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We calculated virial coefficients BN , 8 ≤ N ≤ 16, of the Lennard-Jones (LJ) model using both
the Mayer-sampling Monte Carlo method and direct generation of configurations, with Wheatley’s
algorithm for summation of clusters. For N = 8, 24 values are reported, and for N = 9, 12 values
are reported, both for temperatures T in the range 0.6 ≤ T ≤ 40.0 (in LJ units). For each N in
10 ≤ N ≤ 16, one to four values are reported for 0.6 ≤ T ≤ 0.9. An approximate functional form
for the temperature dependence of BN was developed, and fits of LJ BN(T) based on this form
are presented for each coefficient, 4 ≤ N ≤ 9, using new and previously reported data. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4927339]

I. INTRODUCTION

The virial equation of state (VEOS) is a density expansion
with respect to an ideal-gas reference that builds a bridge
between molecular and macro-scale descriptions of fluid-
phase behavior.1 It can be expressed as follows, where we
write the compressibility factor Z in powers of the number
density ρ,

Z ≡ βP/ρ

= 1 + B2(T)ρ + B3(T)ρ2 + · · · + Bn(T)ρn−1 + · · ·. (1)

Here, β = 1/kBT with T the absolute temperature and kB
Boltzmann’s constant, P is the pressure, and BN is the
(temperature-dependent) N th virial coefficient. Although most
often written in the context of the pressure-density relation,
the VEOS framework can describe a much broader range
of behaviors while accommodating a variety of complicating
phenomena, such as inhomogeneities,2–4 non-pairwise inter-
actions,5–7 electrostatics,8 and nuclear quantum effects.9–11

An appealing feature of the VEOS is that it can provide a
description of the bulk-phase behavior in the thermodynamic
limit, through consideration of the interactions of just a few
molecules. This positions it as a route to derive thermodynamic
behavior from first-principles methods.12 The prospects of
accomplishing this are limited by issues related to the
convergence of the virial series, and progress in understanding
these issues can benefit from knowledge of the behavior of the
virial coefficients with increasing order. Moreover, interesting
questions have resurfaced recently concerning how the virial
series relates to condensation,13–15 and these may be better
addressed with knowledge of high-order coefficients.

Unfortunately, the difficulty16 of computing the coefficient
BN—the amount of computational effort required to evaluate
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it to a given precision—increases exponentially17,18 with N ,
and consequently the known virial coefficients do not reach to
very high order. For a long time, data were available only
for very simple models, and even for those cases it was
unusual to find values of BN for N > 5 (the hard-sphere
(HS) model being a notable exception). The advent of Mayer-
sampling Monte Carlo19 (MSMC) made it possible to evaluate
coefficients for much more complex models, but calculations
are still practically restricted to N ≤ ∼8. Thus, we now have,
for example, values of BN for water using models both
non-polarizable (N ≤ 6)20,21 and polarizable (N ≤ 5);5,6 short
n-alkanes (N ≤ 6), and longer chains of up to 20 carbon atoms
(N ≤ 4);22 and helium-4 using both a semiclassical treatment
(N ≤ 5)23 and a full quantum Boltzmann representation based
on path-integral methods (N ≤ 4),11 both approaches using
ab initio based 2- and 3-body interactions for the helium
atoms. Other examples can be cited, reporting BN for N in
the range of about 3 to 8.

Another breakthrough in methodology was offered
recently by Wheatley.17 His algorithm, reviewed below, greatly
improves the efficiency of calculations for N ≥ 6 and makes
possible calculations beyond the N = 8 “barrier.” Calculation
of virial coefficients from a molecular model entails evaluation
of a high-dimensional integral, and Wheatley’s algorithm
focuses on efficient evaluation of the integrand. It thus comple-
ments MSMC, which is focused on sampling of configurations
and defining averages that yield the integral reliably and
efficiently. Wheatley’s algorithm scales exponentially with N
in time and memory, which is much better (for larger N) than
the scaling obtained by the direct sum of clusters that defines
the integrand. Application of the method has so far focused
on simple models, but the technique is in no way restricted
to such cases. Virial coefficients have been computed up to
N = 12 for the three-dimensional HS model;17,18,24 Zhang and
Pettitt24 have computed very high-order coefficients for HS in
high dimensions using a combination of Wheatley’s algorithm
and other methods; and Wheatley used his method to compute
BN for N = 5 to 10 for a soft-sphere model.

0021-9606/2015/143(4)/044504/9/$30.00 143, 044504-1 © 2015 AIP Publishing LLC
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The present work focuses on the Lennard-Jones (LJ)
model, whereby the spherically symmetric pair potential u(r)
for two LJ particles at a separation r is

u(r) = 4ϵLJ

(
σLJ

r

)12
−

(
σLJ

r

)6

, (2)

where σLJ is the diameter of the atom and ϵLJ is the depth of
the attractive energy well. Henceforth, we adopt units such
that σLJ and ϵLJ/kB are both unity (LJ units). It is worth
emphasizing that our calculations employ the full potential,
and no truncation is applied either explicitly or implicitly.
Such truncation would affect the virial coefficients, as has
been shown in other studies.25

Evaluation of virial coefficients for the LJ model has a
long history. Barker et al.26 described a numerical method
for evaluating virial coefficients of the LJ model and reported
values up to B5. Henderson and Oden27 calculated coefficients
up to B4 for many temperatures. Kim et al.28 then provided
more precise results than Barker. Sun and Teja29 calculated
coefficients from N = 2 to 5 for many temperatures. Dyer
et al.30 applied Fourier methods and direct quadrature to obtain
very precise values of B4. In proposing MSMC, Singh and
Kofke19 demonstrated the method for LJ virial coefficients
from B2 to B6. Schultz and Kofke31 then calculated coefficients
for B7 and B8, while reporting improved values for N = 4, 5,
and 6. Later, Schultz et al.32 reported values of B6, B7, and B8
with better precision and for more temperatures.

The present work is related to our recent study33 exam-
ining the performance of graphics processing units (GPUs)
to calculate the 8th, 9th, and 10th virial coefficients of the
LJ model by MSMC and Wheatley’s algorithm. The focus
of that study was on the performance of the algorithm on
GPUs, and on presenting a mixed-precision approach to
address potential complications related to precision loss when
using Wheatley’s algorithm. In the course of that work, we
calculated virial coefficients up to B10, but we did not report
them. However, we noticed that the relative difficulty16 of the
calculations decreased sharply with decreasing temperature,
such that B10 at T = 0.6 (LJ units) could be evaluated with less
relative difficulty than B8 at T = 1.0. This has prompted us to
investigate higher-order coefficients at lower temperatures, so
as to gather data that can be used to study convergence of the
virial series.

Accordingly, in this work, we report more precise values
for B8 and new values for B8 to B16 for the LJ potential.
The higher-order coefficients are increasingly focused on low
temperatures, where the calculations are most feasible. Our
attention is on detailing these calculations and presenting the
results. In Section II, we describe the models and techniques,
and in Section III, we present and discuss our results before
concluding in Section IV.

II. METHODS

The N th order classical virial coefficient BN is formally
expressed as a multi-dimensional integral over the coordinates
of N particles. Specifically, for a spherically symmetric

potential,34

BN =
1 − N

N!


. . .


fB(rN)dr12 . . . dr1N , (3)

where dr12 . . . dr1N indicates integration over the positions
of N − 1 molecules with respect to the position of molecule
1, which defines the origin. Here, fB(rN) is the sum of
biconnected graphs on N vertices, with each vertex corre-
sponding to a molecule. For a pairwise-additive potential,
each biconnected graph corresponds to a product of Mayer
functions,

fB(rN) =

G


i j ∈G

f i j . (4)

The Mayer function f i j, which is the basic component of
the integrand, is a function of distance (ri j) between vertices
labeled i and j in the configuration rN . It is given in terms of
the pair potential u(ri j) by

f i j = e−βu(ri j) − 1. (5)

A. Overlap sampling

Monte Carlo (MC) methods for evaluation of multi-
dimensional integrals (such as that in Eq. (3)) are based
on calculation of the ratio of the target integral to a
known reference integral, one defined over the same set of
coordinates. For an accurate result, it is essential that the
MC sampling allows for exploration of all configurations of
importance to both integrals.35 This is accomplished most
reliably via separate processes, each performing importance
sampling on the respective integrals. The appropriate way to
combine these separate averages was given by Bennett36 and
adapted by us20,21 for calculation of virial coefficients,

BN = BN,0
⟨γ/π⟩π/⟨γOS/π⟩π

⟨γ0/π0⟩π0
/⟨γOS/π0⟩π0

, (6)

where the angle brackets specify an ensemble average
weighted by π or π0, as indicated, and the subscript 0 indicates
a quantity corresponding to the reference integral. Here, γ is
the integrand of the target integral (which in the present case
is fB), and the reference integral BN,0 is

BN,0 =


. . .


γ0(rN)dr12 . . . dr1N , (7)

which gives BN,0 in terms of the reference-system integrand
γ0. The choice of the reference is discussed in Sec. II B. There
are four averages appearing in Eq. (6). In what follows, we will
refer to ⟨γ/π⟩π as the “target-system average,” and ⟨γOS/π⟩π as
the “target-system overlap average.” The corresponding terms
in the denominator of Eq. (6) will be called the “reference-
system average” and “reference-system overlap average,”
respectively.

The integrand γ can exhibit negative values, so we cannot
use it directly for the importance-sampling weight, but must
instead use its absolute value: π = |γ | (a consequence of this
is that Eq. (6) gives BN in terms of a ratio of ratios, rather
than via a simple ratio); likewise, π0 = |γ0|. With this choice
of sampling weight, the target- and reference-system averages
are both taken over quantities that can equal only ±1.
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Finally, γOS is the overlap function given by

γOS =
ππ0

απ0 + π
, (8)

where α is a parameter selected to optimize the convergence
of the calculation.21 Additional optimization is achieved by
distributing the computational effort expended on the target
versus reference systems such that their marginal contribution
to the stochastic error of BN is equalized.

B. Choice of reference and generation
of configurations

For the target system, the importance sampling required
by Eq. (6) can be accomplished using MSMC.19 Such a
simulation is performed in an infinite volume without any
periodic boundaries, and no cutoff is applied to the potential.
Configurations of particles are generated as a Markov chain
via a Metropolis Monte Carlo process37 to sample π, which has
the effect of naturally confining the molecules to the vicinity
of the origin, where molecule 1 is fixed.

The reference system is defined by γ0, which in turn can be
defined via a graph or sum of graphs, and a reference potential
u0(r). The choice of γ0 considers its similarity to the target, γ,
how easily it can be importance-sampled, and availability of
BN,0. Common practice selects the HS potential for u0, and we
did that as well. From here, we employed two different choices
of the graphs defining γ0. In the first choice, which we used
for N = 8 and 9, it is equal to graph sum for fB: γ0 = f HS

B ;
in the second, which we used for N ≥ 10, it is a single graph
GC formed by joining N vertices with N − 1 bonds to make a
chain: γ0 = GHS

C
.

For γ0 = f HS
B , we employed MSMC to importance-sample

the reference. For increasing N , the expense required to
evaluate γ0 makes it desirable to use a rejection-free algorithm
and to reduce the time required for samples in the Markov
chain to decorrelate. Moreover, for N > 11, good values of
BN,0 are not available for γ0 = f HS

B . For these reasons, we
turned to γ0 = GHS

C
for larger N . This reference is sufficiently

simple that we could generate configurations directly, de novo,
in proportion to their weight π0: starting with sphere 1 at the
origin, we placed a second sphere at random uniformly in the
spherical region of diameter σ0 centered on the first sphere.
The third sphere was placed likewise about sphere 2, and so
on until we finished with sphere N , placing it at a point of
overlap with sphere N − 1. In general, the configuration that
results is one that could have been generated instead with
the spheres placed in a different sequence, and its probability
of generation (its weight π0) is proportional to the number
of such sequences. This number must be evaluated for each
configuration, because π0 appears in the averages taken in the
target and reference simulations, via Eq. (8). The algorithm we
used to count the number of placement sequences consistent
with a given configuration has been detailed elsewhere18 and
will not be repeated here. We will point out though that it is
a central processing unit (CPU)-intensive calculation, similar
to evaluation of fB, so computational simplicity of γ0 is not
the primary benefit of using GHS

C
. Instead, the advantages are

(1) it allows for direct generation of a series of uncorrelated

importance-sampled configurations; (2) GHS
C

does not switch
sign, so ⟨γ0/π0⟩π0

≡ 1; and (3) BN,0 is trivial for this reference,
and is equal to ( 4

3πσ
3
0)N−1.

Direct generation of configurations without overlap-
sampling the averages is the conventional method for eval-
uation of HS virial coefficients,38 although in that case it is
necessary to generate on additional graph structures to ensure
that all relevant target-system configurations are accessible.
In our calculation of HS virial coefficients,18 we generated on
trees and rings, as well, while Wheatley17 used just a chain,
but added a tail to the HS potential to enable a broader sample
of configurations. In the present case, the chain structure for
standard HS was sufficient because of our use of overlap
sampling to compute the averages, which requires only that the
directly generated configurations sample the reference system
well.

C. Wheatley’s algorithm

The conventional approach to evaluation of fB is through
summing of the terms of Eq. (4) directly. There are in total
2N (N−1)/2 possible graphs for N particles, which grows faster
than exponentially with N , and the vast majority of these are
biconnected and thus contribute to fB.18 As a consequence,
it becomes impractical to calculate the integrand directly for
N > 8.

As a remedy, Wheatley proposed an algorithm17 that
evaluates the integrand fB in a less obvious, indirect manner.
Wheatley’s algorithm begins by calculating the sum of all
2N (N−1)/2 graphs, which is easily accomplished by computing
the graph of N points with an f + 1 bond joining each pair
of vertices. The desired sum is obtained from this by first
subtracting contributions made by the disconnected graphs,
leaving a sum of all connected graphs, and then subtracting
from this the contributions made by graphs having articulation
points (singly connected graphs). The final sum obtained is that
for biconnected graphs only. A recursive approach is employed
throughout.

The recursive nature of Wheatley’s method introduces a
potential problem with loss of precision for configurations
where particles are far apart and fB is near zero. Wheatley
circumvented this problem for his soft-sphere calculations
through a simple truncation scheme,17 and we showed33 that
this scheme—in which fB is set to zero for any configuration
where it is calculated to be less than a threshold value—can
be safely applied up to B10 for the LJ model using a 10−12

threshold. We used this same threshold in the present work
and examined its suitability for calculations up to B16.

D. Computational details

All calculations were based on the overlap-sampling
averaging method detailed in Eqs. (6) to (8). A hard-sphere
reference potential with diameter σ0 = 1.5 was employed for
all calculations (except as described below). For B8 and B9,
we used γ0 = f HS

B , and for B10 to B16, we used γ0 = GHS
C

.
Many independent MSMC runs were performed for each

temperature and each coefficient, and for each case the
averages appearing in Eq. (6) were combined to compute
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the reported BN values. This parallelization was essential to
completing the CPU-years of computational effort required
to obtain the coefficients with good precision. In almost all
cases, at least 80 such independent runs were performed, and
in some cases as many as 5661 were used (more simulations
were performed at temperatures near the critical temperature).
Sampling of reference and target systems was completed
independently, and the amount of sampling allotted to each
was balanced to optimize the precision of the resulting BN

for a given total amount of sampling. Generally, the reference
reached the desired precision with less sampling than the target
system. Configurational averages were monitored through the
course of the sampling process to guard against problems
with ergodicity, wherein the system gets trapped in a single
high-weight basin; such difficulties were observed only at
temperatures below about T ≈ 0.2, which are much lower than
those reported here.

For B8, each temperature totaled somewhere between 10
and 707.5 × 109 steps across all independent runs, requiring
11.9 to 815 CPU days of computational effort. Calculation of
B9 included 200 to 1500 simulations of 20 to 150 × 109 steps,
ranging from 80.6 to 563.2 CPU days. For B10, coefficients
at four low temperatures were calculated, where 420 × 106 to
16.47 × 109 steps were performed with 5.6 to 216.5 CPU days.
For B11, we sampled 1161 to 6174 × 106 configurations, using
46.4 to 229.6 CPU days. For B12, B13, and B14, coefficients at
T = 0.6 and 0.7 were calculated at each order, where for B12
the steps were, respectively, 867 and 1716 × 106, using 98 and
200.3 CPU days; for B13, 866 and 1289.6 × 106 steps using
305.9 and 448.6 CPU days; for B14, 273 and 271.8 × 106 steps
for each temperature spent 286.6 and 309.3 CPU days. For
B15 and B16, only the value at T = 0.6 was calculated, where
111.4 × 106 steps were used for B15 with 416.2 CPU days, and
66.4 × 106 steps ran for B16 using 808.9 CPU days.

For B8 and B9, γ0 = f HS
B , and we used Wheatley’s

algorithm to calculate this quantity for each configuration
of the reference and target simulations. While ⟨γ0/π0⟩π0

is
independent of temperature, ⟨γOS/π0⟩π0

is not, so reference-
system simulations had to be run at each temperature of
interest. To improve the reference-system precision for B9,
we averaged ⟨γ0/π0⟩π0

across all temperatures. The reduction
in uncertainty obtained by combining these averages was
especially useful for low temperatures, where the target
system was easier to compute and precision of the reference
calculations was limiting. With the use of γ0 = GHS

C
for B10

and higher, we did not need to do this, as ⟨γ0/π0⟩π0
is exactly

unity.
The uncertainties on all calculations were computed from

the uncertainties in the four averages appearing in Eq. (6), and
propagating them to BN while accounting for the correlation
in the target- and reference-system averages, respectively. The
required variances and covariances were computed from the
multiple independent runs performed at each condition, as
described above. For B8 and B9, we further broke up the runs
into sub-block averages to generate more data to improve the
precision of the variance. We did not do this for B10 to B16,
because the independent simulations were each too short to
provide independent sub-blocks. All uncertainties are reported
as one standard deviation of the mean (68% confidence limits).

Calculations were performed on Intel Xeon CPUs with
speed ranging from 2.13 to 2.67 GHz and having 8 to 32 cores.
The code was written in C. Random numbers were generated
using the MT19937 implementation of the Mersenne Twister39

pseudorandom number generator (PRNG). MT19937 was
seeded at the beginning of each simulation with four 4-byte
integers from the Linux kernel’s /dev/urandom PRNG. When
running with multiple threads, each thread had its own PRNG
initialized with different seeds.

III. RESULTS AND DISCUSSION

A. Performance of calculation

The difficulty D is a measure that quantifies the compu-
tational effort needed to evaluate a stochastic average. It is
defined16 in terms of the CPU time t (excluding any time
used for equilibration) required to obtain an average with
uncertainty σ,

D ≡ t1/2σ. (9)

This quantity is asymptotically independent of t for a
sufficiently large amount of sampling. It is of interest to
examine the difficulty of the calculation of BN as a function
of temperature and coefficient order N . However, study of the
absolute difficulty is not particularly worthwhile, because its
behavior is dominated by the huge variation in the magnitude
of the coefficients with T and N . A more useful comparison
is found by working with the relative difficulty D̄, which
divides the uncertainty by a characteristic scale factor, which
we choose here to be the magnitude of the coefficient itself.
The relative difficulty is preferably expressed in terms of its
logarithm, which we have called16 the difficulty index, DN ,
thus defined for coefficient BN ,

DN ≡ log10 (DN/|BN |) , (10)

where DN is the difficulty for calculation of coefficient BN ,
with a convention that t is given in units of seconds. Note
that every unit increase in DN corresponds to a two-order-of-
magnitude increase in CPU time to achieve the same relative
precision.

The difficulty index for the obtained virial coefficients is
shown in Fig. 1. The plot shows first that, unsurprisingly,
the relative difficulty increases with N ; it also exhibits a
sharp increase with T , which explains our focus on low-
temperature calculations in this work. Beyond this, DN peaks
at intermediate temperatures, then drops and levels off with
increasing T . The virial coefficients themselves go through
zero in this vicinity, which has much to do with the increase in
DN over this range—the absolute difficulty DN (not shown)
does not exhibit any unusual behavior near Tc. It is worth
noting that the trends in D8 and D9 differ from the others at
low temperature. This is a consequence of the use of a different
reference γ0 for these coefficients, and it suggests that B8 and
B9 could have been computed more efficiently using γ0 = GHS

C
,

rather than f HS
B .

We now turn to consideration of the choice of the hard-
sphere diameter σ0 that defined the reference system. In
principle, the value of BN computed according to Eq. (6) is
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FIG. 1. Difficulty index DN for calculation of the virial coefficients. For
B9, the value is based on the time for each calculation and does not reflect
any economy obtained by exploiting the independence of ⟨γ0/π0⟩π0

with
temperature.

independent of σ0, but in practice this choice does affect the
efficiency of the calculation. For the purpose of demonstrating
how we selected σ0, the relationship between σ0 and relative
uncertainty of the optimization parameter α is plotted in Fig. 2,
taking B8 and B10 at T = 0.6 as the examples. We observe that
for both B8 and B10, the relative uncertainty of α reached
a minimum at σ0 = 1.5. When the relative uncertainty of
α goes through a minimum, the relative uncertainty of the
virial coefficient will also be a minimum. So we concluded
that the best choice for σ0 is 1.5, and we used this value
for all other calculations. For higher temperatures, one can
expect that smaller values of σ0 would be optimal, considering
the increasing relevance of the core region with increasing
temperature. In our experience, such effects do not become
significant until the temperature is increased substantially, say
for T > 10; however, at such conditions, the reference averages
add little to the overall computational cost, so the choice of
σ0 is not particularly important.

All calculations were begun from an initial configuration
in which all particles were placed at the origin. It was necessary

FIG. 2. The relationship between hard sphere diameter of the reference
system (σ0) and relative uncertainty of α (Eq. (8)), for T = 0.6.

FIG. 3. Target block averages ⟨γ/π⟩π with increasing Monte Carlo steps,
showing the initial equilibration phase of the simulation. Results are presented
for T = 0.6.

to perform a period of equilibration before the data collection
began to allow the spheres to move to positions that were more
appropriate to the importance-sampled average. To find the
proper number of steps for equilibration, we examined block
averages as a function of the number of MC trials, looking for
the point where these averages ceased to exhibit a systematic
trend. Fig. 3 shows that block averages of ⟨γ/π⟩π increased
initially and then fluctuated within a stable range after 180 MC
steps. In Fig. 4, we show that for ⟨γOS/π⟩π block averages, the
number of steps required to reach a stable point increased with
increasing order from B8 to B16: about 7800 MC steps were
required for B8, and up to 16 500 steps for B16. The need for
more equilibration steps was one of the reasons that the target
system for high-order virial coefficients was more expensive
to execute.

It is known that Wheatley’s method can fail if the recursive
calculation is not carried to sufficient precision.17,33 The
problem arises, in particular, for configurations where the
atoms are distant from each other and their energy is small. In
this circumstance, γ may be smaller than can be resolved by
the precision used for the calculation, and effectively a lower
bound is imposed on its magnitude. Although the failure may

FIG. 4. Target overlap block averages ⟨γOS/π⟩π with increasing Monte Carlo
steps, for T = 0.6. Traces are provided representing each virial-coefficient
order examined in this work.
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occur as only a rare event, its effect can be disproportionate,
causing failure of the simulation. In some situations, the
precision loss can lead to anomalously large contributions
to the simulation averages, but with the use of overlap
sampling for averaging, this mode of failure is less of an issue.
Instead, here the primary concern is the effect on importance
sampling—if the system enters a region of configuration space
where the precision problem prevents accurate evaluation of
weights, the landscape effectively becomes flat, and it is very
unlikely that the Markov process will find its way back to the
relevant configurations. Notably, γ0 for the HS reference does
not suffer from this problem, because all calculations of f HS

B

and GHS
C

are completed with integer arithmetic. So it is an
issue only for the target-system sampling.

It has been found that a simple and effective remedy to
the precision problem is to set fB to zero when its computed
magnitude falls below a pre-set lower bound.17,33 In our
previous work,33 we compared the integrand calculated using
the data type “double” (having 64 bits of precision) with that
computed using “__float128” (having 128 bits), and showed
that for B6, B8, and B10, 10−12 is an appropriate truncation level.
For values of fB below this threshold, we observed significant
differences between the 64- and 128-bit calculations, and
above it we did not. We also performed 128-bit calculations
to determine the contribution to the averages made by the
configurations having fB below the truncation level. We
showed that their contribution was less than the uncertainty
of the virial-coefficient averages that we computed, so no
correction for the truncation was needed.33

Here, we extend this experiment up to B16. Fig. 5 plots
values of fB computed using 64-bit arithmetic versus values
for the same configurations computed using 128 bits. Any
point falling significantly away from the line y = x indicates
an anomaly due to loss of precision. The figure shows that
for B14 and B16, many anomalous points lie above 10−12

as computed using 64 bits. This indicates that for these
coefficients, we encountered configurations affected by the
precision problem (when computed with 64 bits) that were

FIG. 5. Construction used to determine proper truncation for integrand value
calculated using 64-bit arithmetic. x-axis is configuration weight as computed
by 128-bit arithmetic, and y-axis is the same value computed using 64 bits.
Points are values observed in configurations with weights falling in the plotted
range, from simulations of the indicated coefficient. Solid black line is y = x.

TABLE I. Eighth virial coefficient of the Lennard-Jones model. All quanti-
ties given in LJ units.

T B8 B8 (Ref. 32)

0.6 −1.357(15) × 1010 −1.3(5) × 1010

0.65 −1.84(2) × 109

0.7 −3.03(4) × 108

0.75 −5.79(9) × 107

0.8 −1.30(3) × 107 −1.48(19) × 107

0.85 −3.11(4) × 106

0.9 −7.95(12) × 105

0.95 −2.18(4) × 105

1.0 −6.11(16) × 104 −6.4(19) × 104

1.05 −1.63(8) × 104

1.1 −3.7(3) × 103

1.2 −20(10) × 101

1.4 18(16)
1.6 13(5)
2.0 5.4(8) 5(2)
2.4 1.3(3)
3.0 −0.02(6)
4.0 −0.09(2)
5.0 −8.7(7) × 10−2 −10.1(8) × 10−2

7.0 −6.8(3) × 10−2

10.0 −3.79(18) × 10−2

15.0 −1.81(6) × 10−2

20.0 −9.4(3) × 10−3

40.0 −2.41(9) × 10−3 −2.29(6) × 10−3

not blocked by the truncation of fB at 10−12. The figure shows
that instead 10−10 was an appropriate truncation for these
higher coefficients. We in fact made this observation only after
completing our calculations, having performed them using
the 10−12 truncation. Nevertheless, we know that the problem
did not taint our calculations because we never observed the
expected mode of failure, in which the system gets lost in a
low-precision landscape. This is understandable, because for
the N > 10 low-temperature calculations, fB was typically of
order 1010, and consequently there was effectively no chance
that it would find its way into a configuration where it is 10−10

or smaller.

B. Virial coefficients

Calculated values of B8 are reported in Table I. For B8,
we achieved good precision for low and high temperatures. As
shown in Fig. 1, it was difficult to obtain values with small rela-
tive uncertainty in the vicinity of the LJ critical temperature (T
≈ 1.3). Comparison of the new values of B8 with lower-
precision data at a few temperatures reported by us previ-
ously32 finds good mutual consistency.

Tables II and III report all coefficients computed here for
B9 to B16. There are no literature data published before for
values at these orders. As for B8, we obtained values for B9
with good precision at low and high temperatures and found
difficulty getting good precision at intermediate temperatures.
From B10 to B16, we attempted calculation of coefficients only
at low temperatures because it was increasingly difficult to get
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TABLE II. Ninth to thirteenth virial coefficients of the Lennard-Jones model. All quantities given in LJ units.

T B9 B10 B11 B12 B13

0.6 −9.75(11) × 1011 −7.51(14) × 1013 −6.31(9) × 1015 −5.46(12) × 1017 −5.18(13) × 1019

0.7 −1.155(15) × 1010 −4.89(9) × 1011 −2.14(6) × 1013 −9.3(5) × 1014 −4.1(4) × 1016

0.8 −3.00(6) × 108 −7.3(2) × 109 −2.05(15) × 1011

0.9 −1.18(5) × 107 −1.6(4) × 108

1.0 −7.6(7) × 105

1.2 −1.4(4) × 104

2.0 −6(14)
3.0 −1.4(6)
5.0 −0.21(3)
10.0 −3.3(3) × 10−2

20.0 −3.3(4) × 10−3

40.0 −4.6(7) × 10−4

useful precision for the target system at intermediate and high
temperatures.

Fig. 6 presents a plot of the coefficients as a function of
N for several temperatures. The plot includes the values in
Tables I, II, and III, and others that we obtained previously for
the lower-order coefficients.31,32 The dependence is clearly
linear on this logarithmic scale, indicating an exponential
increase in the magnitude of the coefficients with order.

For practical applications, it can be useful to have
accurate expressions for the virial coefficients as a function
of temperature. This allows the coefficients to be estimated
for temperatures where MSMC data are not available, and
it enables evaluation of temperature derivatives needed to
compute quantities related to the thermodynamic energy and
its derivatives. The development of an effective temperature-
dependent form can be aided by a bit of analysis of Eqs. (2)-(5),
which give BN in terms of the LJ potential.

We start by separating the LJ form into its repulsive
and attractive components, u(r) = uR(r) + uA(r), for which
uR(r) ≡ 4ϵLJ(r/σLJ)−12, and uA(r) ≡ −4ϵLJ(r/σLJ)−6. We then
consider a separation of the Mayer function into corresponding
repulsive and attractive components,

f = fR + eR f A ≡ fR + F, (11)

where, using LJ units,

eR = e−(4/T )r−12
,

fR = eR − 1,

f A = e+(4/T )r−6 − 1,

F = e−(4/T )r−12
(
e+(4/T )r−6 − 1

)
.

(12)

Now, turning to Eq. (3), we can rescale the integration
variables, defining s = (T/4)1/12r , and the equation then
becomes

TABLE III. Fourteenth to sixteenth virial coefficients of the Lennard-Jones
model. All quantities given in LJ units.

T B14 B15 B16

0.6 −4.9(3) × 1021 −4.7(5)×1023 −4.5(9)×1025

0.7 −2.1(6) × 1018

BN =

(
T
4

)− N−1
4 1 − N

N!


. . .


fB(sN)ds12 . . . ds1N , (13)

and in terms of the rescaled variables, Eq. (12) is

fR =
(
e−s

−12 − 1
)
,

F = e−s
−12

(
e+(2/

√
T )s−6 − 1

)
.

(14)

In terms of the Mayer function decomposed as in Eq. (11),
fB is a sum of graphs, but with the usual f -bonds each
replaced by either an fR- or F-bond. Each graph in the
original f -bond series for fB is replaced by a sum of graphs
having all such bond replacements. The F-bonds introduce
temperature dependence to the scaled integral in Eq. (13).
We can approximate the form of the temperature dependence
introduced by each F-bond as F ≈ FA ≡ exp(A/√T) − 1,
where A is an adjustable constant (different for each N)
that lumps the effect of integration over s. The temperature
dependence of a graph having n F-bonds is thus estimated
as Fn

A. We then sum over all graphs in fB to get the full
temperature dependence of BN (in addition to the temperature-
dependent prefactor). We note that in the limit T → ∞,
then F → 0 while BN(T) → BSS

N (T/4), where BSS
N is the N th

virial coefficient for the soft-sphere model (with potential

FIG. 6. Virial coefficients with increasing order at subcritical temperatures,
as computed here (N ≥ 9) and in previous work.31,32
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FIG. 7. Demonstration of fit of Eq. (15) for N = 5. Plotted is a reduced χ2

statistic, defined as n−1
N


i(BN , i−BN (Ti))2/σ2

N , i, presented as a function
of the nonlinear fitting parameter AN . Each line shows the statistic for a
different choice of kN , the number of fitting constants, going in increments
of 1 from kN = 4 to 10, as indicated.

u(r) = ϵLJ(σLJ/r)12). Taken together, we have the following
form for our fit of the virial coefficient BN :

BN(T) =
(
T
4

)− N−1
4 

B̄SS
N +

kN
k=1

aN,k

(
eAN/

√
T − 1

)k , (15)

where the aN,k (and AN) are fitting parameters, and B̄SS
N

is the soft-sphere virial coefficient at unit temperature
(equal to 3.527 61(6), 2.114 94(2), 0.769 53(4), 0.090 43(12),
−0.0742(6), −0.035(3), for N = 4 (Ref. 40) and 5-9 (Ref. 17),
respectively).

The sum in Eq. (15) extends to kN , which is selected
to provide sufficient values of k to form a good fit without
overfitting the data. Fig. 7 illustrates the fitting process. Here,
we plot the χ2 statistic, reduced by nN , which is the number of
BN values fit to Eq. (15). We reduce by this quantity instead of
the degrees of freedom, (nN − kN), because our aim is simply
to quantify how well the fit describes the data to within their
uncertainties, rather than assess the likelihood that the fit func-
tion is an exact description of the true BN(T) behavior (which
we know it is not). This statistic is given in Fig. 7 as a function
of the (non-linear) parameter AN , with all other (linear)
parameters aN,k determined by a weighted least-squares fit
for the given AN . For χ2 > 1, the function is not fitting the
data to within their uncertainties, while χ2 < 1 represents an
overfit of the data—the function matches the points better than
is warranted by their uncertainties. We select kN large enough
to allow χ2 ≈ 1 for some value of AN , which we take as the
best-fit value. An unnecessarily large kN is indicated if χ2 < 1.

The parameters obtained by fitting each virial coefficient
BN(T),4 ≤ N ≤ 9, are given in the supplementary material.41

Fits for N ≥ 10 were not attempted due to lack of data at
intermediate and higher temperatures. For convenience, we
also collect in the supplementary material41 the best of the
known values and uncertainties of all coefficients, 4 ≤ N
≤ 16, in a machine-readable form. These data include a few
new values for lower-order coefficients that were computed
during the course of this work.

IV. CONCLUSION

We have applied the overlap-sampling implementation
of Mayer sampling Monte Carlo and direct generation of
configurations to evaluate high-order virial coefficients of
the Lennard-Jones model, using Wheatley’s algorithm for
summation of clusters. We were able to obtain results up to
N = 16, which is well beyond what was possible before these
recent methodological advances. The focus of this study was
on low temperatures, particularly for larger N , as that is where
the calculations were most feasible. Such coefficients are of
interest because they are at subcritical temperatures, so they
may find use in advancing our understanding of condensation
in the context of the virial equation of state.42

Based on current methods, it is still too expensive to
explore coefficients of the LJ model at intermediate and high
temperatures to obtain satisfactory precision for the orders
above B9. Such calculations must await further improvements
to methodology and/or computer hardware, particularly in
connection to massively parallel architectures, for which
Monte Carlo methods, and MSMC, in particular, would be
especially well suited if memory limitations can be overcome.
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