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1.1 INTRODUCTION

With the progress in computer science and raw computational power available today,
human quest to learn and understand the complex relationships within the subsets
of biology, e.g, biological response, biodiversity, genetics, medicine, etc. has got
a new promise. Computational Biology represents the marriage of computer sci-
ence and biology, and spans may disciplines, such as bioinformatics (genomics and
post-genomics), clinical informatics, medical imaging, bioengineering, etc. It finds
application in many areas of life scieneeg, the development of human therapeutics,
diagnostics, pyrognostics and forensics, up through the simulation of large entities
such as populations and ecosystems.

Genomics is the determination of the entire DNA sequence of an organism. The
goal of modern human genomics is preventive, predictive, and individualized medi-
cine. In agriculture, the goal is the production of foods with improved production
characteristics and, increasingly beneficial consumer traits. Post-genomics refers to
the biological processes that follow from DNA sequence(e.g. transciptomics, pro-
teomics, metabolomics, etc.).
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Modern biopharm companies currently have alibut10 Terabytes of genomics
data, large phrama hau® — 40 Terabytes, and genomic data providers have over
100 Terabytes of data. The genomics effort is to collect and process terabytes of
such heterogeneous and geographically disperse datanfotonation (translating
the spots into the sequence of nucleotide bases A,C,G,T comprising sequences of
DNA, or the 3-D structure of a protein with the relative location of all of its atoms),
thenknowledgédthe location of genes in the sequence, the proteins that come from the
genes, the function of the genes and proteins, how they interact, their relationship to
each other, etc.), and then taetion(the simple decision to run another experiment,
or the decision to risk $2 Billion to develop the drug candidate). Eventually they ship
the information to the regulatory agencies. Only after approval does the company
become a manufacturer of a tangible product (drug, therapy, diagnostic, etc.).

While CPU architectures are struggling to show increased performance, the volume
of biological data is greatly accelerating. For example, Genbank, a public database of
DNA, RNA and protein sequence information, is doubling about every 6 months. In
keeping up with the Moore’s law the density of the transistors on a chip has doubled
for four decades, but may slow, according to Semiconductor Industry Association, as
certain physical limits are reached. Also DRAM speeds have not kept up with the
CPU speeds thus hitting thmemory wall”. Most science and engineering problems
tend to plateau beyond 8 CPUs. However, genomics algorithms can achieve much
better parallelization (sometimes called “embarrassingly parallel”) because they can
be deconstructed into a large number of independent searches with little message
passing, or coordination, between jobs/threads if the data is appropriately passed to
the appropriate processors. The final results are then assembled when the independent
jobs are completed.

1.1.1 Types of Sequence Alignment

Sequence alignment refers to the procedure of comparing two or more sequences by
searching for a series of characters (nucleotides for DNA sequences or amino acids
for protein sequences) that appear in the same order in the input sequences. Although
residues are mostly used to refer to amino acids, for brevity purposes, residues will be
used to imply both nucleotides and amino acids in the remainder of this discussion.
A distinction will be made when necessary. The sequence alignment problem is often
referred to as the longest common substring problem. Regions in the new sequence
and the known sequence that are similar can help decipher biological functions or
evolutionary information about the new sequence. The alignment of two or more
sequences is anchored around the longest common substring and the remaining, non-
matching residues can represent gaps, insertion or deletion. When aligning multiple
sequences, the goal is to discover signatures or motifs that are common to all the
sequences. A motif or a signature is a sequence of residues that is common to the
aligned sequences and can help identify a family of nucleic acid sequences or protein
sequences.

The alignment of two sequences (pairwise alignment), or multiple sequences (mul-
tiple alignment), and the alignment of short or long sequences such as an entire genome
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may require different types of algorithms. The algorithms used in all of these four
cases can be either dynamic programming based or heuristic-based or a combination
of both. Dynamic programming is a general optimization technique that relies on
the fact that the solution to a problem consists of the combined solutions of the sub-
problems. Furthermore, several of the sub-problems may be the same. Thus, they
are solved only once. Dynamic programming based algorithms generate optimal so-
lutions. However, they are computationally intensive which makes them impractical
for a large number of sequence alignments. A more practical solution is one that uses
a heuristic to generate a near optimal solution. Heuristics are approximation algo-
rithms. In the case of sequence alignment, these heuristics often use a combination of
a restricted form of dynamic programming (e.g., dynamic programming is only used
for a small subset of the residues in a sequence rather than on the entire sequence)
and other approximations in order to reduce the search space of possible solutions.

1.1.2 Pairwise Alignment

Pairwise alignment is the alignment of two sequences. In general, the purpose of
this alignment is to extract the sequences that are similar (homologous) to a given
input sequence from a database of target sequences. That is, the input sequence
is aligned with each target sequence in the database and the top ranking sequences
represent the sequences with the highest level of similarity to the input sequence. The
input sequence is also called the query sequence. Each alignment between the input
sequence and a target sequence is one pairwise alignment. A score is associated with
each pairwise alignment in order to indicate the level of similarity between the query
sequence and the corresponding target sequence. This score is determined based
on a scoring matrix and specific penalties for insertions, deletions and gaps. The
scoring matrix represents the weight associated with a match for all different types
of nucleotides or amino acids.

1.1.3 Multiple Sequence Alignment

In multiple sequence alignment, the objective is to find a common alignment for
multiple sequences. Several approaches for multiple sequence alignment have been
proposed. Initial implementations were based on an extension of the Smith Waterman
algorithm to multiple sequences. This implementation, which is based on dynamic
programming, generates an optimal solution, but is computationally very intensive.
More recent approaches incrementally build multiple sequence alignment by using
heuristics.
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1.2 SEQUENCE ALIGNMENT PRIMER

1.2.1 Parallel Programming Models

Parallel algorithms for analyzing DNA and protein sequences are becoming increas-
ingly important as sequence data continues to grow. In simple terms, parallel software
enables a massive computational task to be divided into several separate processes that
execute concurrently through different processors to solve a common task [osw01].

In particular, two key features can be used to compare models: granularity and
communication. Granularity is the relative size of the units of computation that
execute in parallek.g. fineness or coarseness of task division; Communication is the
way that separate units of computation exchange data and synchronize their activity.

1.2.1.1 Coarse & Fine-Grain parallelism The finest level of software gran-
ularity is intended to run individual statements over different subsets of a whole data
structure. This conceptis called data-parallel, and is mainly achieved through the use
of compiler directives that generate library calls to create lightweight processes called
threads, and distribute loop iterations among them. A second level of granularity can
be formulated as a “block of instructions”. At this level, the programmer identifies
sections of the program that can safely be executed in parallel and inserts the directives
that begin to separate tasks. When the parallel program starts, the run-time support
creates a pool of threads, which are unblocked by the run-time library as soon as the
parallel section is reached. Atthe end of the parallel section, all extra processes are
suspended and the original process continues to execute.

Ideally, if we haven processors, the run time should alsorbgmes faster with
respect to the wall clock time. In reality, however, the speedup of a parallel program is
decreased by synchronization between processes, interaction, and load imbalance. In
other words, the overhead to coordinate multiple processes require some time added
to the pure computational workload.

Much of the effort that goes into parallel programming involves increasing effi-
ciency. The first attempt to reduce parallelization penalties is to minimize the com-
munication cost between parallel processes. The simplest way, when possible, is
to reduce the number of task divisions; in other words, to create coarsely-grained
applications. Once the granularity has been decided, communications are needed to
enforce correct behavior and create an accurate outcome.

1.2.1.2 Inter Process Communication When shared memory is available,
inter-process communication is usually performed through shared variables. When
several processes are working over the same logical address space, locks, semaphores
or critical sections are required for safe access to shared variables.

When the processors use distributed memory, all inter-process communication
must be performed by sending messages over the network. The message-passing
paradigmsge.g, MPI, PVM, etc., are used to specify the communication between
a set of processes forming a concurrent program. The message-passing paradigm
is attractive because of its wide portability and scalability. It is easily compatible
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with both distributed-memory multi-computers and shared-memory multiprocessors,
clusters, and combinations of these elements. Writing parallel code for a distributed
memory machines is a difficult task, especially for applications with irregular data-
access patterns. To facilitate this programming task, software distributed shared
memory provides the illusion of shared memory on top of the underlying message-
passing system [roy89].

Task scheduling strategies suggest that obtaining an efficient parallel implementa-
tionis fundamental to achieving a good distribution for both data and computations. In
general, any parallel strategy represents a trade-off between reducing communication
time and improving the computational load balance.

A simple task scheduling strategy is based on a Master-Slave approach. The
Master-Slave paradigm consists of two entities: a master and multiple workers. For
coarse grain parallelism, the database is divided into blocks of sequences. These
blocks can be assigned to the slaves following the work pool approach with dynamic
load balancing. When one slave finishes generating all the pairwise alignments for the
target sequences in its block, another block is assigned to it. This process is continued
until all the sequences in the database are processed. The number of blocks is usually
orders of magnitude higher than the number of processors, and blocks are assigned
to processors dynamically. This dynamic load balancing approach is more efficient
than a static load balancing approach since the execution time associated with the
pairwise alignment is not knowa priori and can vary from a pair of sequences
to the next. The factors that have an impact on the execution time required by a
pairwise alignment include the length of the two sequences and how similar they
are. The results generated from the individual slaves have to be combined and sorted
according to the score calculated for each pairwise alignment. In order to perform
this task, the slaves can send their results to the master, which take care of generating
this final result. Usually, the communication takes place only between the master and
the workers at the beginning and at the end of the processing of each task.

1.2.2 Parallel Computer Architectures

The algorithms for database searching can be implemented to run efficiently on vari-
ous types of hardware with the ability to perform several operations simultaneously.
There is a wide range of different hardware available on which the algorithms can
be implemented. Hughey [hug96] has reviewed various types of hardware that can
be used and their performance. The hardware can be divided into a group of general
purpose computers, which can be used for many different kinds of computations, and
a group of hardware specifically designed for performing sequence alignments and
database searches.

1.2.2.1 General-purpose Parallel Computers General purpose computers
with parallel processing capabilities usually contain a number of connected proces-
sors, ranging from dual-CPU workstations to supercomputers. The well-known dy-
namic programming or heuristic algorithms must be rewritten to run on such com-
puters. The algorithms can be parallelized at different scales, from a simple coarse-
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grained parallelization whereg, the database sequences are divided on two or more
processors, each comparing the sub-database sequence to the query sequence, to a
complicated fine-grained parallelization where the comparison of the query sequence
against one database sequence is parallelized. The speed gained varies according to
the type of algorithm and computer architecture.

A cluster of workstations (either single- or multi-CPU) connected by an Ethernet
network is loosely connected processors, is very interesting for sequence database
searches, because of the independence between the different sequences in the data-
base.

Microparallelism can be classified into SIMD (Single-Instruction, Multiple-Data)
and MIMD (Multiple-Instruction, Multiple-Data) types according to whether the
processing units perform the same or different operations on their data. It is an
interesting form of SIMD, where a 128-bit wide integer register of a CPU is divided
into sixteen smaller 8-bit units, and where the same arithmetic or logical operation can
be performed simultaneously and independently on the data in each of the individual
units. This technigue can be performed on ordinary CPUs using nhormal instructions
combined with a technique involving masking of the high order bits in each unit.
However, it has become much easier recently with the introductions of MMX/SSE
from Intel, MMX/3DNow from AMD and VIS from SUN, which allows fine grain
parallelism to be exploited for a single pairwise alignment.

1.2.2.2 Special-purpose Parallel Hardware A number of different designs

for special-purpose hardware for performing sequence alignments and database search-
ing have been proposed and implemented. Their advantage over general-purpose
computers is that they can be tailored specifically to perform sequence comparisons
at a high speed, while the disadvantage is high cost.

Special-purpose hardware is usually built using either FPGA (Field-Programmable
Gate Arrays) or custom VLSI (Very Large Scale Integration) technology. The advan-
tage of FPGA is that they are reprogrammable and can be built to work in a given
function, and hence can be changed to remove bugs or to work with different algo-
rithms, while VLSI is customarily designed to a very specific purpose and cannot be
changed. The advantage of VLSI is a lower cost per unit (at least in large volumes)
and a higher processing speed. However, the design and initial costs for VLSI systems
are higher than for FPGA.

1.2.3 Local Sequence Alignment Sotfware

1.2.3.1 Sequence Alignment Parallelization Sequence alignmentis the most
widely used bioinformatic application. It is also one of the most familiar applications
to begin a discussion about parallelization in bioinformatics. Sequence alignment has
a very simple form as far as data flow is concerned, and a broad range of strategies
have been proposed to apply parallel computing.

Searching on DNA or protein databases using sequence comparison algorithm has
become one of the most powerful technique to help determine the biological function
of a gene or the protein it encodes. The primary influx of information for database
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searching is in the form of raw DNA and protein sequences. Therefore, one of the first
steps towards obtaining information from a new biological sequence is to compare it
with the set of known sequences contained in the sequence databases, using algorithms
such as BLAST [alt97], Needleman-Wunsch [wun70] and Smith-Waterman [smw81]
algorithm. Results often suggest functional, structural, or evolutionary analogies
between the sequences.

Two main sets of algorithms are used for pairwise comparison: exhaustive algo-
rithms and heuristic-based algorithms. The exhaustive algorithms based are on dy-
namic programming methodology such as Needleman-Wunsch [wun70] and Smith-
Waterman [smw81] algorithm. The heuristic approaches are widely used such as the
FASTA [pea90]and BLAST [alt97] families. Most of the currently used pairwise
alignment algorithms are heuristic based.

Thefirstwidely used program for database similarity searching was FASTA [pea90].
FASTA stands for FAST-AII, reflecting the fact that it can be used for a fast protein
comparison or a fast nucleotide comparison. This program achieves a high level of
sensitivity for similarity searching at high speed. The high speed of this program
is achieved by using the observed pattern of word hits to identify potential matches
before attempting the more time consuming optimized search. The trade-off between
speed and sensitivity is controlled by the k-tuple parameter, which specifies the size
of the word. Increasing the k-tuple decreases the number of background hits. The
FASTA program does not investigate every word hit encountered, but instead looks
initially for segments containing several nearby hits. By using a heuristic method,
these segments are assigned scores and the score of the best segment found appears in
the output. For those alignments finally reported, a full Smith-Waterman alignment
search is performed.

BLAST [alt97]is another heuristic-based algorithm for sequence homology search.
As in FASTA, it finds database sequences that Haw®nsecutive matches to the
guery sequence. The value/ofs 3 for protein sequence and 11 for DNA sequence.
Several variations [zha00, alt97] of the original BLAST algorithm were developed to
accommodate different types of sequence alignments. For example, MEGABLAST
usesthe XDrop alignmentalgorithm [zhaOQ]. Itis particularly tuned for the alignment
of two DNA sequences that are highly similar. This algorithm is computationally
efficient because it considers long runs of identical adjacent nucleotides. If the two
sequences differ by 3%, the expected length of the run is 30 nucleotides. The algorithm
is also computationally efficient because it completely avoids the use of dynamic
programming even in a limited context. It uses a greedy algorithm instead. A greedy
algorithm is one type of a heuristic that is developed with the assumption that a global
optimal can be obtained by making a sequence of local optimal decisions, whereas
dynamic programming is a global optimization algorithm. XDrop was used to align
entire genomes and it was found [zha00] to be 10 times faster than BLAST for long
and highly similar sequences.

PSI-BLAST [alt97] executes several iterations of the BLAST algorithm. However,
the scoring matrix, which is used to score the pairwise alignment, is not fixed in PSI-
BLAST. The scoring matrix includes the weights corresponding to a match for all
types of nucleotides or amino acids. After every iteration the top ranking target
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sequences in the pairwise alignment are used to update the scoring matrix. Also,
PSI-BLAST uses a position-specific scoring matrix where two matching residues
are assigned a score based not only on the importance of the match but also on the
position of the residue in the sequence. PSI-BLAST is more sensitive than BLAST
in detecting weak sequence similarities.

Regardless of the algorithm used, in the case of pairwise alignment, an input
sequence is aligned against a list of target sequences from a database resulting in
multiple pairwise alignments. In each pairwise alignment, one of the two sequences
is the input sequence and the other is one sequence from the database. This process
can be parallelized in two ways: 1) multiple pairwise alignments can be executed in
parallel (coarse grain parallelism) and 2) a parallel version of the alignment algorithm
can be used to speed up each individual pairwise alignment (fine grain parallelism).

Given a set of input sequences, ClustalW [che03] implements multiple alignments
using a tree-based method. Pairwise alignments are first constructed for each pair
of sequences from the input set. These alignments are used to construct a similarity
matrix. Each entry in the matrix represents the similarity distance between any
two sequences from the input set. The similarity matrix is used to construct a tree
that will guide the multiple sequence alignment. Closely related sequence pairs are
aligned first resulting in partial alignments. These partial alignments are then either
combined with other neighboring partial alignments or sequences in the guiding tree.
The computational complexity of Clustal W is reduced from being exponential when
dynamic programming based multiple alignmentis used to a second order polynomial.

Forn sequences the number of comparisons to be made(are 1)/2 which is
very large as the number of sequences increases. This pairwise comparison can be
done in parallel. There are different approaches such as ClustalW-MPI and SGI's HT
ClustalW and MULTICLUSTAL. These approaches increase the speed of aligning
multiple sequences. ClustalW-MPI and HTClustalW will be discussed in detail in
the following sections.

The demand for computational power in the bioinformatic field will continue to
grow as the complexity and the volume of data increases. This computational power
can only be delivered by large-scale parallel computers that either have distributed
memory architecture or shared memory architecture. Distributed computing has
been already used successfully in sequence alignment. In general, most of these
applications have been implemented by using the work pool approach with coarse
grain parallelism. This type of implementation is ideal for clusters built with off-
the-shelve personal computers. Sequence Alignment is expected to continue to draw
increasing attention and it will drive several high performance computing efforts.

1.3 SMITH-WATERMAN ALGORITHM

When looking for similarities between subsequences of two sequences, as is usually
the goal in the methods used to find homologies by database searches, a local align-
ment method is more appropriate than a global. The simple dynamic programming
algorithm described by Smith and Waterman [smw81] is the basis for this type of
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alignments. The Smith-Waterman algorithm is perhaps the most widely used local
similarity algorithm for biological sequence database searching.

In Smith-Waterman database searches, the dynamic programming method is used
to compare every database sequence to the query sequence and assign a score to each
result. The dynamic programming method checks every possible alignment between
two given sequences. This algorithm can be used both to compute the optimal align-
ment score and for creating the actual alignment. It uses memory space proportional
to the product of the lengths of the two sequenees, and computing time propor-
tional tomn(m + n). The recursion relations used in the original Smith-Waterman
algorithm are the following:

H; j = max{H;-1 j-1,5ai,bj], E; j, F; j}
where

E; ; = mazock<i{Hi—k,j; — 9(k)}
Fij =mazoci<j{Hij—1 —g(l)}

Here, H; ; is the score of the optimal alignment ending at positiary) in the
matrix, while E; ; andF; ; are the scores of optimal alignments that ends at the same
position but with a gap in sequence A or B, respectively. S is the match/mismatch
value of ai and bj, or amino acid substitution score matrix, while g(k) is the gap
penalty function. The computations should be started with= F; ; = H; ; = 0 for
alli = 0 orj =0, and proceeded withgoing from 1 tom and; going from 1 ton
(see Figure 1.1).

The order of computation is strict, because the valugfoin any cell in the
alignment matrix cannot be computed before all cells to the left or above it has been
computed. The overall optimal alignment score is equal to the maximum value of
Hi,j-

Hiy, Hi,,;

add S(x;, y;)
-q for a gap

Hi -q for a gap > H; ;

Fig. 1.1 Dynamic programming illustration

Gotoh [got82] reduced the time needed by the algorithm to be proportionat to
when affined gap penalties of the fogtk) = ¢ + rk;(¢ > 0, » > 0)are used, where
q is the gap opening penalty and r is the gap extension penalty. When only the actual
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Fig. 1.2 Data dependency in Smith-Waterman alignment matrix

optimal local alignment score is required, the space requirements were reduced to be
proportional to the smallest of. andn. The new recursion relations fd; ;, and
F; ; are as follows:

Eij = mazo<k<i{Hi—1,; —q+ Ei—1; — 1}
F, ; = mazo<i<j{Hij—1 —q+ E; j—1 —r}

All the searching process can be divided into two phases [men04]. In the fist
phase, all the elements of two sequences have to be compared and form a scoring
matrix. Following the recurrence equation in Figure 1.1, the matrix is filled from top
left to bottom right with each entryf; ; requiring the entries?;_; ;, H; j—1, and
H;_, ;—1 with gap penalty; = r at each step. Once scores in all cells are calculated,
the second phase of the algorithm identifies the best local alignments. Since they
might be biologically relevant, alignments with score value above a given threshold
are reported. Thus, for each element of the matrix a backtracking procedure is applied
to find out the best local alignment.

Figure 1.2 shows the data dependencies in Smith-Waterman algorithm. As men-
tioned in the previous section, there are three possible alignments to choose from
when calculating one element: alignment of the symbol in the row considered with
gap — horizontal arrow, alignment between the symbols in the row and column con-
sidered with match or mismatch - diagonal arrow, and alignment of the symbol in
the column considered with a gap - vertical arrow. This means that rows or columns
can't be computed in parallel. The only elements on each successive anti-diagonal
(labelled dashed line in Figure 1.2 are processed in parallel. These data dependen-
cies present a serious challenge for sufficient parallel execution on a general-purpose
parallel processor.
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1.3.1 Parallel Computation Approach for Smith-Waterman Algorithm

Database searching applications allow two different granularity alternatives to be
considered: fine—grained and coarse-grained parallelism. Early approaches focused
on data-parallel over SIMD machines.

1.3.1.1 Fine-grainparallelism  Typical dynamic programming-based algorithms,
like Smith-Waterman algorithm, compute &f),, , matrix (m and m being the se-
guence lengths) depending on the three entifigs, ;, H; j_1, andH;_; ;_;. Fine-

grain means that processors will work together in computingihmatrix, cell by

cell. Some researchers organized the parallel machine as an array of processors to
compute in diagonal-sweep fashion the mafiixsee Figure 1.3). An advantage is

that this strategy only requires local communications in each $tép.sendsH; ; to

PE; 1, to allow it to computeH;; ; in the next step, whild’E; computest; ;.

Query sequence length determines the maximum number of processors able to be
assigned, and processors remain idle at begin/end steps.

Database Seauence

blb2 B3 b4 bS b6 e bn

al
a2

a4

Query Sequence

Computation
Flow

® Working PE

Fig. 1.3 Diagonal-sweep fine-grained workload distribution for multiprocessors machines
to avoid data dependencies in Smith-Waterman algorithm

Rognes [rog00] implemented the Smith-Waterman algorithm using Intel's MMX/SSE
technology. Six-fold speed-up relative to the fastest known Smith-Waterman imple-
mantation on the same hardware was achievied by optimized 8-way parallel process-
ing approach.

1.3.1.2 Coarse-grain Parallelism  There are several proposed strategies for
achieving coarse-grained parallelism in sequence alignment applications. Most of
them can be explained on the basis of the flow chart shown in Figure 1.4. First of all,
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the program sets the initial stage of the algorithm. Next, it manages the algorithm
extension, which works until the number of database sequences is exhausted, then,
fetches the next database sequence to be compared against the query sequence. The
result value is saved to rank the best results as in the following step. Finally, statistical
significance can incorporate a optimization process and the last step is to output results.

Get Query Sequence and
Do Initializations

Have more Database
Sequences?

| Fetch a Database Sequence |

v

| Do Alignment & Compute Best Score |

v

| Maintain a Record of Best Scores |

[
\ 4

| Results Optimization |

v

| Report the Best Results |

Fig. 1.4 Sequential flow chart for a sequence database searching application

As should be noted, the algorithm has a very simple form as far as data flow is
concerned. The database sequence corresponds to the data set to be searched, which
is a set of sequences of different lengths. In essence, in a typical coarse-grained
parallel implementation, one of the processors acts as a "master", dispatching blocks
of sequences to the "slaves" which, in turn, perform the algorithm calculations. When
the slaves report results for one block, the master sends a new block. This strategy is
possible because results from the comparison between query and database sequences
are independent of the previous results deriving from the comparison of the query
with other sequences.

However, the time required in the processing of any given sequence depends not
only on the length of the sequence, but also on its composition. Therefore, the use
of a dynamic load balancing strategy is necessary. The simplest way is to mod-
ify the way in which the master processor distributes the load on demand from the
slaves. Obviously, sending one-sequence messages introduces additional expensive
time overhead due to the high number of messages interchanged. Thus, rather than
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distributing messages sequence-by-sequence, better results are achieved by dispatch-
ing blocks of sequences.

1.4 FASTA

FASTA [pea90] finds homologous sequences by using a four-step process. First,
sequences that have subsequences of atleadjacent residues that match subse-
guences in the query sequence are identified. The recommended valdercd
protein sequence alignment is 2 and for a DNA sequence alignment is between 4 and
6. The second step combines groups of these matching subsequences into longer
matching regions called initial regions. Each initial region consists of one or more
matching subsequence separated by mismatching regions of residues. Gaps are not
allowed within the mismatching regions. That is, the number of residues between
two consecutive matching subsequences within the same initial region has to be the
same in the query sequence and the target sequence. These initial regions are scored
and the best 10 initial regions are selected. During the third step, dynamic program-
ming is used to combine nearby initial regions and new scores are assigned to the
combined regions. This is an example of how dynamic programming is used in a
limited context (i.e., only for nearby initial regions) within heuristics. In this third
step mismatching regions between the initial regions may contain gaps. The scores
generated in the third step are used to rank the database sequences. During the fourth
step, the Smith-Waterman [smw81] algorithm is applied to the top ranking sequences
from the previous step. Specifically, this algorithm is used to align the query sequence
and the database sequences within the selected initial regions and their neighboring
residues. The fourth step in FASTA is another example of the use of dynamic pro-
gramming in a limited context within a heuristic based alignment algorithm. The
Smith-Waterman [smw81] algorithm is only used for top ranking sequences and only
within selected regions of these sequences. Limiting the use of dynamic program-
ming increases the computational efficiency of the alignment algorithm. However, it
also means that the generated solution is only a sub-optimal solution rather than an
optimal one.

FASTA provides different executables for different types of sequence alignment.

e FASTA: Nucleotide sequence / Nucleotide sequence database.
e SSEARCH: Protein sequence / Protein sequence database.

e TFASTA : protein sequence / Six-frame translations of a nucleotide sequence
database (treats each frame separately).

e FASTX: Six-frame translations of a nucleotide sequence / Protein sequence
database.

e TFASTX: Protein sequence / Six-frame translations of a nucleotide sequence
database (treats the forward or reverse three frames as one sequence).
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1.4.1 Parallel Implementation of FASTA

To study the performance of parallel FASTA, a large quantity of research work has
been done. The parallel efficiency of FASTA programs on Sun servers [sha01] can
be quite high, especially for large searches. The experiment results show a 54-fold
speedup of FASTA search when it runs on 62 CPUs of the Sun Enterprise 10000 (64
400 MHz CPUs with 8MB L2 cache). Parallel scaling for smaller queries is typically
much lower.

The performance of the FASTA programs was studied on PARAM 10000 [jan03],
a parallel cluster of workstations. The FASTA program executes very quickly when
a small query or database is chosen, but becomes compute intensive when searching
a query of longer length against huge databases. The parallel FASTA ported using
Sun-MPI libraries was used to run on Fast Ethernet across 2 to 64 processors and a
speedup of 44 fold was observed on 64 processors. While searching a longer query
sequence against a huge database using parallel FASTA, better speedup was observed
than with smaller query lengths. Thus, parallel FASTA can be more effectively used
when long genome sequences of human chromosomes, that is, those having more
than 10 mega bases, need to be searched against large genome sequence databases.

1.5 BLAST

BLAST [alt90] or Basic Local Alignment Search Tool is a heuristic based search
algorithm to match sequences. This heuristic search method seeks words of length
W that score at least T when aligned with the query and scored with a substitution
matrix. Words in the database that score T or greater are extended in both directions
in an attempt to find a locally optimal un-gapped alignment or HSP (high scoring
pair) with a score of at least S or an E value lower than the specified threshold. HSPs
that meet these criteria will be reported by BLAST, provided they do not exceed the
cutoff value specified for number of descriptions and/or alignments to report.

In the first step, BLAST uses words of lengthinstead ofk-tuples. These words
also include conservative substitutions. The words used in BLAST contain-all
tuples that receive a scolg above a certain level, when compared using the amino
acid substitution matrix. By default, BLAST uses= 3 andT" = 11. A given triplet
in the query sequence will then match the triplets in the database sequence that has a
score of 11 or more when the three pairs of amino acids are compared.

In the second step, BLAST extends the initial words into so-called High-scoring
Segment Pairs (HSPs) using the amino acid substitution matrix. This extension is
performed in both directions along the diagonal from the initial word and is stopped
when the potential score falls a level X below the currently found maximum score of
the HSP.

It was found that 90% of the time was spent in extending the word and most of
this extension wouldn’t lead to a HSP. It was also found that most of the HSPs found
would have multiple hits. So rather than extending the word on a single hit, one
would only extend a word if there were multiple hits. To keep the probability of
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finding a similarity constant, one reduces the threshold T. This is known as the Two-
Hit alignment method. In addition, the first version of BLAST does not consider
gapped alignments at all, but computes a statistical measure of significance based on
the highest scoring HSPs using sum-statistics [kar90].

Altschul et. al. [alt97] describe version 2 of NCBI BLAST, which includes a few
improvements, that increases both the speed and the sensitivity of the program. In the
firststep, BLAST 2 uses the Two-Hit alignment method to improve performance. This
double-hit method not only reduces the number of hits substantially, but also reduces
sensitivity relative to the first version of BLAST. The extension of HSPs in the second
step is performed in the same manner as with the previous version although with far
fewer HSPs, and hence much faster. Using midpoints on the HSPs as seeds, BLAST
2 performs an accurate gapped alignment constrained not to contain any low-scoring
regions. This gapped alignment leads to much increased sensitivity over the original
BLAST program. The alignments take a lot of time and are hence only performed
for the HSPs scoring 40 or above, which represents only about 2% of the database
sequences. NCBI BLAST 2 uses the new statistics for gapped alignments described
by [alt96] to compute an E-value expressing the expected number of random matches
in the database having a given score.

To utilize these heuritics for sequence alignments, NCBI provides different exe-
cutables for different types of sequence alignment. Blastp is used for matching pro-
tein query sequence against protein database. Blastn is used for matching neucleotide
guery sequence against neucleotide database. Blastx is used for matching nucleotide
guery sequence translated in all reading frames against a protein sequence database.
Tblastn is used for matching protein query sequence against a nucleotide sequence
database dynamically translated in all reading frames. Tblastx is used for matching
the six-frame translations of a nucleotide query sequence against the six-frame trans-
lations of a nucleotide sequence database. Though they are different programs, they
all use the same Two-Hit heuristic for the comparison of query against the database.

1.5.1 TurboBLAST

TurboBLAST TurboBLAST [bjo02] is an accelerated, parallel deployment of NCBI
BLAST, which delivers high-performance, not by changing the BLAST algorithm,
but by coordinating the use of multiple copies of the unmodified serial NCBI BLAST
application on networked clusters of heterogeneous PCs, workstations, or Macintosh
computers. As a result, TurboBLAST supports all of the standard variants of the
BLAST algorithm supported in NCBI BLAST (blastn, blastp, blastx, tblastn, and
tblastx). It provides results that are effectively identical to those obtained with the
NCBI application.

An individual BLAST job specifies a humber of input query sequences to be
searched against one or more sequence databases. In order to achieve parallel speed-
up, TurboBLAST implements a distributed Java "harness" that splits BLAST jobs
into multiple small pieces, processes the pieces in parallel, and integrates the results
into a unified output. The harness coordinates the following activities on multiple
machines:



16 PARALLEL IMPLEMENTATIONS OF LOCAL SEQUENCE ALIGNMENT: HARDWARE AND SOFTWARE

e Creation of BLAST tasks, each of which requires the comparison of a small
group of query sequences (typically 10-20 sequences) against a modest-sized
partition of one of the databases sized so that the entire task can be completed
within the available physical memory without paging.

e Application of the standard NCBI blastall program to complete each task and

e Integration of the task results into a unified output.

This approach has the advantage that it is guaranteed to generate the same pairwise
sequence comparisons as the serial version of BLAST since it uses exactly the same
executable to perform the search computations. High performance is achieved in two
ways. First, the size of each individual BLAST task is set adaptively so that blastall
processing will be efficient on the processor that computes the task. Second, a large
enough set of tasks is created so that all the processors have useful work to do and so
that nearly perfect load balance can be achieved.

Initial benchmarks of TurboBLAST on a network of 11 commodity PCs running
Linux reduced the serial time of 5 days, 19 hours, and 13 minutes BLAST run to just
a parallel time of 12 hours, 54 minutes. It was able to achieve a speedup of nearly
10.8.

1.5.2 mpiBLAST

mpiBLAST [mpibl] is an open-source parallelization of BLAST that achieves super-
linear speed-up by segmenting a BLAST database and then having each node in a
computational cluster search a unique portion of the database. Database segmentation
permits each node to search a smaller portion of the database (one that fits entirely in
memory), eliminating disk I/O and vastly improving BLAST performance. Because
database segmentation does not create heavy communication demands, BLAST users
can take advantage of low-cost and efficient Linux cluster architectures such as the
bladed Beowulf.

mpiBLAST is a pair of programs that replafmatdbandblastall with versions
that execute BLAST jobs in parallel on a cluster of computers with MPI installed.
There are two primary advantages to using mpiBLAST versus traditional BLAST.
First, mpiBLAST splits the database across each node in the cluster. Because each
node’s segment of the database is smaller it can usually reside in the buffer-cache,
yielding a significant speedup due to the elimination of disk I/O. Also the data de-
composition is done offline. The fragments reside in a shared storage as shown in
Figure 1.5. Second, it allows BLAST users to take advantage of efficient, low-cost
Beowulf clusters because the interprocessor communication demands are low.

The mpiBLAST algorithm consists of three steps:

1. segmenting and distributing the database, e.g., see Fig. 1.5,
2. running mpiBLAST queries on each node, and

3. merging the results from each node into a single output file.
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Fig. 1.5 Master-Slave worker model of mpiBLAST

The first step consists of a front-end node formatting the database via a wrapper
around the standard NCBbormatdbcalled mpiformatdb The mpiformatdbwrap-
per generates the appropriate command-line arguments to enablefdi@Rtdbto
format and divide the database into many small fragments of roughly equal size.
When completed, the formatted database fragments are placed on shared storage.
Next, each database fragment is distributed to a distinct worker node and queried by
directly executing the BLAST algorithm as implemented in the NCBI development
library. Finally, when each worker node completes searching on its fragment, it re-
ports the results back to the front-end node who merges the results from each worker
node and sorts them according to their score. Once all the results have been received,
they are written to a user-specified output file using the BLAST output functions of
the NCBI development library. This approach to generating merged results allows
mpiBLAST to directly produce results in any format supported by NCBI's BLAST,
including XML, HTML, tab-delimited text, and ASN.1.

The extra overhead incurred by the coordination and message passing may not pay
off for small databases and small-to-medium length queries, but for databases that are
too big to fit in the physical memory of a single node, it clearly offers an advantage.

1.5.3 Green Destiny

Green Destiny is a 240-processor supercomputer that operates at a peak rate of 240
gigflops [war02]. It fits in 6 square feet and consumes 3.2 kilowatts of power. mpi-
BLAST is benchmarked on the Green Destiny cluster by the Los Alamos National
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Laboratory. Each node of this cluster consists of a 667 MHz Transmeta Crusoe
TM5600 processor with 640 MB RAM and a 20 GB hard disk. Nodes are inter-
connected with switched 100Base-Tx ethernet. Each node runs Linux 2.4 operating
system. It is able to achieve a speedup of over 160 for 128 processors. The database
used is the GenBank nt of size 5.1 GB to run a query of predicted genes from bacter-
ial geneome of size 300 KB. The cluster with one worker runs for about 22.4 hours
whereas with 128 workers the query takes just 8 minutes. However, the scalability
of this system is largely constrained by the time to merge results, which typically
increase with the number of fragments.

1.6 HMMER- HIDDEN MARKOV MODELS

HMMer [edd98] is a statistical model, which is suited for many tasks in molecu-
lar biology, such as database searching and multiple sequence alignment of protein
families and protein domains, although they have been mostly developed for speech
recognition since the 1970s. Similar to the ones used in speech recognition, an HMM
is used to model protein family such as globins and kinases. The most popular use of
the HMM in molecular biology is as a probabilistic profile of a protein family, which
is called profile HMM. From a family of proteins or DNA a profile HMM can be
made for searching a database for other members of the family.

Internet sources for profile HMM and HMM-like software package are listed in
the below table.

Software Tool | Web Site |

| |

| HMMER | http://hmmer.wustl.edu

| SAM | http://www.cse.ucsc.edu/research/compbio/sam. ftml
| Pfam | http://pfam.wustl.edu |

| PFTOOLS | http:/Awww.isrec.isb-sib.ch/ftp-server/pftools/ \

| BLOCKS | http://blocks.fhere.org/ |

| META-MEME | http://metameme.sdsc.edu |

| PSI-BLAST | http://www.ncbi.nlm.nih.gov/BLAST/ |

HMMER offers a more systematic approach to estimating model parameters. The
HMMER is a dynamic kind of statistical profile. Like an ordinary profile, itis built by
analyzing the distribution of amino acids in a training set of related proteins. However,
an HMMER has a more complex topology than a profile. It can be visualized as a
finite state machine, familiar to students of computer science. Finite state machines
typically move through a series of states and produce some kind of output either when
the machine has reached a particular state or when it is moving from state to state.
The HMMER generates a protein sequence by emitting amino acids as it progresses
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through a series of states. Each state has a table of amino acid emission probabilities
similar to those described in a profile model. There are also transition probabilities
for moving from state to state.

Fig. 1.6 A possible hidden Markov model for the protein ACCY. The protein is represented
as a sequence of probabilities. The numbers in the boxes show the probability that an amino
acid occurs in a particular state, and the numbers next to the directed arcs show probabilities
which connect the states. The probability of ACCY is shown as a highlighted path through the
model.

Figure 1.6 shows one topology for a hidden Markov model. Although other topolo-
gies are used, the one shown is very popular in protein sequence analysis. Note that
there are three kinds of states represented by three different shapes. The squares
are called match states, and the amino acids emitted from them form the conserved
primary structure of a protein. These amino acids are the same as those in the com-
mon ancestor or, if not, are the result of substitutions. The diamond shapes are insert
states and emit amino acids which result from insertions. The circles are special,
silent states known as delete states and model deletions.

Transitions from state to state progress from left to right through the model, with
the exception of the self-loops on the diamond insertion states. The self-loops allow
deletions of any length to fit the model, regardless of the length of other sequences
in the family. Any sequence can be represented by a path through the model. The
probability of any sequence, given the model, is computed by multiplying the emission
and transition probabilities along the path.

1.6.1 Scoring a Sequence with an HMMER

In Figure 1.6 a path through the model represented by ACCY is highlighted. In the
interest of saving space, the full tables of emission probabilities are not shown. Only
the probability of the emitted amino acid is given. For example, the probability of A
being emitted in position 1 is 0.3, and the probability of C being emitted in position
2is 0.6. The probability of ACCY along this path is
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4% 3% 46* 6*.97*.5%.015*.73*01*1=1.76 x 10

As inthe profile case described above, the calculation is simplified by transforming
probabilities to logs so that addition can replace multiplication. The resulting number
is the raw score of a sequence, given the HMMER. One common application of
HMMER is classifying sequences in a database. The method is to build an HMMER
with a training set of known members of the class, and then to compute the score of
all sequences in the database. The resulting scores are ranked and a suitable threshold
is selected to separate class members from the other sequences in the database.

1.6.2 Parallel Implementation of HMM

HMMer 2.2g provides a paralléimmpfanprogram based on PVM (Parallel Virtual
Machine), which is a widely used tool for searching one or more sequences against an
HMM database and is provided by Dr. Eddy’s Lab at the Washington University. In
this implementation, the computation for one sequence is executed concurrently, the
master node dynamically assigns one profile to a specific slave node for comparison.
Upon finishing its job, the slave node reports the results to the master, which will
respond by assigning a new profile. When all the comparison regarding this sequence
is completed, the master node sorts and ranks all the results it collects, and outputs
the top hits. Then the computation on the next sequence begins.

Using state-of-the-art multi-threading computing concept, some researchers [zhu03]
implement a new parallel version binmpfanon EARTH (Efficient Architecture for
Running Threads). EARTH is an event-driven fine-grain multi-threaded program-
ming execution model, which supports fine-grain, non-preemptive fibers, developed
by CAPSL (Computer Architecture and Parallel System Laboratory) at the Univer-
sity of Delaware. In its current implementations, the EARTH multi-threaded ex-
ecution model is built with off-the-shelf microprocessors in a distributed memory
environment. The EARTH runtime system (version 2.5) performs fiber scheduling,
inter-node communication, inter-fiber synchronization, global memory management,
dynamic load balancing and SMP node support. The EARTH architecture executes
applications coded in Threaded-C, a multi-threaded extension of C.

For parallelizindimmpfamtwo different schemes are developed: one pre-determines
job distribution on all computing nodes by a round-robin algorithm; the other takes
advantage of the dynamic load balancing support of EARTH Runtime system, which
simplifies the programmer’s coding work by making the job distribution completely
transparent. It shows a detailed analysis of the hmmpfam program and different par-
allel schemes, and some basic concepts regarding multi-threaded parallelization of
HMM-pfam on EARTH RTS 2.5. When searching 250 sequences against a 585-
family Hmmer database on 18 dual-CPU computing nodes, the PVM version gets
absolute speedup of 18.50, while EARTH version gets 30.91, achieving a 40.1% im-
provement on execution time. On a cluster of 128 dual-CPU nodes, the execution
time of a representative testbench is reduced from 15.9 hours to 4.3 minutes.
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1.7 CLUSTALW

ClustalW is a tool used in computational biology to perform “multiple sequence
alignment”. In practice, it means reading in a number of sequences representing
sequences of biological data, calculating pairwise rankings of “alignedness” between
them, forming a hypothetical tree of relationships between the sequences, and then
performing adjustments to the sequences to make them all “align” with one another by
introducing some gaps, etc. The following discussion involves basic steps involved in
performing multiple sequence alignment. We then discuss how this is computationally
intensive and discuss some parallel implementations using different approaches.

The basic alignment method was first devised by J D Thompson, Desmond Higgins,
and Toby Gibson [tho94]. The basic multiple alignment algorithm consists of three
main stages: 1) all pairs of sequences are aligned separately in order to calculate
a distance matrix giving the divergence of each pair of sequences; 2) a guide tree
is calculated from the distance matrix; 3) the sequences are progressively aligned
according to the branching order (from tips to root) in the guide tree.

In the original CLUSTAL programs, the pairwise distances were calculated using
a fast approximate method [bas87]. This allows very large numbers of sequences
to be aligned, even on a microcomputer. The scores are calculated as the number
of k-tuple matches (runs of identical residues, typically 1 or 2 long for proteins or
2 to 4 long for nucleotide sequences) in the best alignment between two sequences
minus a fixed penalty for every gap. One can use either fast approximate method
or the slower but more accurate scores from full dynamic programming alignments
using two gap penalties (for opening or extending gaps) and a full amino acid weight
matrix. These fast approximate methods virtually yield the same results as the exact
methods as long as the sequences are not too dissimilar.

The guided tree which is used in the final multiple alignment process are calculated
from the distance matrix of step 1 using the Neighbour-Joining method [sai87]. This
produces unrooted trees with branch lengths proportional to estimated divergence
along each branch. Therootis placed by a “mid-point” method [th094-1] at a position
where the means of the branch lengths on either side of the root are equal. These trees
are also used to derive a weight for each sequence. The weights are dependent upon
the distance from the root of the tree but sequences which have a common branch with
other sequences share the weight derived from the shared branch. By contrast, in the
normal progressive alignment algorithm, all sequences would be equally weighted.

Progressive alignment is the final stage in the ClustalW. This stage uses the series
of pairwise alignments to align larger and larger groups of sequences, following the
branching order in the guide tree. You proceed from the tips of the rooted tree towards
the root. At each stage of the tree a full dynamic programming [amh67, th094-1]
algorithmis used with a residue weight matrix and penalties for opening and extending
gaps. It is appropriate to use dynamic programming here because the number of
comparisons will be less compared to initial stage; thus leading to more accurate
alignments. Each step consists of aligning two existing alignments or sequences.
Gaps that are present in older alignments remain fixed. In the basic algorithm, new
gaps that are introduced at each stage get full gap opening and extension penalties,
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even if they are introduced inside old gap positions. The average of all the pairwise
weight matrix scores from the amino acids in the two sets of sequences is used in
order to calculate the score between a position from one sequence or alignment and
one from another,

If either set of sequences contains one or more gaps in one of the positions being
considered, each gap versus aresidue is scored as zero. The default amino acid weight
matrices we use are rescored to have only positive values. Therefore, this treatment
of gaps treats the score of a residue versus a gap as having the worst possible score.
When sequences are weighted, each weight matrix value is multiplied by the weights
from the 2 sequences.

If the total number of sequences is N, then the pairwise comparison step requires
N*(N-1)/2 number of comparisons. N can be a very large number. Since at each step
either fast approximation or full dynamic programming techiniques are used, this
step will be more computationally intensive and throws a significant challenge for
the researchers at improving the speed at this stage. Since the pairwise comparison
state takes up most of the time and since it is easy to implement on multiprocessors,
several parallel computing methods have been introduced. The next two sections will
discuss about two very useful parallel programming approaches.

1.7.1 ClustalW-MPI

ClustalW-MPl is a distributed and parallel implementation of ClustalW [kuo03]. All
three stages are parallelized in order to reduce the execution time. It uses a message-
passing library called MPI and runs on distributed clusters as well as on traditional
parallel computers. The first step in ClustalW is to calculate a distance matrix for
N*(N-1)/2 pairs of sequences. Thisis an easy target for coarse-grained parallelization
since all elements of the distance matrix are independent. The second step of ClustalW
determines the guided tree (topology) of the progressive alignments. Finally the last
step obtains the multiple alignments progressively. For the last two steps there is no
simple coarse-grained parallel solution because of the data dependency between each
stage in the guided tree.

The parallelization of the distance-matrix calculation is simply allocating the time-
independent pairwise alignments to parallel processors. The scheduling strategy used
in ClustalW-MPI is called fixed-size chunking [hag97]) where chunk of tasks are to
be allocated to available processors. Allocating large chunk of sequences to available
processors minimizes the communication overhead but may incur high processor idle
time, whereas small batches reduce the idle time but may lead to high overhead.

Once we have the distance matrix, a guide tree needs to be produced to serve as
the topology of the final progressive alignment. The algorithm for generating the
guide tree is the neighbor-joining method (Saitou and Nei, 1987) [sai87]. Slight
modifications were made so that the neighbor-joining tree can be done) e
while still retain the same results as the original ClustalwW. For the 500-sequence
test data the tree generation takes about 0.04 % of the overall CPU time. In most
cases the CPU time spent on this stage is less than 1% even for data containing 1000
sequences. ClustalW-MPI implementation parallelizes the searching of sequences
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having the highest divergence from all other sequences. A mixed fine- and coarse-
grained approach is used for the final progressive alignment stage. Itis coarse grained
in that all external nodes in the guide tree are to be aligned in parallel. The efficiency
obviously depends on the topology of the tree. For well-balanced guide tree, the
ideal speedup can be estimated as N/ log N, where N is the number of nodes in the
tree. Finally, the calculations of the forward and backward passes of the dynamic
programming are also parallelized.

Experiments were conducted on test data comprising of 500 protein sequences with
an average length of about 1100 amino acids. They were obtained from the BLASTP
results with the query sequence (Gl: 21431742), a cystic fibrosis transmembrane
conductance regulator. Experiments were performed on a cluster that is made of
eightdual-processor PCs (Pentium lll, 800 MHz) and interconnected with the standard
Fast Ethernet. The calculations of pairwise distances scale up as expected, up to 15.8
using 16 processors. For the essentially not parallelizable progressive alignment, this
implementation shows that the speedup of 4.3 can be achieved using 16 processors.

From the above discussion it is evident that with the features of ClustalW-MPI,
it is possible to speedup lengthy multiple alignments with relatively inexpensive PC
clusters.

1.7.2 Parallel ClustalW, HT Clustalw and MULTICLUSTAL

Another parallel programming approach for ClustalW is undertaken by the SGI. This
parallel version shows speedups of up to 10 when running ClustalwW on 16 CPUs
and significantly reduces the time requited for data analysis. The development of a
high throughput version of ClustalW called HT ClustalW and the different methods
of scheduling multiple MA jobs are discussed below. Finally the improvements of
recently introduced MULTICLUSTAL algorithm and its efficient use for parallel
ClustalW are discussed.

The basic ClustalW algorithm was parallelized by SGI using OpenMP [openmp]
directives. Time profile analysis of the original Clustal W, using different numbers
of G-protein coupled receptor (GPCR) proteins as inputs leads to the following dis-
cussion. Stages of the Clustal W algorithm: pairwise calculation (PW), guide tree
calculation (GT), and progressive alignment (PA). Most of the time is spent in PW
stage although the relative fraction is lower ( 50 %) for larger number of sequences
compared to 90 % for smaller alignments. Therefore, the focus of parallization needs
to be PW stage first. For larger number of sequences (>1000 and length of nucleotides
390) the time taken by the GT stage is also significant. For sequences greater than
1000 it is necessary to parallelize both PW and GT stages to get significant speedup.

PW Stage Optimization: As mentioned earlier, during the first stage N*(N-1)/2
pairwise comparisons have to be made to calculate the distance matrix. Because
each comparison is independent of another, this part of the algorithm can be easily
parallelized with the OpenMP “for” construct:

/* SGI pseudocode: Parallelism for pairwise



24 PARALLEL IMPLEMENTATIONS OF LOCAL SEQUENCE ALIGNMENT: HARDWARE AND SOFTWARE

distance matrix calculation */

#pragma omp parallel private(i,j) {
#pragma omp for schedule(dynamic)

for(i=start;i<numseqs;i++)} {
for(j=i+1;j<numsegs;j++)
calc_pw_matrix_element();

}
} I* End of pragma parallel */

Because inner “j"-loop varies, the OpenMP “dynamic” schedule is used in order
to avoid load unbalance among different threads. In principle the “static” interleave
schedule can be used here as well, but because each pairwise comparison takes varying
amounts of time, the “dynamic” type works better. This implementation is only
efficient on a shared memory system like the SGI Origin 3000 series. But even if this
stage is parallelized, the scaling would still be limited to a low number of processors
if no further optimization is done. For example, without parallelization second and
third stages (GT and PA), the alignment of 1,000 GPCR protein sequences, where
PW stage accounts for 50% of total time, would be only 1.8x faster when running on
8 CPUs according to Amdahl’'s Law [amh67]. So, In order to achieve better scaling
for larger, more compute-intensive alignments, efficient parallization techniques are
needed for the GT and PA stages.

GT Stage Optimization: In the second stage (GT calculation), the most time-
consuming part is determining the smallest matrix element corresponding to the next
tree branch. This can be done in parallel by calculating and saving the minimum
element of each row concurrently and then using the saved minimum row elements
to find the minimum element of the entire matrix.

Experimental results have shown that the relative scaling of the parallel-optimized
ClustalWw for 100 and 600 GPCR sequences with the average length of 390 aminos
(in terms of fraction of parallel code P [amh67]) is better for larger inputs since
most of the time spent is in the first and second stages. For the larger inputs the
time consumed by first and second stages is almost equal. Parallelization of these
stages is more coarse grained, and as a result the OpenMP overhead becomes minimal
compared to the finer grained parallelization of the third stage. The speedup of more
than 10x is obtained for the MA of 600 GPCR proteins using 16 CPUs as compared
to the one which was run on a single processor. Total time to solution is reduced from
1 hour, 7 minutes (single processor) to just over 6.5 minutes (on 16 CPUs of the SGI
Origin 3000 series), and hence significantly increasing research productivity.

HT ClustalW Optimization: The need to calculate large numbers of multiple align-
ments of various sizes has become increasingly important in high-throughput (HT)
research environments. To address this need, SGI has developed HT Clustal, basi-
cally, awrapper program that launches multiple Clustal W jobs on multiple processors,
where each Clustal W job is usually executed independently on a single processor.
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In order to reproduce this High Throughput environment the following mix of het-
erogeneous MAs is constructed.

HT Clustal is used to calculate 100 different MAs for GPCR proteins (average
length 390 amino acids). Each input file contains between 10 and 100 sequences
taken randomly from a pool of 1,000 GPCR sequences. The number of sequences
conforms to a Gaussian distribution with the average of 60 sequences and standard
deviation of 20.

To optimize the throughput performance, the input sequences are pre-sorted based
on a relative file size. The purpose of the pre-sorting is to minimize load unbalance
and hence improve the scaling of HT Clustal. Experimental studies have shown that
the improvement from pre-sorting becomes significant when the average number of
jobs per CPU is on the order of 5. When the average number of jobs per CPU is
greater than 5, it shows that the statistical averaging reduces the load unbalance and
there is only minor improvement with pre-sorting.

With pre-sorting it is possible to achieve almost linear speedups. For the above
example the speedups of 31x were achieved on 32 CPUs. For the larger test cases
speedup of 116x was found on a 128-CPU SGI Origin 3000 series server, and hence
reducing total time to solution from over 18.5 hours to just under 9.5 minutes. Because
individual Clustal W jobs are processed on a single processor, HT Clustal can be used
efficiently on both single system image SGI Origin 3000 series servers and distributed
Linux clusters.

MULTICLUSTAL Optimization: The MULTICLUSTAL algorithmwas introduced

as an optimization of the ClustalW MA [yua99]. The MULTICLUSTAL alignment
gives a domain structure, which is more consistent with the 3D structures of proteins
involved in this alignment.

The algorithm searches for the best combination of ClustalW input parameters in
order to produce more meaningful multiple sequence alignments (i.e. smaller number
of gaps with more clustering). It does so by performing Clustal W calculations for
various scoring matrices and gap penalties in the PW/GT and PA stages.

SGI has optimized the original MULTICLUSTAL algorithm by reusing the tree
calculated in the PW/GT steps. Therefore, the guide tree is calculated only once for a
given combination of PW parameters and is then used for all possible combinations of
PA parameters. The performance (relative to that of original MULTICLUSTAL on 1
CPU) gives speedups range from 1.5 to 3.0 compared to the original algorithm running
on the same number of processors. Similar time to solution can be obtained using
the SGI modified MULTICLUSTAL on smaller number of CPUs compared to the
original MULTICLUSTAL, thereby freeing additional computer resources without a
performance degradation.

1.8 SPECIALIZED HARDWARE: FPGA

Over the past several years, key computational biology algorithms such as the Smith-
Waterman have been implemented on FPGAS, and have enabled many computational



26 PARALLEL IMPLEMENTATIONS OF LOCAL SEQUENCE ALIGNMENT: HARDWARE AND SOFTWARE

Table 1.1 Performance for different implementation.

Implementation Type Processors Devices | Comparisons
per devices per seconds
Celera Alpha Cluster 1 800 250B
Paracel ASIC 192 144 276B
Timelogic FPGA 6 160 50B
StarBridge FPGA Unpublished 1 Unpublished
Splash 2 FPGA 14 272 43B
JBits(XCV1000) FPGA 4,000 1 757B
JBits(XC2Vv6000) FPGA 11,000 1 3,225B
Researcher from Japan(XCV2000E) FPGA 144 1 4B

analysis that were previously impractical. Many problems in computational biology
are inherently parallel, and benefit from concurrent computing models. There are
several commercial systems currently available which all take different approaches.
In academic area, many researchers proposed their implementations to address this
problem. For a comparison, clusters of machines and custom VLSI systems are also
included.

The first system listed in Table 1.1 is from Celera Genomics, Inc. Celera uses an
800 node Compagq Alpha cluster for their database searches. This arrangementis able
to perform approximately 250 billion comparisons per second. The major advantage
of such a multiprocessor system is its flexibility. The drawback, however, is the large
cost associated with purchasing and maintaining such a large server farm.

The second system in the table is made by Paracel, Inc. Paracel takes a custom
ASIC approach to do the sequence alignment. Their system uses 144 identical cus-
tom ASIC devices, each containing approximately 192 processing elements. This
produces 276 billion comparisons per second, which is comparable to Celera’s sever
farm approach, but using significantly less hardware.

TimeLogic, Inc. also offers a commercial system but uses FPGAs and describes
their system as using “reconfigurable computing” technology. They currently have
six processing elements per FPGA device and support 160 devices in a system. This
system performs approximately 50 billion matches per second. This is significantly
lower in performance than the Celera or Paracel systems, but the use of FPGASs results
in a more flexible system which does not incur the overheads of producing a custom
ASIC.

StarBridge Systems [sta04] has developed a reconfigurable computing system
using FPGAs that can deliver 10X to 100X or greater improvement in computa-
tional efficiency (compared to traditional RISC processor based machines) as per
their white paper. Their system employs a dual processor motherboard and a single
Hypercomputer board with nine Xilinx XC2V6000-BG1152 Virtex-1l FPGAs and
two XC2V4000-BG1152 Virtex-1l FPGAs, yielding approximately 62 million gates
per board. Details about processing elements are unpublished and the market price
for this tailored system is relatively high.
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Splash 2 [hoa93] is a legacy system loaded with 272 FPGAS, each supplying 14
processing elements, producing a match rate of 43 billion matches per second. These
are respectable numbers for ten year old technology in a rapidly changing field.

The JBits [guc02] implementations using a Xilinx XCV1000 Virtex device imple-
ments 4,000 processing elements in a single device running at 188Mhz in the fully
optimized version. This results in over 750 billion matches per second. And if the
newer Virtex Il family is used, a single XC2V6000 device can be used to implement
approximately 11,000 processing elements. At a clock speed of over 280Mhz, this
gives a matching rate of over 3.2 trillion elements per second.

Finally, the research group from Japan [yam02] also proposed theirimplementation
using FPGAs. They use one PCl board with Xilinx XCV2000E FPGAs and implement
144 processing elements. The time for comparing a query sequence of 2048 elements
with a database sequence of 64 million elements by Smith-Waterman algorithm is
about 34 sec, which is about 330 times faster than a desktop computer with a 1Ghz
Pentium IlI.

1.8.1 Implementation Details

The data dependencies from the Smith-Waterman algorithm indicate that calculations
may proceed in parallel across the diagonals of the array. That is, riixinecom-
parisons performed in the algorithm is viewed as a two dimensional array, then the
algorithm can be seen as proceeding from the upper left corner of the array, where SO
is compared to TO, downward and to the right until the final value of d is computed
using the comparison of Sn and Tm. There are two major implement approaches:
multi-threaded computation and systolic array.

1.8.1.1 Multi-Threaded Computation The parallelism elements on each di-
agonal line are processed at once. Therefore, the order of the computation can be
reduced tan + n — 1 from mn if m elements can be processed in parallel. If the
size of the hardware is not large enough to comparelements at once, the first
p elements (suppose that the hardware process p elements in parallel) of the query
sequence are compared with the database sequence at once, and the scasés of all
elements are stored in temporal memory. Then, the petements of the query
sequence are compared with the database sequence using the scores stored in the
temporal memory.

Suppose that the length of the query sequenckei¢ longer than the number of
processing units on the FPGA)( Then, in the naive approach:

1. The firstp elements of the query sequence are compared and the intermediate
results (allpt” scores on lower edge of upper half) are stored, and

2. Then, the next elements of the query sequence are compared using the inter-
mediate results.
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In this case, it take8xz2xz(p + n — 1) cycles to compare the two sequences, and
processing units become idle for one clock cycle in every two clock cycles as described
above.

We can reduce the computation time by the multi-thread computation method. In
the multi-threaded computation:

1. P elements on the diagonal line in upper half are processed, and the score of
p'" element is stored on temporal registers, and

2. Then, the next elements on the diagonal line in lower half are processed with-
out waiting for one clock cycle using the intermediate result. By interleaving
the processing of elements in upper half and lower half, we can eliminate the idle
cycles ofthe processing elements. The clock cycles be@aiipe-n—1)+2zp,
which is almost equal tdzn because: is much longer thap in most cases.

When the length of the query sequenee) (s longer than twice the number of
the processing unit2p), the multi-thread computation is repeated according to the
length of the query sequence.

The advantage of this approach is that it can use the off-the-shelf boards from
FPGA manufacturers. It is easy to obtain the boards with latest FPGAs (namely
larger FPGASs) and the performance of the approach is almost proportional to the
size of FPGAs. The disadvantage is that off-the-shelf FPGA boards do not have
enough hardware resources for homology search. Especially memory size and mem-
ory bandwidth are not sufficient. Because of this limitation, query sequences can
not be compared with long database sequences at once. Therefore, query sequences
are always compared with subsequences of the database sequences (automatically di-
vided during the search), and results against only the fragments in the subsequences
can be shown. Research group from Japan takes this approach.

1.8.1.2 Systolic Sequence Comparison One property of the dynamic pro-
gramming for computing edit distances is that each entry in the distance matrix de-
pends on adjacent entries. This locality can be exploited to produce systolic algo-
rithms in which communications is limited to adjacent processors. There are two
mappings, both exploiting the locality of reference by computing the entries along
each anti-diagonal in parallel [hoa92, lav96, lav98, lip85].

The first one is “bidirectional array” as shown in Figure 1.7. The source and
target sequences are shifted in simultaneously from the left and right, respectively.
Interleaved with the characters are the data values from the first row and column of the
dynamic programming matrix. When two non-null characters enter a processor from
opposite directions a comparison is performed. On the next clock tick the characters
shift out and the values following them shift in. This processor now determines a
new state based on the result of the comparison, the two values just shifted in, and its
previous state value, using the same rule as in the dynamic programming algorithm.
When the string are shifted out they carry with them the last two row and column of
the dynamic programming matrix, and hence the answer. Comparing sequences of
lengths m and n requires at le@stax(m + 1,n + 1) processors. The number of
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Fig. 1.7 Systolic array for sequence comparison.

steps required to compute the edit distance is proportional to the length of the array.
With the bidirectional array, the source sequence must be cycled through the array
once for each target sequence in the database. The source and target sequences are
both limited in length to half of the array’s length.

With respect to the shortcomings of the bidirectional array, “unidirectional array”
process data in one direction. The source sequence is loaded once and stored in the
array starting from the leftmost PE. The target sequences are streamed through the
array one after another, separated by a control character. With the source sequence
loaded and the target sequences streaming through, the array can achieve near 100%
PE utilization. The length of the array determines the maximum length of the source
sequence. The target sequence, however, can be of any length. Together, these prop-
erties make the unidirectional array more suitable and efficient than the bidirectional
array for database searches. A unidirectional array of length n can compare a source
sequence of length at most n and to a target sequence of lengt (n + m) steps.

Both bidirectional systolic array and unidirectional array have been implemented
on the Splash 2 system using Xilinx FPGAs. The JBits implementation follows the
same approach but use more advanced features of FPGAs.

1.8.1.3 Runtime Reconfiguration The JBits implementation explore the use

of the run-time reconfiguration using Xilinx JBit toolkit. The JBits toolkit is a set of
Java tools and APIs that permit direct impementation and reconfiguration of circuits
for the Xilinx Virtex family of FPGAs. JBits was particularly useful in the implemen-
tation of this algorithm because there were several opportunities to take advantage of
run-time circuit customization. In addition, the systolic approach to the computation
permitted a single parameterizable core representing the processing element to be
designed, then replicated as many times as necessary to implement the fully parallel
array.

The logic implementation of the algorithm is shown in Fig. 1.8. Each gray box
represents a LUT /flip-flop pair. This circuit demonstrates four different opportunities
for run-time circuit customization. Three of these are the folding of the constants for
the insertion, deletion and substitution penalties into the LUTs. Rather than explicitly
feeding a constant into an adder circuit, the constant can be embedded in the circuit,
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Fig. 1.8 The combinational logic of the Smith-Watermann circuit.

resulting in (in effect) a customized constant adder circuit. Note that these constants
can be set at run time and may be parameters to the circuit.

The fourth run-time optimization is the folding of the match elements into the
circuit. In genomic databases, a four character alphabet is used to represent the four
bases in the DNA molecule. These characters are typically denoted A, T, G, C. In this
circuit, each character can be encoded with two bits. The circuit used to match Si and
Tjdoes notrequire that both strings be stored as data elements. Inthisimplementation,
the S string is folded into the circuit as a run-time customization. Note that unlike the
previous optimizations, the string values are not fixed constants and will vary from
one run to another. This means that the entire string S is used as a run-time parameter
to produce the customized circuit.

This design uses a feature of the algorithm first noted by Lipton and Lopresti
[lip85]. For the commonly used constants, 1 for insert/delete and 2 for substitution,

b and c can only differ from a by +1 or -1, and d can only differ from a by either 0

or 2. Because of this modulo 4 encoding can be used, thus requiring only 2 bits to
represent each value. The final output edit distance is calculated by using an up-down
counter at the end of the systolic array. For each step, the counter decrements if the
previous output value is one less than the current one and it increments otherwise.
The up-down counter is initialized to the match string length which makes zero the
minimum value for a perfect match.

1.9 CONCLUSION

Relying on Moore’s law alone for performance demands of computational biology
applications may prove detrimental. An amalgamation of better architectures, clever
algorithms, computation system with higher raw CPU performance; with less power
consumption and higher bandwidth will be required to meet demands of compu-
tational biology. We do not expect the general purpose computers to provide the
cost-performance for most of these problems. We expect architectural changes to
support computational biology.
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