Mayer function into corresponding
repulsive and attractive components,

f=fr+erfa=fr+F, (1D

where, using LJ units,

-12
er = W

Ir

fA - €+(4/T)r_6_ 1’

eR_la

(12)
F o= oy (e+(4/7‘)r’6 _ 1)‘

Now, turning to [Eq. (3), we can rescale the integration
variables, defining s = (T/4)]/ 12r, and the equation then
becomes

TABLE III.| Fourteenth to sixteenth virial coefficients of the Lennard-Jones
model. All quantities given in LJ units.

T By Bis B

0.6 —4.9(3) x 10%! —-4.7(5)x 10?3 -4.5(9)x 10%

0.7 -2.1(6) x 10'8

N-1
T\ *+ 1-N
mo=(3) S [ [t a0

and in terms of the rescaled variables, Eq. (12) is

).
-12 \F -6 (14)
e (€+(2/ T)s™° _ 1) )

Ir

F

In terms of the Mayer function decomposed as in Eq. (11),
fB is a sum of graphs, but with the usual f-bonds each
replaced by either an fr- or F-bond. Each graph in the
original f-bond series for fp is replaced by a sum of graphs
having all such bond replacements. The F-bonds introduce
temperature dependence to the scaled integral in Eq. (13).
We can approximate the form of the temperature dependence
introduced by each F-bond as F ~ F, = exp(A/VT) -1,
where A is an adjustable constant (different for each N)
that lumps the effect of integration over s. The temperature
dependence of a graph having n F-bonds is thus estimated
as F. We then sum over all graphs in fp to get the full
temperature dependence of By (in addition to the temperature-
dependent prefactor). We note that in the limit 7 — oo,
then F — 0 while By(T) — BISVS(T/4), where BISVS is the Nth
virial coefficient for the soft-sphere model (with potential

Virial Coefficients, BN(LJ units)
T

30 | | |

10
Order, N

FIG. 6.| Virial coefficients with increasing order at subcritical temperatures,
as computed here (N > 9) and in previous work.3!-32
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1
2 3
A, (LJ units)

Demonstration of fit of Eq. (15) for N = 5. Plotted is a reduced y?
statistic, defined as "1_\/1 Zi(BN,i—BN(Ti))Z/o—IZV’i, presented as a function
of the nonlinear fitting parameter A . Each line shows the statistic for a
different choice of kp, the number of fitting constants, going in increments
of 1 from kpn =4 to 10, as indicated.

u(r) = eLy(oLy/r)'?). Taken together, we have the following
form for our fit of the virial coefficient By:

T ‘N74 kn k
BN(T) = (Z) Ezsf+ZaN,k(€AN/ﬁ— 1) ,
k=1

where the ay (and Ay) are fitting parameters, and B3>
is the soft-sphere virial coefficient at unit temperature
(equal to 3.527 61(6), 2.11494(2), 0.769 53(4), 0.09043(12),
—0.0742(6), —0.035(3), for N = 4 (Ref. 40) and 5-9 (Ref. 17),
respectively).

The sum in extends to kp, which is selected
to provide sufficient values of k to form a good fit without
overfitting the data. illustrates the fitting process. Here,
we plot the )(2 statistic, reduced by n,, which is the number of
By values fit to We reduce by this quantity instead of
the degrees of freedom, (ny — kp), because our aim is simply
to quantify how well the fit describes the data to within their
uncertainties, rather than assess the likelihood that the fit func-
tion is an exact description of the true By(7) behavior (which
we know it is not). This statistic is given in[Fig. 7)as a function
of the (non-linear) parameter Ay, with all other (linear)
parameters ay ; determined by a weighted least-squares fit
for the given Ay. For y? > 1, the function is not fitting the
data to within their uncertainties, while X2 < 1 represents an
overfit of the data—the function matches the points better than
is warranted by their uncertainties. We select k large enough
to allow y? ~ 1 for some value of Ay, which we take as the
best-fit value. An unnecessarily large ky is indicated if y* < 1.

The parameters obtained by fitting each virial coefficient
Bn(T),4 < N <9, are given in the supplementary material.*!
Fits for N > 10 were not attempted due to lack of data at
intermediate and higher temperatures. For convenience, we
also collect in the supplementary material*! the best of the
known values and uncertainties of all coefficients, 4 < N
< 16, in a machine-readable form. These data include a few
new values for lower-order coefficients that were computed
during the course of this work.

J. Chem. Phys. 143, 044504 (2015)

IV. CONCLUSION

We have applied the overlap-sampling implementation
of Mayer sampling Monte Carlo and direct generation of
configurations to evaluate high-order virial coefficients of
the Lennard-Jones model, using Wheatley’s algorithm for
summation of clusters. We were able to obtain results up to
N = 16, which is well beyond what was possible before these
recent methodological advances. The focus of this study was
on low temperatures, particularly for larger N, as that is where
the calculations were most feasible. Such coefficients are of
interest because they are at subcritical temperatures, so they
may find use in advancing our understanding of condensation
in the context of the virial equation of state.*’

Based on current methods, it is still too expensive to
explore coeflicients of the LJ model at intermediate and high
temperatures to obtain satisfactory precision for the orders
above By. Such calculations must await further improvements
to methodology and/or computer hardware, particularly in
connection to massively parallel architectures, for which
Monte Carlo methods, and MSMC, in particular, would be
especially well suited if memory limitations can be overcome.
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