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Abstract

Different parallelization methods vary in their system
requirements, programming styles, efficiency of exploring
parallelism, and the application characteristics they can
handle. For different situations, they can exhibit totally dif-
ferent performance gains. This paper compares OpenMP,
MPI, and Strings for parallelizing a complicated tribology
problem. The problem size and computing infrastructure
is changed to assess the impact of this on various paral-
lelization methods. All of them exhibit good performance
improvements and it exhibits the necessity and importance
of applying parallelization in this field.
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1 Introduction

Traditionally supercomputers are the essential tools to
solve these so-called “Grand challenge” problems. Recent
improvements in commodity processors and networks have
provided an opportunity to conduct these kind of task within
an everyday computing infrastructure, such as symmetrical
multiprocessors (SMPs) or even networks of workstations
(NOWs).

Friction, the resistance to relative motion between con-
tact sliding surfaces, happens everywhere in human life and
it is a costly problem facing industry. Understanding the
origin of friction force [14] and the energy dissipation dur-
ing the friction process [15], therefore, has both theoreti-
cal and practical importance and it has attracted consider-
able interest in tribology study. A complete understanding
of these friction processes requires detailed information at
the atomic level. With recent development of experimen-
tal techniques [16] and the theories [14], physicists and
chemists have been able not only to probe the atomic-level
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friction process but also to “see” what really takes places
at the sliding interface via computer simulation. Because
computer simulation which utilizes the molecular dynam-
ics(MD) method can follow and analyze the dynamics of
all atoms, it is has become a powerful tool to investigate
various tribology phenomena.

In a MD simulation, the motion of each atom is gov-
erned by the Newton’s equation of motion and their posi-
tions are determined by the time evolution of the Newton’s
equation. At each time integration step the force between
atoms, the potential energies and kinetic energies are evalu-
ated. The computational effort grows linearly with the num-
ber of Newton’s equations, so it is an ideal method to treat
mid-sized systems (e.g. 102 atoms). However, there are
generally two factors limiting the application of MD to large
scale simulation (e.g. 106 atoms). First, the time step of in-
tegration in a MD simulation is usually about a femtosecond
(10−15 s) due to the numerical and physical consideration.
In contrast to simulation, the time scale for tribology exper-
iments is at least in nanoseconds (10−9 s). The time step in
simulation is so small compared with experiment that it gen-
erally requires a large number of integration steps to reach
a desired total evolution time. Second, when the number of
atoms in the simulation system increases, the computation
time for force evaluation increases rapidly.

Parallel and distributed processing is promising solution
for these computational requirements discussed above [17].
Significant advances in parallel algorithms and architecture
have demonstrated the potential for applying current com-
putation techniques into the simulation of the friction pro-
cess. Among the different approaches of parallel process-
ing, there are numerous implementation cases for MD sim-
ulation using MPI, the parallelization with thread method
so far is limited.

In this paper, we report a practical implementation of
parallel computing techniques for performing MD simula-
tions of friction forces of sliding hydroxylated α-aluminum
oxide surfaces. There are many systems and tools exploring
parallelism for different types of programs. Besides sys-
tem requirements, different parallelization approaches vary
in programming style and performance gain. Some methods
enable programmers to write code easily, or even provide



parallelization service completely transparent to program-
mers. But normally this kind of methods cannot provide ex-
pected performance improvement all the time. Other meth-
ods might require programmers to put reasonable effort in
order to achieve substantial gain.

The tribology code is written using OpenMP, MPI,
and DSM Strings (a software distributed shared memory).
OpenMP can be used only for shared memory systems
whereas MPI and strings can be used for both shared mem-
ory systems and network of workstations. The program-
ming paradigms in each of these are very different with
the labor requirements ranging from “little” for OpenMP
to “large” for MPI. The programming effort for Strings is
considerably less than MPI. Therefore, to evaluate an ap-
proach’s ability to exploit parallelism for a particular appli-
cation domain, many factors need to be factored in, includ-
ing system requirement, programming style, time to pro-
gram, performance gain, etc.

The remainder of this paper is organized as follows: Sec-
tion 2 describes various parallelization approaches in high-
performance computing. In Section 3 we discuss molecular
dynamics program in detail and how we plan to parallelize
it. Section 4 presents some experiment results and discuss
the performance. We wrap up with conclusions and contin-
uing work in Section 5.

2 Parallelization Approaches

There are several approaches suitable for transforming
sequential Tribology programs into parallel ones. These
approaches impose different requirements on compilers, li-
braries, and runtime support systems. Some of them can
execute only on shared memory multiprocessors whereas
others can achieve speedups on networks of workstations.

2.1 Parallelization with vendors’ Support

Some vendors, such as Sun Microsystems, provide com-
piler or library options for parallel processing. Sun MP C is
an extended ANSI C compiler that can compile code to run
on SPARC shared memory multiprocessor machines. The
compiled code, may run in parallel using the multiple pro-
cessors on the system [4].

The MP C compiler generates parallel code for those
loops that it determines are safe to parallelize. Typically,
these loops have iterations that are independent of each
other. For such loops, it does not matter in what order the
iterations are executed or if they are executed in parallel.
This compiler is also able to perform extensive automatic
restructuring of user code. These automatic transformations
expose higher degrees of loop level parallelization. They in-
clude: loop interchange, loop fusion, loop distribution and
software pipelining. This C compiler provides explicit and
automatic capabilities for parallelizing loops.

Sun Performance Library can be used with the shared or
dedicated modes of parallelization, that are user selectable

at link time. The dedicated multiprocessor model of par-
allelism has the following features: Specifying the paral-
lelization mode improves application performance by using
the parallelization enhancements made to Sun Performance
Library routines [5].

The shared multiprocessor model of parallelism has the
following features:

• Delivers peak performance to applications that do not
use compiler parallelization and that run on a platform
shared with other applications.

• Parallelization is implemented with threads library
synchronization primitives.

The dedicated multiprocessor model of parallelism has
the following features:

• Delivers peak performance to applications using auto-
matic compiler parallelization and running on an mul-
tiprocessor platform dedicated to a single processor-
intensive application.

• Parallelization is implemented with spin locks.

On a dedicated system, the dedicated model can be faster
than the shared model due to lower synchronization over-
head. On a system running many different tasks, the shared
model can make better use of available resources.

To specify the parallelization mode:

• Shared model - Use -mt on the link line without one of
the compiler parallelization options.

• Dedicated model - Use one of the compiler paralleliza-
tion options [-xparallel | -xexplicitpar | -xautopar] on
the compile and link lines.

• Single processor - Do not specify any of the compiler
parallelization options or -mt on the link line.

Due to the potential of aliasing in programming lan-
guages, it is especially hard to determine the safety of par-
allelization. Normally vendors’ compilers and libraries do
not offer any capabilities to automatically parallelize arbi-
trary regions of code. Therefore, this loop parallelization
strategy can achieve good performance only when many big
loops exist and their iterations are independent or with reg-
ular dependency patterns.

2.2 OpenMP

As an emerging industry standard, OpenMP is an Ap-
plication Program Interface (API) that may be used to ex-
plicitly direct multi-threaded, shared memory parallelism
in C/C++ and Fortran on all architectures, including Unix
platforms and Windows NT platforms. It is comprised of
three primary API components: compiler directives, run-
time library routines, and environment variables. Jointly de-
fined by a group of major computer hardware and software



vendors, OpenMP is a portable, scalable model that gives
shared-memory parallel programmers a simple and flexible
interface for developing parallel applications for platforms
ranging from the desktop to the supercomputer [6].

The OpenMP API defines a set of program directives that
enable the user to annotate a sequential program to indicate
how it should be executed in parallel. In C/C++, the direc-
tives are implemented as #pragma statement, and in For-
tran 77/90 they are implemented as comments. A program
that is written using OpenMP directives begins execution as
a single process, called the master thread of execution. The
master thread executes sequentially until the first parallel
construct is encountered. The PARALLEL / END PARAL-
LEL directive pair constitutes the parallel construct. When
a parallel construct is encountered, the master thread cre-
ates a team of threads, and the master thread becomes the
master of the team. The program statements that are en-
closed in a parallel construct, including routines called from
within the construct, are executed in parallel by each thread
in the team.

Upon completion of the parallel construct, the threads in
the team synchronize and only the master thread continues
execution. Any number of parallel constructs can be spec-
ified in a single program. As a result, a program may fork
and join many times during execution (see Figure 1).

Figure 1. OpenMP execution model

The degree of parallelism in an OpenMP code is depen-
dent on the code, the platform, the hardware configuration,
the compiler, and the operating system. In no case are you
guaranteed to have each thread running on a separate pro-
cessor [7].

2.3 MPI

MPI is a message-passing application programmer inter-
face, together with protocol and semantic specifications for
how its features must behave in any implementation (as a
message buffering and message delivery progress require-
ment) [9]. The main advantages of establishing a message-
passing standard are portability and ease-of-use. In a dis-
tributed memory communication environment in which the
higher level routines and/or abstractions are build upon
lower level message passing routines the benefits of stan-

dardization are particularly apparent. Furthermore, the defi-
nition of a message passing standard provides vendors with
a clearly defined base set of routines that they can imple-
ment efficiently, or in some cases provide hardware support
for, thereby enhancing scalability [8].

MPI includes point-to-point message passing and col-
lective operations, all scoped to a user-specified group of
processes. MPI provides process abstraction at two lev-
els. First, processes are named according to the rank of the
group in which the communication is being performed. Sec-
ond, virtual topologies allow for graph or Cartesian naming
of processes that help relate the application semantics to the
message passing semantics in a convenient, efficient way.

MPI also provides some additional services: environ-
mental inquiry, basic timing information for application
performance measurement, and a profiling interface for ex-
ternal performance monitoring. To support data conver-
sion in heterogeneous environments, MPI requires datatype
specification for communication operations. Both built-in
and user-defined datatypes are provided.

MPI supports both SPMD and MPMD modes of par-
allel programming. Furthermore, MPI supports commu-
nication between groups and within a single group. MPI
provides a thread-safe application programming interface
(API), which is useful in multi-threaded environments.

Unlike OpenMP which could only be used in shared-
memory systems, MPI can work for both shared-memory
and distributed memory models. Therefore, MPI can uti-
lize processors in single workstation or network of work-
stations.

2.4 Distributed Shared Memory (DSM) systems

Applications for distributed memory systems are cum-
bersome to develop due to the need for programmers to
handle communication primitives explicitly, just as coding
in MPI. In addition, applications have to be tuned for each
individual architecture to achieve reasonable performance.
Since hardware shared memory machines do not scale well
and are relatively expensive to build, software distributed
shared memory (DSM) systems are gaining popularity for
providing a logically shared memory over physically dis-
tributed memory. These software DSM systems combine
programming advantages of shared memory and the cost ad-
vantages of distributed memory. The programmer is given
the illusion of a large global address space encompassing
all available memory, thereby eliminating the task of ex-
plicitly moving data between processes located on separate
machines.

Research projects with DSMs have shown good perfor-
mance, for example TreadMarks [12], Millipede [11] and
Strings [13]. This model has also been shown to give good
results for programs that have irregular data access patterns
which cannot be analyzed at compile time, or indirect data
accesses that are dependent on the input data-set.

DSMs share data at the relatively large granularity of a
virtual memory page and can suffer from a phenomenon



known as “false sharing”, wherein two processes simulta-
neously attempt to write to different data items that reside
on the same page. If only a single writer is permitted, the
page may ping-pong between the nodes. One solution to
this problem is to “hold” a freshly arrived page for some
time before releasing it to another requester. Relaxed mem-
ory consistency models that allow multiple concurrent writ-
ers have also been proposed to alleviate this symptom. The
systems ensure that all nodes see the same data at well de-
fined points in the program, usually when synchronization
occurs. Extra effort is required to ensure program correct-
ness in this case. One technique that has been investigated
to improve DSM performance is the use of multiple threads
of control in the system. Up to now, the third generation
DSM systems utilize relaxed consistency models and mul-
tithreading technologies.

We parallelize the tribology program by using a multi-
threaded DSM, Strings, designed for clusters of Symmet-
rical Multiprocessors (SMPs). Strings was developed at
Wayne State University and consists of a library that is
linked with a shared memory parallel program. The pro-
gram thus uses calls to the distributed shared memory allo-
cator to create globally shared memory regions.

Strings is built using POSIX threads, which can be mul-
tiplexed on kernel lightweight processes. The kernel can
schedule these lightweight processes across multiple pro-
cessors on symmetrical multiprocessors (SMPs) for better
performance. Therefore, in Strings, each thread could be
assigned to any processor on the SMP if there is no special
request, and all local threads could run in parallel if there are
enough processors. Strings is designed to exploit data paral-
lelism by allowing multiple application threads to share the
same address space on a node. Additionally, the protocol
handler is multi-threaded. The overhead of interrupt driven
network I/O is avoided by using a dedicated communication
thread. Strings is designed to exploit data parallelism at the
application level and task parallelism at the run-time level.

Strings starts a master process that forks child processes
on remote nodes using rsh(). Each of these processes cre-
ates a dsm server thread and a communication thread. The
forked processes then register their listening ports with the
master. The master process enters the application proper
and creates shared memory regions. It then creates appli-
cation threads on remote nodes by sending requests to the
dsm server threads on the respective nodes. Shared memory
identifiers and global synchronization primitives are sent as
part of the thread create call. The virtual memory subsys-
tem is used to enforce coherent access to the globally shared
regions.

2.4.1 Kernel Threads

Thread implementations can be either user-level, usually
implemented as a library, or kernel-level in terms of light-
weight processes. Kernel level threads are more expen-
sive to create, since the kernel is involved in managing
them. User level threads suffer from some limitations, since

they are implemented as a user-level library, they cannot be
scheduled by the kernel. If any thread issues a blocking sys-
tem call, all associated threads will also be blocked. Also
on a multi-processor system, user-level threads bound to a
light-weight process can only on one processor at a time.
User level threads do not allow the programmer to control
their scheduling within the process, on the other hand ker-
nel level threads can be scheduled by the operating system
across multiple processors.

2.4.2 Shared memory

Strings implements shared memory by using the mmap()
call to map a file to the bottom of the stack segment. With
dynamically linked programs, it was found that mmap()
would map the same page to different addresses on differ-
ent processors. Allowing multiple application threads on
the same node leads to a peculiar problem. Once a page has
been fetched from a remote node, its contents must be writ-
ten to the corresponding memory region, so the protection
has to be changed to writable. At this time no other thread
should be able to access this page. Suspending all kernel
level threads can lead to a deadlock and also reduce con-
currency. In Strings, every page is mapped to two different
addresses. It is then possible to write to the shadow address
without changing the protection of the primary memory re-
gion.

A release consistency model using an update protocol
has been implemented. When a thread tries to write to a
page, a twin copy of the page is created. When either a lock
is released or a barrier is reached, the difference (diff) be-
tween the current contents and its twin are sent to threads
that share the page. Multiple diffs are aggregated to de-
crease the number of messages sent.

3 Molecular Dynamics

3.1 Model system

The sequential code has been used to study the friction
force of sliding hydroxylated α-aluminum surfaces. Struc-
ture of an α-aluminum surface has been described in detail
before [18]. The model system consists of a smaller block
of Al2O3 surface (upper surface) moving on a much larger
slab of Al2O3 surface(bottom surface). The broken bonds
at the contacting surfaces are saturated by bonding with H
atoms. To simulate experiments, pressure is applied on top
of the upper surface and the driving force that moves the up-
per surface with respect to the bottom surface is added to the
system. By selecting “iop” options as described in the code
(see Appendix A), different pressure and driving forces, i.e.
different energy dissipative systems, are selected. Besides
the driving force that moves the upper sliding surface, each
atom in the system is exposed to the interaction with other
atoms. The general types of interaction can be divided into
two categories: intramolecular bonded and inter-molecular



Figure 2. Flow chart of MP simulation

nonbonded forces. The bonded forces are represented by in-
ternal coordinate bond distance, bond angles, and constants
determined by the interacting atoms. The inter-molecular
forces are Van der Waals interaction. The simulation are
carried out with a constant number of atoms, constant vol-
ume and constant temperature (NVT). Temperature control
is achieved by Berenden’s method [19]. The integration of
Newton’s equation of motion is done by using Velocity Ver-
let algorithm [20].

3.2 Simulation procedure

The simulation is carried out by solving the classical
equations of motion. Initial velocities are either set to zero
or calculated by the program according to the user’s de-
mand. Newton’s equation is numerically integrated to pre-
dict the position of all atoms in the next short period of time.
The atomic forces are evaluated during each of the integra-
tion step. In the hydroxylated α-alumina systems, the type
of forces are bonded and non-bonded. The sequential code
used in the tribology study here has the structure depicted
in Figure 2 (see Appendix A for more details).

3.2.1 Bonded forces calculation

The interactions between adjacent atoms connected by
chemical bonds are described by bonded forces. The
bonded forces are two-centered harmonic stretches with
three centered harmonic bends. Their interaction potential
functions are modelled by harmonic potential energy func-
tions

Vstr =
1

2
kstr(r − r0)

2 (1)

where kstr, r and r0 are bond stretching force constant,
bond length, and equilibrium bond distance and

Vθ =
1

2
kθ(θ − θ0)

2 (2)

where kθ, θ and θ0 are the bond angle bending force con-
stant, bond angle, and equilibrium bond angle, respectively.

The forces are assigned to each involved atom by taking
the first derivatives of the potential.

3.2.2 The nonbonded calculation

The nonbonded interactions here contain only Lennard-
Jones type of potentials

VL−J(rij) = 4ε[
σ

r6

ij

−
σ

r12

ij

] (3)

where rij is the distance between atom i and atom j. ε

and σ represent the nonbonded iteraction parameters.
Although the computation effort for bonded interactions

grows linearly with the size of the system, the nonbonded
interaction exhibits a quadratic dependence on the number
of atoms. Hence, the evaluation of the nonbonded Lennard-
Jones terms are generally the most computationally inten-
sive constituent in the MD code.

Lennard-Jones type of interaction is long range inter-
action that vanishes slowly at large distance. To reduce
the computation effort for calculating the small forces on
atoms at large distance, a cut-off radius is generally intro-
duced. Lennard-Jones interaction beyond the cut-off dis-
tance is then treated as zero. Therefore, a neighbor search
is carried out to find the atoms within the cut off radius. By
introducing the cut off radius the computational effort scales
linearly with the number of atoms. However, the nonbonded
force is still the most time consuming part in the each itera-
tion of the force evaluation.

3.3 Implementation

There are various data partition schemes in parallel
molecular dynamics simulation[8-12]. In general three par-
allel algorithms are often used to decompose and distribute
the computational load.

First, the number of atoms in the simulation system is
equally divided and assigned to each processor; Second,
the forces of interaction are equally divided and assigned
to each processor; Third, the spacial region is equally di-
vided and assigned to each processor. Each algorithm has
its advantages and therefore they are often implemented ac-
cording to the specific problem under study, i.e., system size
and evolution time. For example, when use MPI to imple-
ment the third method, the molecular system are divided
into subspaces, each processor calculates the forces on the
atoms within the subspace and update the corresponding po-
sitions and velocities. However, the extent of forces always
cover the neighboring subspaces or even the whole space,
the updating of forces on atoms requires communication at



least among neighboring subspaces at each integration step.
The cost increases with number of processors and increase
in size of integration steps. Therefore, this algorithm is of-
ten used for large molecular system with relatively fewer
integration steps.

In the tribology application considered here, the evalu-
ation of forces (98-99% execution time) is the most time
consuming. So the parallelization is focused on evaluation
of forces. To compare the performance between OpenMP,
MPI, and DSM Strings methods, the basic parallel algo-
rithm is maintained. Forces on atoms are evenly assigned to
each processor. For bonded forces, the computational load
on each processor/threads equals the number of harmonic
stretch forces divided by the number of processors/threads
in MPI, OpenMP, and Strings. For the nonbonded force
terms, there are two situations. The nonbonded interac-
tion with the same surfaces are distributed to each pro-
cessor/thread in the same way as for bonded forces. The
Lennard-Jones interactions between different surface atoms
are calculated by searching the neighbor list and therefore
the atom dividing scheme is employed. There are obvi-
ous shortcomings for this simple algorithm for both MPI
and DSM Stings implementation. Even though the force
calculation is divided into small parts, the communication
between all processors to update the coordinates has to be
done at each integration step. Therefore, it is necessary for
comparison to be done for different size of system and dif-
ferent time integration step.

4 Experiments and Analysis

The computing environment used and the analysis of
data from the experiments is described in this section.

4.1 Experiment Infrastructure

The experiments were carried out using a cluster of
SMPs. The SMPs used were a SUN Enterprise E6500
with 14 processors (4Gbytes of RAM) , and three SUN En-
terprise E3500s with 4 processors (and 1Gbytes of RAM)
each. Each of these processors were 330 MHz Ultra-
SparcIIs. The operating system on the machines was Sun
Solaris 5.7. The interconnect was fast ethernet using a Net-
Gear switch.

The application was run sequentially, using OpenMP (on
the large SMP), using MPI (the MPICH implementation
was used) on the cluster of SMPs, and using Strings on the
same cluster. The OpenMP code was compiled using the
SUN High Performance Compiler. Both the MPI and the
Strings version of the application were also run on the large
SMP in order to compare their performance with OpenMP.
Two data sizes, one small another large were used. The
comparisons were done for the application on one node us-
ing one, two, four and eight processors each, on two nodes
with one, two and four processors each and finally on four
nodes with one, two and four processors each.

4.2 Results and Analysis

This section describes the results that were obtained
from the experiments described earlier. In case of one large
SMP, it can be seen from Figures 3 and 4, that immaterial
of the problem size, the results are consistent. OpenMP
outperforms the others on the large SMP. For OpenMP, the
SUN High Performance Compiler was used, which was able
to optimize it for the SUN Enterprise machines. For MPI,
we used the MPICH implementation, which being portable
loses out on performance compared to OpenMP. The per-
formance for MPI and Strings is very similar on one SMP.

When considering multiple SMPs, we could only use the
MPI version and the Strings version of the application. We
used up to four SMPs each with four processors. Again for
both program sizes, the results are consistent. For MPI, it
was observed that performance degraded when we used 4
processes per nodes, for both 2 nodes and 4 nodes. This can
be directly attributed to the substantial increase in commu-
nication as seen from Figures 7 and 8. Another observation
was that for MPI, increasing the number of processes per
machine increases the total communication time. This is be-
cause the MPI code uses MPI Reduce and MPI Broadcast
calls at the end of each computation cycle. This is an area
where performance could be improved by using other MPI
primitives.

For the distributed shared memory (Strings) version of
the application, it can be seen that increasing the number
of compute threads always results in an increase in perfor-
mance. As we increase the number of nodes that the ap-
plication uses, the performance degrades as this increases
communication. For example, the application on 1 machine
and 4 compute threads performs better than on 2 machines
with 2 compute threads, which in turn is better than 4 ma-
chines with 1 compute thread. This shows that within an
SMP, Strings is able to effectively use shared memory to
communicate. Another interesting observation was that the
total execution time when using 4 compute threads on 4 ma-
chines, is very close to the execution time when using 2
compute threads on 4 machines. It can be seen from Fig-
ure 10, that increasing the number of nodes increases the
number of page faults, both read and write.

In the final analysis, it can be seen that Strings outper-
forms MPI for this application by a big margin when run-
ning on a cluster of SMPs. The fraction of time spent in
communication for Strings is much less than that of MPI
(see Figures 7, 8, and 9). Also using the SUN High Perfor-
mance Compiler and OpenMP provides the best results for
a single SMP.

5 Conclusion and future work

This paper compared OpenMP, MPI, and Strings based
parallelization for a tribology application. These par-
allelization methods vary in their system requirements,
programming styles, efficiency of exploring parallelism,
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and the application characteristics they can handle. For
OpenMP and Strings, one writes threaded code for an
SMP and they are relatively easy to program. MPI on the
other hand requires writing a program with message passing
primitives and is more cumbersome to program. The effort
in programming is least for OpenMP and most for MPI. For
SMPs, the SUN High Performance Compiler and OpenMP
provides the best results for a single SMP. For cluster of
SMPs, Strings outperforms MPI for this application by a
big margin when running on a cluster of SMPs.

It appears that combining OpenMP and Strings would
yield best results for a cluster of SMPs. We are currently
implementing OpenMP and Strings together. Also, we are
looking into different types of parallelization of the tribol-
ogy code. One method would divide the atoms in the sim-
ulations equally among the processors. Another method
would divide the spatial region equally among the proces-
sors.
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Appendix

Appendix A. Sequential Code

program tribology

program main()
read in information required for computation
when time=0 -----> initial condition
call force -----> calculate forces
call energy -----> calculate energies
write initial results
if iop*= 1,2... ----->select surface sliding conditions

do i=1, i<= total number of integration steps
call verlet ----->velocity verlet algorithm to update

----->coordinates and momenta
if print data=true

call energy
write intermediate results

endif
enddo

else
write "input iop error"
endif
end program main

subroutine verlet()
if iop=1,2...

adjust velocities for different iops
endif
do i=1, number of atoms

update the velocity of each atom
except thermal bath ----->velocity verlet algorithm

enddo
call force -----> force evaluation
do i=1, number of atoms

update momenta of each atom
except thermal bath ----->velocity verlet algorithm

enddo
if iop=1,2...

adjust momenta
apply Berendsen methods

endif
end verlet subroutine

subroutine forces()
do i=1, number of stretches ----->harmonic strech forces

r[i]=... ----->bond length calculation
f[i]=constant1*(r[i]-constant2)ˆ2 ----->force evaluation

enddo
do i=1, number of bending terms ----->harmonic bending forces

angle[i]=... ----->bond angle calculation
f[i]=constant1*(angle[i]-constant2) ----->force evaluation

enddo
call itralj ----->intra-molecular Lennar_Jones forces
do i=1, number of lj forces



lj evaluation
enddo
call interlj ----->inter-molecular Lennard-Jones forces
do i=1, number of atoms

build neighbor count list of lj terms
calculate lj forces

enddo
end force subroutine

subroutine energy()
total energy = potential energy + kinetic energy

end energy subroutine

*iop is the option to select different model systems

iop = 1: constant load, pull center of mass of upper surface
iop = 2: constant load, pull outer layer atoms in the upper surface
iop = 3: constant distance, pull center of mass of the upper surface
iop = 4: constant distance, pull outer layer atoms in the upper surface

where load is the force applied to the upper surface that brings
two surfaces together and the pull force is the lateral force that
moves the upper surface with respect to the bottom surface so that
upper surface can slide on the bottom surface.

Appendix B. OpenMP Code

parallel for loops in force subroutine, master thread takes care of the rest.
#pragma omp parallel for default(shared) private(local variable)

reduction(+:inter)

do i=1, number of forces terms(strech, bend, Lennard-Jones)
local variable= local variable evaluation
r[i]=...
angle[i]=...
f[i]= function of (local variables, r[i], angle[i], etc)
inter= + calculated intermediate physical quantities

enddo

Appendix C. MPI Code

MPI initialization
if processor id=0

call readin() -----> read in data
write initial information

endif
do i=1, total number of integration steps

if processor id=0
MPI_Bcast initial coordinates

endif
localload = calculate work load for each processor
do i=1,locaload -----> for each processor

local_r[i]=...
local_angle[i]=...
.....



local[i]=....
enddo
localload = distribute evenly the atoms in neighborlist to each processor
do i=1, localload

f[i]=Lennard-Jones terms on each processor
enddo
if processor id=0

MPI_Reduce ----->force summation on to processor 0
MPI_Gather ----->gather bond length, angle and

----->other variables
update coordinates and momenta using
velocity verlet algorithm
call energy to calculate energy
write intermediate results

endif
enddo
MPI_Finalize

Appendix D. Strings DSM Code

DSM initialization
Create DSM global regions for shared data
fork threads on local and remote machines
for all threads

if current thread is the first one on current node
call readin() -----> read in data

write initial information
endif
do i=1, total number of integration steps
reach a barrier to wait for all threads’ arrival
localload = calculate work load for each processor
do i=1,locaload -----> for each processor

local_r[i]=...
local_angle[i]=...
.....
local[i]=....

enddo
localload = distribute evenly the atoms in neighborlist to each processor
do i=1, localload

f[i]=Lennard-Jones terms on each processor
enddo
acquire critical section lock

update coordinates and momenta using
velocity verlet algorithm
call energy to calculate energy
write intermediate results

release critical section lock
enddo
DSM terminates

endfor


