1 OpenMP for Chip Multiprocessors:

Feng Liu and Vipin Chaudhary
Institute for Scientific Computing
Wayne State University

Detroit, Ml 48202

{fliu, vipin}@wayne.edu

1.1 INTRODUCTION

Modern System-on-Chip (SOC) design shows a clear trendrtsnategration of
multiple processor cores, the SOC System Section of thertiational Technology
Roadmap for Semiconductors” (http://public.itrs.net@dicts that the number of
processor cores will increase dramatically to match thegssing demands of future
applications. Providers like Intel, IBM, TI, Motorola, arigtadle have addressed
own approaches for their high volume markets. Prior chigllSOCs have been
proposed using multiple copies of the same core (i.e., hemegus), while core
diversity offers better performance and greater abilitatapt to the demands of
applications.

Developing a standard programming paradigm for parallethimees has been a
major objective in parallel software research. Such statiziaion would not only
facilitate the portability of parallel programs, but redutie burden of parallel pro-
gramming as well. Two major models for parallel machineshrsters or distributed
memory machines and Symmetric Multiprocessor machined(SBeveral parallel
programming standards have been developed for individahltacture, such as the
Message-Passing Interface (MPI) for distributed memorgtrimees, and OpenMP or
thread libraries (i.e. Pthread) for shared memory machines

Chip Multiprocessors become an emerging parallel machideitacture. Cur-
rently there are no programming standards for SOCs or hggeemus chip mul-
tiprocessors. Developers are required to write complegrably language and/or
C programs for SOCs. It's beneficial to incorporate highelestandardization like

TThis research was supported in part by Institute for Manufacturing Research and Institute for
Scientific Computing, Wayne State University.

2 OPENMP FOR CHIP MULTIPROCESSORS

OpenMP to improve program effectiveness. OpenMP is an tnidustandard for
shared memory parallel programming agreed on by a consoriusoftware and
hardware vendors [1, 2]. It consists of a collection of cderdirectives, library rou-
tines, and environment variables that can be easily irdsérte a sequential program
to create a portable program that will run in parallel on edanemory architectures.

In this chapter, we propose extensions to OpenMP to dealthétineterogeneity
of chip multiprocessors. The heterogeneity is an importeature for most chip
multiprocessors in the embedded space. Typical SOCs iaatgpdifferent types of
processors into one die, i.e. RISC, or DSP-like procesdeos.parallel chips like
Software Scalable System on Chip (3S&Gjn Cradle, the parallelism is divided
among processors; each processor may have differentdtistiiset. By extending
OpenMP, we can deploy different types of processors forliganarogramming.
We also focus on extending OpenMP for optimization. Our enpéntation of
OpenMP compiler shows that OpenMP extensions can be usexpfionization of
parallel programs on chip multiprocessors architecturee durrent version of our
compiler accepts standard OpenMP programs and our extengidOpenMP. Our
performance evaluation shows scalable speedup usingetiffeypes of processors
and performance improvement through individual optim@aextension on 3SoC.

The rest of this chapter is organized into eight sectionsti@e 1.2 introduces
the 3SoC architecture. In Section 1.3, we discuss our cenfpdnslator for chip
multiprocessor. Section 1.4 describes our extensions enfp to deal with the
heterogeneity. Optimization techniques to improve Opermdformance on CMP
are discussed in Section 1.5. Section 1.6 discusses theagjgnplementation of this
compiler. Performance evaluation and results are show8ddgtion 1.7. Finally, we
summarize our conclusion in Section 1.8.

1.2 3SOC ARCHITECTURE OVERVIEW

Cradle’sSoftware Scalable System on Chip (3SafChitecture consists of dozens of
high performance RISC-like and digital signal processara single chip with fully
software programmable and dedicated input-output proces§ he processors are
organized into small groups, with eight digital signal grssors and four RISC-like
processors each sharing a block of local data and controlamemwith all groups
having access to global information via a unique on-chipthesGlobal Bus. It is
because data, signal, and I/O processors are all availalbdesingle chip, and that
the chip is thereby capable of implementing entire systedhsThe block diagram
is shown as Fig. 1.1.

The 3SoC is a shared memory MIMD (multiple instruction/ripét data) com-
puter that uses a single 32-bit address space for all registe memory elements.
Each register and memory element in the 3SoC has a uniquesadaind is uniquely
addressable.

3SOC ARCHITECTURE OVERVIEW 3

-
ROG JO H:ROG 1o H:Roeuo H:ROG 1o }? ggIDSJlesgrﬂGPgoLgesgnr
oy -—‘
@| [t e M| |8
e sls|sls|--~——--—-——- glsls|s| [E
FlrIF|F FlrIF(FL
, [EoRY WEMORY | g e 1| sharea
=i Global Bus I - Prog Shared Data
+ 8 hem D;:,: Mem
4 h 4 o
g | [MEMGRY WEMGRT o
- =R M [0 | pa
i 355555___355:3%;
GG FIPIFIF| &
41 o
o
L] FROG 110 |H{PROG i
- FEm el
[NVMEM [DRAM]
Fig. 1.1 3SoC Block Diagram.
1.2.1 Quads

The Quad is the primary unit of replication for 3SoC. A 3SoGpchas one or
more Quads, with each Quad consisting of four PEs, eight D&ftsone Memory
Transfer Engine (MTE) with four Memory Transfer Contro#¢MTCs). In addition,

PEs share 32KB of instruction cache and Quads share 64KBafilemory, 32K of

which can be optionally configured as cache. Thirty-two g@moge registers within
each quad provide the synchronization mechanism betwesmegsors. Fig. 1.2
shows a Quad block diagram. Note that the Media Stream FocéSISP) is a

logical unit consisting of one PE and two DSEs.

e Processing Element The PE is a 32-bit processor with 16-bit instructions and
thirty-two 32-bit registers. The PE has a RISC-like instiat set consisting
of both integer and IEEE 754 floating point instructions. Tiwructions have
a variety of addressing modes for efficient use of memory. HRas rated at
approximately 90 MIPS.

¢ Digital Signal Engine: The DSE is a 32-bit processor with 128 registers and
local program memory of 512 20-bit instructions optimizexdigh-speed fixed
and floating point processing. It uses MTCs in the backgrdarnidinsfer data
between the DRAM and the local memory. The DSE is the primarypute
engine and is rated at approximately 350 MIPS for integeraatithg-point
performance.

1.2.2 Communication and Synchronization

e Communication : Each Quad has two 64-bit local buses: an instruction
bus and a data bus. The instruction bus connects the PEs aidtdihe

4 OPENMP FOR CHIP MULTIPROCESSORS

1 I

]]

1 I

1 1

T T

) Il | |

1 I

] I DATA
ose| |ose| 0 |pse| [ose|l |osE| |psE osE| |psE MER

[} i CACHE

1 |
) (i) |)) o) () ()

1

-

Fig. 1.2 Quad Block diagram.

FROSRAM Y ||\ rerFace
IFIE FIE MEM LOBAL BUS
CACHE 0
[T I | ‘

instruction cache. The data bus connects the PEs, DSEs, @&ddthe local
data memory. Both buses consist of a 32-bit address busha $4ite data bus,
and a 64-bit read data bus. This corresponds to a sustaimelvizih of 2.8

Gbytes/s per bus. The MTE is a multithreaded DMA engine witirMTCs.

An MTC moves a block of data from a source address to a deistinatidress.
The MTE is a modified version of the DSE with four program ceus{instead
of one) as well as 128 registers and 2K of instruction memdMf.Cs also
have special functional units for BitBLT, Reed Solomon, &RIC operations.

e Synchronization: Each Quad has 32 globally accessible semaphore registers

that are allocated either statically or dynamically. Thmaphore registers
associated with a PE, when set, can also generate intetouthts PE.

1.2.3 Software Architecture and Tools

The 3SoC chip can be programmed using standard ANSI C orlkeGdisembly lan-
guage ("CLASM") or a combination thereof. The chip is supghvith GNU-based
optimizing C-compilers, assemblers, linkers, debuggarénctional and perfor-
mance accurate simulator, and advanced code profilers afmtrpance analysis
tools. Please refer to 3SoC programmer’s guide [4].

1.3 THE OPENMP COMPILER/TRANSLATOR

There are a number of OpenMP implementations for C and FORTRA SMP

machines today. One of the approaches is to translate a Capnogith OpenMP
directives to a C program with Pthreads [5]. Design of pdet&bpenMP compiler
and translations of OpenMP directives have been studie®] [,,10]. Our OpenMP
prototype compiler consists of three phases as descritird following subsections.

1.3.1 Data Distribution

In OpenMP, there are several clauses to define data pritiatizawo major groups
of variables exist: shared and private data. Private datsists of variables that are

THE OPENMP COMPILER/TRANSLATOR 5

accessible by a single thread or processor that doesn’taerthunication, such as
variables defined in "PRIVATE" and "THREADPRIVATE" clausBome private data
needs initialization or combination before or after palationstructs, like "FIRST-

PRIVATE" and "REDUCTION". Access to these data should behyanized among

different processors.

1.3.2 Computation Division

The computation needs to be split among different process@he only way to
represent parallelism in OpenMP is by means of PARALLEL dixe as shown
below:

#pragma omp parallel
{
/* code to be executed in parallel */

}

In the 3SoC architecture, a humber of processors can be diewea humber
of "threads" compared to normal shared memory architestuEach processor or
"thread" has its own private memory stack. At the same tinagherocessor is
accessing the same blocks of shared local memory within thed@r SDRAM
outside Quad. In a typical 3SoC program, PEO will initiatel atart several other
processors like PEs or DSEs, so that PEO acts as the "masteattand all other
processors act as "child" threads. Then PEO will transfearpaters and allocate
data among different processors. It will also load the MTEiuare and enable all
MTCs. Through data allocation PEO tells each processordowdgg specific regions
in parallel. PEO will also execute the region itself as thestmathread of the team.
At the end of a parallel region, PEO will wait for all other pessors to finish and
collect required data from each processor, similar to a temathread.

The common translation method for parallel regions usesemtasking scheme.
Execution of the program starts with the master thread, kvHiring initialization
creates a number of spinner threads that sleep until thepeded. The actual
task is defined in other threads that are waiting to be cafethé spinner. When a
parallel construct is encountered, the master thread wakéee spinner and informs
it the parallel code section to be executed and the envirahinebe setup for this
execution. The spinner then calls the task thread to swatehspecific code section
and execute.

For a chip multiprocessor environment, each "thread" @nitrie processor. The
number of "threads" is the actual processor number instéadteam of virtual
threads, which can be created at the discretion of the usemanmal shared memory
model. It is not practical to create two threads - one for 8ipig and another for
actual execution. Moreover, each processor has its owmrepsotg power and doesn’t
wait for resources from other processors. In our approaehsimply assign each
parallel region in the program with a unique identifyingdtion. The code inside the
parallel region is moved from its original place and repthbg a function statement,

6 OPENMP FOR CHIP MULTIPROCESSORS

void function1() {

my_quadid=_QUAD_INDEX;
my_peid=(my_quadid*4)+_PE_INDEX;
/lidentify each processor ID

int main() { B
I1.. if(my_peid==3)
#pragma omp parallel {
{ . printf(“hello world!\n”);
#pragma omp single)
. /lonly one processor execute this, not necessary master
printf(“hello world!\n"); processor
. <communication and synchronization for this parallel
/lonly one thread execute this region>
}
II.. } !
}
int main() {

if(my_peid==0)
{

<allocate and initialize number of processors>
<start all other processors>

/I PEOQ initialize and start all other processors
functionl();
/I each processor will run parallel region,

/I PEO will also execute this function

<end all processors>

Fig. 1.3 Translation of an OpenMP program (left) to a 3SoC parallel region (right)

where its associated region calls this function and praressgith correct IDs execute
selected statements in parallel (See Fig. 1.3).

1.3.3 Communication Generation

In OpenMP specifications, several communications and sgnctations need to
be guaranteed and inserted into the parallel regions aiogrbints. For example,
only one processor is allowed access to the global "REDUGITI@riable at the
end of the parallel construct at a time before an implicitriear Hardware syn-
chronization features like semaphores in 3SoC are the mygiriant features that
distinguish normal multiprocessor chips from "parallefiips. On 3SoC platform,
the semaphore library (Semlib) has procedures for allogatiobal semaphores and
Quad semaphores and for locking and unlocking. Reading aeone register,
which also sets the register, is an atomic operation thatatdre interrupted. Sample
barrier code is shown below:

semaphore_lock(Seml.p);

done_pe++; //global shared variable
semaphore_unlock(Seml.p);
while(done_pe<(PES)); //PES is total

EXTENSIONS TO OPENMP FOR DSES 7

void main() {
|nt dse_id[NUM_DSE];
dse_lib_init(&LocalState); /DSE library initialization
pe_in_io_quad_check();
<Data allocation>
_MTE_load_default_mte_code(0x3E); // load the MTE firmware
for(i = 0; i < NUM_DSE; i++) {
dse_id[i] = dse_alloc(0); // allocate a dse in this quad

if(dse_id[i] < 0) {
/I no dse free in our quad, allocate from any quad
dse_id[i] = dse_alloc_any_quad(0);
if(dse_id[i] < 0) {
printf("Dse could not be allocated !");

}

/'load the instructions on the allocated DSEs
dse_instruction_load(dse_id[i], (char *)&dse_function, (char
*)&dse_function_complete, 0);

}
DSE_loadregisters(dse_id); // Load the Dpdm's on the allocated DSEs

for(i =0; i < NUM_DSE; i++) {
/I Start the DSEs from the Oth instruction
dse_start(dse_id[i], 0);

}

for(i =0; i < NUM_DSE; i++) {
/I Wait for the Dse's to complete, freesthe DES
dse_wait(dse_id[i]);

}

dse_lib_terminate(); /I DSE library call to terminate

Fig. 1.4 Sample code for controlling DSEs.

number of PEs
_pe_delay(1);

1.4 EXTENSIONS TO OPENMP FOR DSES

Programming for PEs is similar to conventional parallelgpeanming. The programs
start with one PE (PEO) that is responsible for the envirarreetup and initialization

of all other PEs. Afterwards PEs are involved in executioselected statements
within each parallel region by its associated processorRBs are the primary
processing units. Our implementation of OpenMP compileidd¢accept standard C
programs with OpenMP directives and successfully conved parallel programs

for PEs. The heterogeneity is based on DSE processors.

8 OPENMP FOR CHIP MULTIPROCESSORS

1.4.1 Controlling the DSEs

The controlling PE for a given DSE has to load the DSE codetim® SE instruction
memory. Thereafter, the PE initializes the DSE DPDMs with desired variables
and starts the DSE. The PE then either waits for the DSE tdfibispolling, or can
continue its work and get interrupted when the DSE finistetaitk. Several DSE
library calls are invoked. Sample program is shown in Fid. 1.

First, the PE initializes the DSE library calls via d#e init(&LocalState). Then
the PE does Quad I/O check and data allocation such as agsiigitial value for
the matrix. In the next for-loop, the PE allocates a numbeDSEs and loads
the DSE code into the DSE instruction memory by _d@ssructionload(). This is
done by allocating within one Quad first, d&}i]= dse alloc(0), if failed, it will
load from other Quads. Afterwards, the PE loads the DPDMt® dne allocated
DSEs, DSHoadregisters(dsal). After all initializations are done, the PE starts
all DSEs and tells DSEs to execute from the Oth instructiéa,tive function call
dsestart(dseid[i], 0). The PE then waits for the DSEs to finish and autooaly
releases all DSEs, by dseait(dseid[i]). When all tasks finish, the DSE terminate
library call dselib_terminate() is invoked.

1.4.2 Extensions for DSEs

The main parallel region is defined#gzragma omp parallel USIN®SE (parameters)
When the OpenMP compiler encounters this parallel regiamijliswitch to the cor-
responding DSE portion. The four parameters declared hrerenamber of DSEs,
number of Registers, starting DPDM number, and data registay, such as (8, 6, O,
dsemem). For OpenMP compiler, the code generation is guidedth&yparameters
defined in parallel USIN@SE construct. The compiler will generate environment
setup like dsdib _init, dsealloc(0), DSE startup and wait call dséart(), dsewait(),
and termination library call dskb_terminate(). So users are not required to do any
explicit DSE controls, like startup DSE ds#art(). Fig. 1.5.

The benefit of using extensions is that it helps to abstragh-tével parallel
programs, and allows the compiler to insert initializattmde and data environment
setup, if required. This hides DSE implementation detadsifthe programmer and
greatly improves the code efficiency for parallel applicas.

1.5 OPTIMIZATION FOR OPENMP

In a chip multiprocessor environment, several unique hardeatures are specially
designed to streamline the data transfer, memory allatstietc. Such features
are important to improve the performance for parallel paogming on CMP. Some
optimizations use a thread library for OpenMP which prosidetime optimization
of parallel regions [11]. In this section, we present soménupation techniques
that can be deployed to fully utilize advanced features afG3Shus improving the
performance for OpenMP.

OPTIMIZATION FOR OPENMP 9

int main() {
/lother OpenMP parallel region
#pragma omp parallel
{

}

//OpenMP parallel region for number of DSEs, with parameters
#pragma omp parallel USING_DSE(8,6,0,dse_mem)
{

#pragma omp DSE_DATA_ALLOC
{

<initialization functions>

}

#pragma omp DSE_LOADCOMREG

{
<define data registers to be transferred to DSE>

}
#pragmaomp DSE_L OADDIFFREG(i)

{
<define DSE data registers with different value>
}

#pragmaomp DSE_OTHER_FUNC

<other user defined functions>

}

/Imain program loaded and started by PEO
#pragmaomp DSE_MAIN

<order of executing user defined functions or other code>

}

Fig. 1.5 Extensions to OpenMP for DSEs.

1.5.1 Using MTE Transfer Engine

Memory allocation is critical to the performance of parajeograms on SOCs.
Given the availability of local memory, programs will achgebetter performance
in local memory than in SDRAM. On-chip memory is of limiteasifor SOCs or
other equivalent DSP processors. Data locality is not gueesl. One approach
is to allocate data in DRAM first, then move data from DRAM tcdbmemory at
run-time. Thus, all the computation is done in on-chip mgmostead of the slow
SDRAM. In 3SoC, developer can invoke one PE to move data lestviee local
memory and DRAM at run-time.

3SoC also provides a better solution for data transfer uging transfer engine
(detailed in Sec 1.2.2). Note that the MTE processor runsmalfel with all other
processors. It transfers data between local data memorgBRAM in the back-
ground. We use extensions to OpenMP to incorporate MTE feaesigine. The
OpenMP directives are:

#pragma omp MTE_INIT(buffer size, data structure, data slice)

10 OPENMP FOR CHIP MULTIPROCESSORS

#pragma omp MTE_MOVE(count, direction)

MTE_INIT initializes a local buffer for data structure with sgiéed buffer size.
MTE_MOVE will perform actual data movement by MTE engine. Dat@squaling
count*slice will be moved with respect to the direction (frdocal->DRAM or
DRAM->local). Within a parallel region, a developer can tohdata movement
between local memory and SDRAM before or after the compmratiThe MTE
firmware needs to be loaded and initiated by PEO at the beyjrofithe program.
A number of MTE library calls will be generated and insertgdthe compiler
automatically. The results show significant performanaedpp using the MTE to
do data transfer, especially when the size of target datetate is large. Performance
evaluation of using the MTE versus using the PE to do datatearis given in Section
1.7.

1.5.2 Double Buffer and Data Pre-fetching

Data pre-fetching is a popular technique to improve the nrgraocess latencies.
Besides using the MTE to do data transfer in 3SoC, we can gigly a data pre-
fetching approach through Double Buffering.

For non-Double-Buffering, as discussed in section 1.5elagsume data is allo-
cated in SDRAM first. Before the PE starts to perform compaorat it invokes the
MTE engine to populate or move the data from DRAM to local memuVhen the
MTE is done, it will interrupt the PE informing it that datarisady and computa-
tion can be started. The interrupts used are semaphoreupter The PE locks a
semaphore before calling on the MTE to move data. Once theild@ne, it unlocks
the semaphore thus causing an interrupt. To reduce the ryeagoess latencies,
double buffering is used to improve the performance. Instdaising one buffer in
the previous example, it uses two local buffers which workoand-robin manner,
each time one buffer is being computed, data in another bigfieeing transferred,
and vice versa.

Fig. 1.6 shows how to perform matrix multiplication usingutbte buffering. We
are multiplying matrices A and B, and the result is kept innma€. Matrix B is in
the local memory, while matrices A and C are both in DRAM. Heereinstead of
one local buffer per matrix, we allocate two buffers in thedbmemory for both
matrices A and C. The PE calls the MTE to populate the firstllba#ier of matrix
A. The PE then calls the MTE to populate the second local boffenatrix A, while
the MTE is moving data, the PE starts to perform computatistwing the result
in the first local buffer of matrix C. Sometime during the cartggions, the PE will
be interrupted by the MTE. When the PE finishes the first rountbafputation, it
can start on the second local buffer of matrix A, and storeréisailt in the second
local buffer of matrix C. As a result, at any given time, white PE is performing
computations, the MTE will be moving data from the DRAM intdoaal buffer of
matrix A and also will be moving the completed results fromeal buffer of matrix
C into the DRAM.

OPTIMIZATION FOR OPENMP 11

Current I'P Buf

IP Buffer [2]

Next I'P Buf

Prev. OVF

O/P Buffer [2]
SL: Local

Fig. 1.6 Extensions to OpenMP for DSEs.

To implement Double Buffering to improve the performance @penMP, we
provide extensions to OpenMP. Users are required to peréapticit control of data
movement between local memory and SDRAM. The directives are

#pragma omp DB_INIT(bufferl size, buffer2 size, data structurel,
data structure2, data slicel, data slice2)

#pragma omp

DB_MOVE (buffer ID1, directionl, buffer ID2, direction2)

DB_INIT initializes two buffers for each data structure withesjfied size, to-
tally four buffers. DBMOVE at certain point controls the actual data movement
between SDRAM and local memory. Each time IMOVE will move one slice
for both data structurel and structure2, with specifiecctiva (from local->DRAM
or DRAM->local) and buffer ID(1 or 2) for each data structur@oncurrently, PE
will do computation against another buffer of each struetufhe OpenMP Com-
piler automatically sets up the environment, initializes MTE, allocates necessary
buffers and inserts the required library calls. With theptadlthese extensions, users
can write OpenMP parallel programs which control data mamndynamically at
run-time.

1.5.3 Data Privatization and Others

OpenMP provides few features for managing data localitye fiethod provided for
enforcing locality in OpenMP is to use the PRIVATE or THREARIRATE clause.
However, systematically applied privatization requiresd programming practices.
Some researchers have proposed several approaches tdepoptimization with
modest programming effort, including the removal of bagiéhat separate two

12 OPENMP FOR CHIP MULTIPROCESSORS

{
for(..) {
}

/lcritical session

{
for(..) {
}

semaphore_lock(Sem1.p);
#pragma omp parallel for reduction(+:sum) sum=sum-+sum_pri; /lcombine barrier ssmaphore and
for (i=0; i < n; i++) semaphore_unlock(SemL.p); ||//critical session semaphore together
sum = sum + (a[i] * bfi]); semaphore_lock(Sem1.p);

IIbarrier = i
sum=sum-+sum_pri;
semaphore_lock(Sem2.p); done_pel++; P
sum=sum-+sum_pri; semaphore_unlock(Sem1.p);
OpenMP code done pel++, Whilelep()don@ek(lgES)): P
semaphore_unlock(Sem2.p); _pe delay(1);
while(done_pe2<(PES)); y T '
_pe_delay(1);
}

After Optimization

Before Optimization

Fig. 1.7 Optimization (Semaphore Elimination).

consecutive parallel loops [12], improving cache reuse bgams of privatization and
other improvement [13, 14].

In order to improve the performance of OpenMP on 3SoC, weyaihise op-
timization techniques. For the time being, not all techeiuliscussed here are
available in our first version compiler.

For barrier elimination, it may be possible to remove thaibaiseparating two
consecutive loops within a parallel region. Barriers regai lot of communication
and synchronization such that this optimization can gyeéaiprove the performance.
For data privatization, shared data with read-only aceassrtain program sections
can be made "PRIVATE" and treated as "FIRSTPRIVATE" which bapy-in value
at the beginning of parallel regions. For the 3SoC architegtall synchronization
is carried out by means of hardware semaphores. It is helpfabmbine these
semaphores together when encountered with a consecutierlaad critical section,
thus reducing the overall synchronization. For exampleéhatend of the parallel
region, the "REDUCTION" variable needs to be synchronizedimodified by each
thread to reflect the changes, which can be combined with phditrbarrier at the
end of parallel region, as illustrated in Fig. 1.7.

1.6 IMPLEMENTATION

In this section, we discuss our implementation of the OpebtRpiler/translator for
3SoC. However, this chapter is not focused on implememtakdails. To implement
an OpenMP compiler for 3SOC, there are four major steps [6].

e Parallel regions: Each parallel region in the OpenMP program will be as-
signed a unique identifying function number. The code iadite parallel
region is moved from its original place into a new functiomtaxt. The par-
allel construct code will be replaced by code of PEQ’s aliimgpmultiple PEs

PERFORMANCE EVALUATION 13

or DSEs, setting up environment, starting all process@sigaing workload
to each processor, and waiting for all other processors ighfin

e Data range : Through analysis of all the data attributes in the OpenMP
data environment clause, i.e., "SHARED", "PRIVATE", "FIRPRIVATE",
"THREADPRIVATE", "REDUCTION", compiler determines the @arange
for separate functions and assign memory allocation li&.", or "_SD" in
3SOC. Related global variable replication such as "REDWIN1 is also
declared and implemented.

e Work sharing constructs : These are the most important constructs for
OpenMP, referred as for-loop directive, sections directimnd single direc-
tive. Based on the number of processors declared at therbegiof the 3SOC
program, each processor will be assigned its portion of wi@stnguished by
processor ID. During run-time, each processor will exedst@wn slice of
work within designated functions. For example, for the tiggs" construct,
each sub-section defined #fpragma omp sectiowill be assigned a distinct
processor ID, and run in parallel by different processors.

e Synchronization : There are a number of explicit or implicit synchroniza-
tion points for OpenMP constructs, i.e., critical, or phalatonstruct. Corre-
spondingly, these constructs are treated by allocatingnabeu of hardware
semaphores in 3SOC. Allocation is achieved statically oradyically.

Our current version of OpenMP compiler can take standarch®feprograms.
Provided with extensions to OpenMP, users can also writenpecode to utilize
advanced chip multiprocessor features, like differentpssors, MTE or Double
Buffering on 3SoC.

1.7 PERFORMANCE EVALUATION

Our performance evaluation is based on 3SoC architecheexecution environment
is the 3SoC cycle accurate simulator, Inspector (versi@082) and the 3SoC
processor. Although we have verified the programs on thenazdware, we present
results on the simulator as it provides detailed profilifgimation.

To evaluate our OpenMP compiler for 3SoC, we take parallgliegtions written
in OpenMP and compare the performance on multiple processwder different
optimization techniques. The first parallel applicatioMiatrix Multiplication. By
applying different optimizations at compilation, we compdhe performance of
parallel application among: no optimization, with datadlity (matrices in local
memory), using the MTE for data transfer, using the PE foa di@nsfer and double
buffering separately. The second application is LU decasitjpm that follows the
same approach. We also show the compiler overhead by camyhe result with
hand-written code in 3SoC.

Fig. 1.8 shows the results of matrix multiplication usingltimle PEs. The
speedup is against sequential code running on single moicésne PE). Fig. 1.9
is the result for LU decomposition using multiple PEs agaame PE. We use four

14 OPENMP FOR CHIP MULTIPROCESSORS

—+— Local Memory
—=— SDRAM
4 = —

/ —i— Opt using MTE

Opt using PE

o

32

L

3 3

t% —— handwritten
2

4 8 16 32 48 64

Size of Matrix

Fig. 1.8 Matrix Multiplication using 4 PEs.

4 —+—Local Memory
—=—SDRAM
3 /A"’. ——Opt using MTE

Opt using PE
—+—handwritten

0 T T T T T
4 8 16 2 48 11
Size of Matrix

Fig. 1.9 LU Decomposition using 4 PEs.

PEs within one Quad for both cases. By analysis of both chassconclude the
following:

e Local memory vs SDRAM : As expected, memory access latencies have
affected the performance significantly. When the size of thia dtructure
(matrix size) increases, speedup by allocation of data ¢allonemory is
obvious. For 64*64 matrix LU decomposition, the speedup.i®4n local
memory vs 3.33 in SDRAM.

e Using the MTE vs SDRAM : As discussed in Section 5, we can deploy the
MTE data transfer engine to move data from SDRAM to local menad
run-time, or we can leave the data in SDRAM only and neversfeared to
local during execution. Due to the limited size of the locamory it's not
practical to put all data within the local memory. For smadeésnatrices below

PERFORMANCE EVALUATION 15

35

30

25

oVisthout DB
20 H with DB

Spesdup

15

10

0 '_-’_.

1 2 4 8 16 32
Number of DSEs

Fig. 1.10 Matrix Multiplication using DSEs.

32*32, the MTE transfer has no benefit, in fact, it downgratiegperformance
in both examples. The reason is that the MTE environmenpsatd library
calls need extra cycles. For larger-size matrices, it skepegdup compared
to data in SDRAM only. For 64*64 matrix multiplication, thpesedup is 4.7
vs 3.9. Actually 64*64 using MTE engine is only a 3.2% degradmpared
to storing data entirely in the local memory. Therefore, mgwata using the
MTE will greatly improve performance for large data.

e Using the MTE vs using the PE: We observed scalable speedup by using the
MTE over the PE to move data. The extra cycles used in MTE mew¢itio
not grow much as the matrix size increases. For large datametments, the
MTE will achieve greater performance over the PE.

e Using compiler generated vs hand-written code The overhead of using the
OpenMP compiler is addressed here. Since the compiler dbesiallocation
to distribute computation, combined with extra code addeithé program, it
is not as good as manual parallel programming. In additiomesalgorithms
in parallel programming cannot be represented in OpenME. dlerhead
for OpenMP compiler is application dependent. Here we ooiypgare the
overhead of the same algorithm deployed by both the OpenMipiter and
handwritten code. It shows overhead is within 5% for botmepias.

Fig. 1.10 shows the result of matrix multiplication usingltiple DSEs. Double
Buffering techniques are used here. The matrix size is 128*1

e Scalable speedup by using a number of DSEs4 DSEs achieve 3.9 speedup
over 1 DSE for the same program without double buffering, 8AdDSEs
obtain 24.5 speedup over 1 DSE. It shows that 3SoC architeidisuitable
for large intensive computation on multiple processorsiwitone chip and
performance is scalable.

e Double Buffering : Double buffering shows great performance improvement,
especially for smaller numbers of DSEs. For 1 DSE, the speé&i®.8 by

16 OPENMP FOR CHIP MULTIPROCESSORS

100000

0000

0000

0000

O 8DSEs
g somo

E, 50000 B 1DSEs
40000
30000
20000

n N i
64 256 1024
Data Point (N)

Fig. 1.11 Parallelized FFT using DSEs.

using DB over 1 DSE without DB, almost equivalent to using ®®Es. We
expect the speedups with larger number of DSEs to be in the sange with
larger matrices.

In Fig. 1.11, we implemented parallelized FFT using muitiplISEs. For most
applications computation time plays an important role i tise of FFT algorithm.
The computation time can be reduced using parallelism in FF3SoC, employing
multiple DSEs. Fig. 1.11 shows the scalable scheme of FRigwdifferent number
of DSEs. From the computation cycles taken, the time for agatwpn of 1024
complex points using 8 DSEs is approximately 240 microsdsdwith the current
3SoC clock speed of 200Mhz), which is comparable to other prBBessors. For 64
fixed size data points, using 8 DSEs achieves 1.95 speedu@ @8Es. It is clear
from Fig. 1.11 that FFT implementation in OpenMP is scalable

1.8 CONCLUSIONS

In this paper, we propose an OpenMP compiler for chip mutipssors (3SoC as
an example), especially targeting at extending OpenMRtiies to cope with the

heterogeneity of CMPs. In view of this emerging parallelhitecture, advanced
architecture feature is important. By extending OpenMPGiMPs, we provide

several optimization techniques. The OpenMP compilersitie implementation
details from the programmer, thus improving the overallecefficiency and ease of
parallel programming on CMPs.

17

REFERENCES

1. OpenMP Architecture Review Board, OpenMP C and C++ Apfitim1 Program
Interface, Version 2.(ttp://www.openmp.orgVarch 2002.

2. R.Chandra, L.Dagum, D.kohr, D.Maydan, J.McDonald, aridd®on. Parallel
Programming in OpenMP. Morgan Kaufmann Publishers, 2001.

3. 3S0C Documentation—3SoC 2003 Hardware Architecturggl€Technologies,
Inc. Mar 2003.

4. 3SoC Programmer’s Guide, Cradle Technologies, http,//www.cradle.com
Mar 2002.

5. Christian Brunschen, and Mats Brorsson, OdinMP/CCp - Agtibe implemen-
tation of OpenMP for C, luropean Workshop on OpenMBepetember 1999.

6. Feng Liu, Vipin Chaudhary, A practical OpenMP compilar&ystem on Chips,
Workshop on OpenMP Applications and Togages 54-68, June 2003.

7. Dan Quinlan, Markus Schordan, Qing Yiand Bronis R. De. A G¥frastructure
for automatic Introduction and Translation of OpenMP Diess, workshop on
OpenMP Applications and Togldun 2003.

8. Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, astii¥dranaka. Design
of OpenMP compiler for an SMP cluster. European Workshop on OpenMP
September 1999.

9. Seung Jai Min, Seon Wook Kim, Michael Voss, Sang lk Lee, Radolf Eigh-
mann. Portable compilers for OpenMP.Workshop on OpenMP Applications
and Tools 2001.

10. Xinmin Tian, Aart Bik, Milind Girkar Paul Grey, Hideki &a, and Ernesto Su.
Intel OpenMP C++/Fortran compiler for hyper-threadinghtealogy: Imple-
mentation and performancitel Technology Journab(1):36-46, 2002.

11. Mihai Burcea and Michael J. Voss A Runtime Optimizatigat8m for OpenMP.
Workshop on OpenMP Applications and Todlisne 2003.

12. C. Tseng, Compiler optimization for eliminating barrégnchronizationpPro-
ceedings of the 5th ACM Symposium on Principles and Practicearallel
Programming July 1995.

13. S. Satoh, K. Kusano, and M. Sato. Compiler Optimizatiechhiques for
OpenMP Program&nd European Workshop on OpenM#p 14-15, 2000.

14. Arvind Krishnamurthy and Katherine A. Yelick. Optinmgj parallel programs
with explicit synchronization. 'SIGPLAN Conference on Programming Lan-
guage Design and Implementatigpages 196-204, 1995.

