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Abstract

This paper proposes extensions of two previous schemes as well as a novel scheme
called the sniffing strategy, to recognize m-ary R-subcubes (of base-m and dimension R,
henceforth called the subcube) in a k-ary N-cube (of base-k and dimension N, hereby
called the hypercube) where m is less than or equal to k. Note that the dimension of the
subcube, R, is less than or equal to the dimension of the hypercube, N. The important
aspect of the node configuration in a hypercube is that each contiguous pair of nodes
differ from the other in one digit only and the difference is either unity (1) or (k-1)
for that particular digit. A set of codes having excellent properties needed for node
utilization is the Reflected k-ary Gray Codes where each succeeding codeword differs
from its predecessor in one digit by unity or, in the cyclic case, by k-1. This paper
utilizes a new algorithm to recursively generate these Gray codes and identify a subcube
from it. We initially address the problem of subcube allocation in two ways. First the
Buddy strategy and later the Gray Code (GC) strategy are considered and extended
to the k-ary hypercube from the trivial case of the binary hypercube. It is proved, for
the specific case of all subcubes requested being of base k, that the number of subcubes
recognized by the Extended GC strategy is k times greater than that of the Extended
Buddy Strategy. A minimum (2) and maximum (k) bound on the improvement in these
two strategies have been found. It has been shown that using either of these strategies,
complete subcube recognition cannot be accomplished, and also, more importantly,
they realize subcubes which actually do not exist in the hypercube. Further, it is
shown for base-2 subcubes that the Extended Buddy and Extended GC strategies fail



in the sense that they recognize non-realizable subcubes. Our sniffing strategy on
the other hand is foolproof in that each subcube recognized by it actually exists and so
can be allocated to the job in hand. This paper also conjectures that for any hypercube

of base k, k > 2 it is impossible to recognize a subcube of base, m such that 2 < m < k.

I. INTRODUCTION

Considerable activity has recently been generated in the study of hypercube topology in
interconnecting multiple processors because it has become one of the most popular archi-
tectures for parallel processing. Popular machines such as the Intel iPSC-2 and Ametek
2010 are examples of k-ary hypercube [8], [1]. The hypercube has many desirable properties
like low degree and diameter, strong heirarchy, easy construction and structural regularity,
etc.[5], [2]. This paper is concerned with the general form of binary hypercubes called the

k-ary hypercube which differs in that its base is not 2 but some other integer k.

The reason of studying k-ary hypercube topology is to determine some additional aspects
of the binary hypercubes which have not yet come to light. A hypercube is a network of
computers in which the nodes form the processors and the edges constitute the communica-
tion channel. A k-ary N-cube is a N-dimensional, base-k hypercube defined as an undirected
graph, G=(V.E) with V =0,1,... kN —1andVi,j € V, (i,j) € E iff the k-ary represen-
tation of i and j differ in a single digit by unity or k-1. More formally, we define a hypercube

in the following manner. Let
< 7Z>={0,1,2,3,...,Z — 1} for some integer Z > 1

A n-node base-k hypercube of dimension N called Hy y for short is a graph G = (V| E)
where, V = {z|z = ayey_1...T2x1 where v; €< k >, i =1to N} and E = {(z,y)|z,y €
V, v = anyxn_1... 0271, Y = YNYN_1---Y2y1 and there exists j, 1 < 7 < k, such that
y; = (z; +1) mod k and z; = y; for i # j }. A k-ary hypercube represented by Hj y having
base-k and N dimension consists of n=k”" nodes (processors) and each processor is uniquely
addressed by a base-k integer. The address scheme is such that the difference in the adjacent

nodes is in a single digit only and differs by unity or k-1. The addresses lie between 0 and



kN — 1 and the representation is in N digits (dimension).

In such a hypercube any incoming job may require a subcube to process it and so many
such jobs can be executed in parallel using arbitrary dimensions and bases for the subcube.
Thus, the problem of subcube allocation assumes importance so as to enable the most effi-
cient distribution of jobs. The major focus of this paper is in the subcube recognition ability
of different approaches and a comparison of the same and to the authors’ knowledge, this is
the first such attempt for k-ary N-cubes. A subcube is defined as a hypercube having base m
and dimension R both of which are less than or equal to the base-k and dimension-N of the k-
ary hypercube, respectively. A subcube denoted by S,, g, of the above mentioned hypercube,
Hy N, is a contiguous collection of m® processors which forms a base-m hypercube. Note
that the address scheme for every subcube follows the Hj x addresses and m < kK, R < N.
Each subcube S, r can be uniquely addressed by a combination of strings from the set
{#p,0,1,2,...,m—1}, p € < k >, and the number of %,’s in the address equals the dimension
R of S, r. A %, denotes any string from the set < k >, where <k >={0,1,2,...,k —1}.
Also note an important fact that whereever there is a *,, the values of p, taken in order
are, (p®;0),(p®x1),...,(PDr1),...,(p Dk (m — 1)), where, B denotes addition in base
k of the hypercube and not base m, of the subcube. The address of the subcube S39 in Hy4
is of the form, say (%q 2 1x%5)3, i.e., it includes all nodes with addresses ( 0212, 0213, 0210,
1212, 1213, 1210, 2212, 2213, 2210 ). Another example is a subcube, Sy2, whose address
can be (2 *; 1 %g)s, i.e., it contains the nodes having addresses { 2112, 2113, 2212, 2213 }.
For hypercube node identification one can use simple k-ary codes or a special class of codes
called the Gray Codes. We have used the simple codes in the Extended Buddy strategy
and the Gray Codes in the Extended GC strategy. In this paper we are going to utilize a
new algorithm to generate the special class of Codes called the k-ary Reflected Gray Codes
(KRGQC). This algorithm is a part of another paper [6].

In any multi-user system there is an active request and release of subcubes depending on
whether there is an incoming request for job allocation or the job is completed. The dimen-

sion, R, of the allocated subcube depends on the minimum number of processors required for



that specific job and is numerically equal to [log,,(I)] where m is the base of the subcube
and I is the required number of processors for the job. [z| denotes the greatest integer > x.
Whether a subcube is actually allocated to that request is a different aspect altogether. It is
contingent on the fact that an exact number (m®) of a contiguous set of processors starting
from a particular address are simultaneously free or not. This set of nodes should form the
nodes of a subcube and this fact is of prime importance. Which starting address is to be

chosen depends on which strategy we are working on.

We consider two common strategies for subcube allocation in a binary hypercube and
extend them to the case of the k-ary hypercube. The first strategy is the Buddy strategy
and the second is the Gray Code strategy (GC strategy), [7], [3], [4] and their extensions to
the kary hypercube are respectively called the Extended Buddy strategy and the Extended
GC strategy. A new algorithm [6] for the generation of k-ary Gray Codes is also covered
which has been used in the Extended GC strategy. This strategy has been shown to be
much better in comparison with the Extended Buddy strategy in the following way. For
every k-ary hypercube, complete subcube recognition cannot be accomplished using only
a single Code. Thus, there is a maximum limit on the number of subcubes which can be
allocated using any particular strategy. This limit is greater in the case of the Extended
GC strategy than the Extended Buddy strategy for the case when all incoming subcubes
request only a base k. In fact, for the particular case of the binary hypercube ( k = 2 ) the
number of recognisable subcubes in the Extended GC strategy is twice the number in the
Extended Buddy Strategy [3]. We have shown that when the base of the requested subcube
is 2 then both these strategies show some serious defects and so we have come up with
another strategy called the Sniffing Strategy which is a more suitable subcube allocation

scheme for a k-ary hypercube.

II. PRELIMINARIES

The generation of Gray Codes of arbitrary base-k is the central theme of the Gray Code

strategy. So we came up with an algorithm to generate them in an efficient manner. This



algorithm is part of [6] but will be discussed briefly in this paper for completeness. We start

by stating a few definitions used for the same.

Definition 1 Hamming Distance

We have, z € y as two integers represented by m digits of some base k. The base-k hamming
distance between x € y is defined as hy(z,y) = m if there exists iy < iy < i3... < iy Such
that x;, # yi,, J lies between 1 to m and v, = yp, p € {11,792, ..., im}. In other words hy(z,y)
is the number of base-k digit positions in which x € y differ e.g., hs(1230,0321) = 4.

Definition 2 Base-k N-digit Gray Code G*(N)
Let n=k~. A base-k Gray code is an ordered sequence { GE(N), G¥(N),...,G* [ (N) } of n,

N-digit base-k integers, where GE(N) denotes the i codeword and the ordering is such that
hi(GE(N), G} (N)) =1

i.e., each succeeding element differs from its previous code word in just one (1) digit and the

difference is either (k-1) or unity (1).

Definition 3 Partial rank

Let S = {g1,92,...,9n} be a sequence of distinct integers. For 1 < i < N, the partial
rank r; of g; is defined as the rank of g; in the set {g1,92,...,gi} when the set is rearranged
in the ascending order. Thus, to get the partial rank of g;, sort all elements in S from
g1 to g; in ascending order and the index of g; in this order is the partial rank r; of g;.
For example, the partial rank, 1 of the sequence S ={ 8,1, 2} is 1, the partial rank ro of
the sequence S = {3, 1, 2 } is again 1 and similarly, the partial rank, r3 of the sequence

S=1{31,2Y}is2

Definition 4 Direction i
Let a sequence of strings have N digits. Then the rightmost (LSB) digit is called the direction
1, second to the rightmost will be called the direction 2, and so on. Consider the string

234101. The direction of the underlined digit is 3.

Definition 5 Symbol : Ad\m

Let A be a sequence of k-ary strings e.g. 301, 21 etc. of length x-1, where x > 1. Then a
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sequence of k-ary strings of length x, denoted by AY™ where d € {0,1,...,k—1} is obtained
by the following rules

1.If1<m<N-1
Inserting the digit, d into the position immediately right of the digit in the m'™ direction of
every string in A.

2. if m=N
Prefizing the digit d to every string in A .

For example Let A = 3121, N=/; then A?\? = 31221 and A?\N = 23121

Definition 6 Inverse mapping : A*

For any sequence of k-ary strings, A, let A* denote the sequence of k-ary strings obtained from
A by reversing the order of strings in A. e.g. Let A = {20,21,01} Then, A*= {01,21,20}
and, (A*)*\? = { 021,221,220}

A. ALGORITHM

Let G,, be a GC ( Gray Code ) with parameters, g;, and S = {g1,92,...,9n, } where S is
a permutation of < Zy >, and < Zy >={0,1,...,Z —1}. We also have G; =< k >=
{0,1,...,k — 1}. Then, Gy is defined recursively for 2 < m < N as the following:

1. FOR ODD BASE - k

G ={G0, (G )"V G W)

m—1>

2. FOR EVEN BASE -k

G = {G, (G ) (Gl ) 0]

m—1>

where r,, as before is the partial rank of g;. For example, let k=3 and N=3. Also let, S={
312} = {91,92,93 }- Then, r; = 1,75 = 1 and r3 = 2. We have, G; = {0, 1,2} And also
G7 = {2,1,0}.Then we get Gy = {th]\l, (G’{)l\l,G?\l} because, 7y = 1. This implies that
G» = {00, 10,20, 21, 11, 01, 02, 12, 22} and G% = {22,12,02,01, 11, 21,20, 10, 00}.Again, since
k can go upto N = 3 we have, G35 = {G5'2, (G%)"\?, G2\*} because, 7, = 2. From this we infer
that G5 = {000, 100, 200, 201, 101, 001, 002, 102, 202, 212, 112, 012, 011, 111, 211, 210, 110,

010, 020, 120, 220, 221, 121, 021, 022, 122, 222}



Lemma 1 If S is the identity permutation of < k > i.e. S =1{0,1,....,k — 1} then the gen-
erated Gray Codes are k-ary REFLECTED Gray Codes. Thus if g; = i then the generated

codes are called reflected codes.

Lemma 2 Let n=k™. Then the base-k cyclic Gray code G*(N) is a base-k Gray code such
that hy,(GE(N),GE_,(N)) =1 or k—1, which means that the last codeword in the whole code

differs from the first one by one single digit.
We now state two theorems whose proof can be found in [6],[2]
Theorem 1 If the base b of the codes is even then Gy s cyclic

Theorem 2 If the base b of the codes is odd then Gy s not cyclic.

Note: A method to generate cyclic Gray Codes for odd bases is given in [6],[2]

A set of contiguous integers is called a region and we define << a,b >>={kla <k <b ke I'}
where I is the set of positive integers. We denote Dy(q) as the general base k representa-
tion of the integer q and Gy(q) as the k-ary Gray Code representation for the integer, q. It

is obvious that the notation is in N digits, N being the dimension of the hypercube.

ITII. SUBCUBE ALLOCATION STRATEGIES

Our main emphasis in this paper is to address the problem of subcube allocation so as to
have the most efficient scheme. Processors (nodes) must be allocated to incoming tasks in a
hypercube so as to enable maximum subcube recognition and minimize system fragmentation
within the framework of the selected strategy. We start off by assuming that all incoming
request are of same base, k, of the hypercube and consider initially the buddy strategy which
has been expounded a number of times for the binary hypercube case. This strategy has
been extended to the k-ary hypercube in the form of an Extended Buddy strategy. Another
strategy called the Gray Code (GC) strategy is then explained as well as extended and ap-
plied to the problem of subcube allocation in a kary hypercube. This Extended GC strategy

has been proved to be better than the Extended Buddy Strategy in the sense that more
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number of subcubes are recognizable. The principle underlying both the strategies is the
linear search of an array called the Allocation array in which each entry corresponds to a
0 or a 1 depending on whether the node corresponding to that allocation bit is free or not.
Thus a one-to-one mapping exists between the nodes and the Allocation array. As stated
earlier, the number of nodes in a hypercube is kY which means that the size of the array
is V. To get the dimension of the subcube in such a case ( of same base, k ) the only

parameter required is the dimension, R of the subcube.

In the next section we prove that both these strategies fail for a subcube request of base
2. We show that the Extended GC and Extended Buddy strategies recognize some of those
cubes which cannot exist in that particular hypercube. This feature is absent in the
Sniffing strategy and is an important factor in proving that our scheme is better than those
two for the case when m = 2. Now, to recognize an arbitrary subcube, two parameters are
required, which are the base and dimension of the subcube. The user can be asked to provide
both the parameters or the user can give the number of nodes required for the problem and
so the algorithm may have to decide which base and dimension is to be allocated for that
problem. But, in this case the decision to find the base and dimension of the subcube, S, g,
becomes very complex and so some priority has to be predefined. At this point we state
without proof that the choice should be made so as to make the value of R, the dimension
of the subcube, as small as possible and also the value m® must be as close to the required
number of nodes. It is obvious that sometimes an exact combination of m and R cannot be
determined to exactly equal the requred number of nodes and so a heurestic approach has
to be undertaken. We have assumed in this paper that the user knows both the dimension

and the base of the required subcube to be allocated.

A.  All Subcubes of same base-k

We assume for all examples, nowonwards, that the hypercube is absolutely clear at time =
0, i.e., all allocation bits are initially reset (0). We have also assumed that the incoming

subcube allocation request is for the base k of Hy . Any incoming request is allocated to a



Figure 1: Connections for a Hs 3 hypercube. The wraparound condition is shown only for the
node 020, but such connections exist for every node. The shaded area shows one of several

3-ary 2-subcubes that can be realized. This particular subcube has the address (x92xg)2

subcube Sj g and the required parameter is either R, the dimension of the required subcube,
or the number of nodes requested from which R can be obtained with the help of the simple

equation R = [logg(I)], where I is the number of nodes requested.

Theorem 3 All subcubes of base k and dimension less than or equal to N, where k and N
are the base and the dimension of the hypercube, will always exist.

PROOF Any subcube of same base but different dimension is equivalent to removing a single
dimension from the hypercube for each unit difference in N from R, the base of the subcube,
but the topology required for the subcube would be exactly like the hypercube. For example, let
both N and R be equal to 3, i.e., consider H3 3 as shown in the Fig.1. Then, a subcube Ss - is

simply one of the planes (1 dimension less because N-R=1) and the conditions required from



the hypercube of wraparound and hamming distances between nodes are met. The subcube
Ss1 is two(2) dimensions less than the hypercube but in itself forms a subcube as shown in
fig. Extending the same logic we infer that since the essential topology of any subcube of base
k, is same as the hypercube, for all R less than or equal to the N, therefore, such a subcube
will exist. The proof can also be given by induction. Let the case be true for R=0. This
18 the obvious case as one can always find a single node. Now let us assume that it is true
for some R i.e. Sy g exists and is recognizable. Adding another dimension to this subcube,
Sk,r, implies that we add another degree to each node. Thus a symmetry would exist even
after addition of another dimension to this subcube. We know that the hypercube is strongly
hierarchial which means that if we disconnect the edges across the same dimension for all the
nodes then we obtain a hypercube of dimension R-1 and same base where R is the dimension
of the original hypercube. Thus if a hypercube of dimenision R greater than 0 exists then
it implies that a subcube of dimension R-1 also exists. Reversing the logic implies that if
any hypercube of dimension R exists then a hypercube of dimension R+1, but same base also

exists. Or if Sy g exists, then Sy gy1 also exists. Thus the proof.

For this section, wherever we take up an example, the hypercube is to be taken of the
form Hyy, i.e., of dimension and base, both equal to 4. This assumption, however, is only

for illustration and does not restrict our discussion.

1)  Extended Buddy Strategy: STEP 1

Set z :=| I; |, where | I; | is the dimension of the subcube required to accomodate the ;%

request, ;.
STEP 2

Determine the least integer z such that all allocation bits in the Allocation array in

<< zk® (z 4+ 1)k® — 1 >> are 0’s, and set these allocation bits to 1.
STEP 3

Allocate nodes with addresses Dy(i) to the request, I;, Vi € << zk®, (z+1)k* —1>>

10



Processor Relinquishment:

Once the task is complete, reset every allocation bit, i, in << zk®, (2 + 1)k* — 1 >> to 0.
The nodes with addresses Dy (i) are henceforth deallocated from the request and are

free to be used again.

To recognize Syo in the assumed hypercube Hy4, the Extended Buddy strategy would
choose the subcube with address (starting from node 0000) in this way: x=2 implies that
0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0030, 0031, 0032,
0033 would be selected which is the subcube (00 *q %q)s. After this selection let us assume
that Ss3 is desired. Now the strategy has to find the lowest z to meet its criteria. x=3
implies that searches from allocation bit number 24® = 64z. It will find z=1 and starting
from 1000 it goes on till 128-1=127, i.e., node 1333. Thus, it forms the subcube (1 %q %% )s.
But the important thing to note is that it missed out the nodes from locations 0100 to 0333
which remain as a hole in the hypercube.

Similarly the Extended GC strategy can be explained in terms of the allocation bits by
the following methodology,

2)  Extended Gray Code (GC) Strategy:  Here the utlilisation of our algorithm to
generate KRGC is used for node identification and the steps involved are:

STEP 1

Set z :=| I; |, where | I; | is the dimension of the subcube required to accomodate the ;"

request, ;.
STEP 2

Determine the least integer i such that all ( mod k™ )th allocation bits in the Allocation
array in the region << zk* ' (2 + k)k* ' — 1 >> are 0’s. Set all the allocation bits in

this region to 1.
STEP 3
Allocate nodes with addresses Gy (i mod k™) to the request [, Vi € << zk* ' (z+k)k" ' —1>>.

11



Processor Relinquishment:

Once the task is complete, reset every allocation bit in << 2k®! (2 + k)k® ! — 1 >> to

zero (0).

The reason for having the mod & term is to allow a circular search for a free subcube of
the required dimension and base. It is stated that the set of Gray Codes we have used are
the Reflected Gray Codes being, obviously, of base k.

Taking the previous example, for the Extended GC strategy. to recognize Ss, the Ex-
tended GC strategy would choose (starting from node 0000) in this way: x=2 implies that
nodes having allocation bits in the region << 0,15 >> would be chosen and the addresses
would be 0000, 0001, 0002, 0003, 0013, 0012, 0011, 0010, 0020, 0021, 0022, 0023, 0033, 0032,
0031, 0030. After this selection let us assume that S, 3 is desired. Now the strategy has to
find the lowest z to meet its criteria. x=3 implies that searches from allocation bit number
24* = 16z. It will find z=1 and starting from allocation bit No.16 it would search for the
next 64 nodes till bit # 79 i.e. the region << 16,79 >>. The addresses are 0130,0131, ...,
1331. Remember that the nodes are addressed using Gray Codes and that too the reflected
ones which have been generated using our algorithm for the generation. Refer to Fig.2 for a
set of Gray Codes for the case of H3,. We observe that after the two subcubes have been
allocated there is no ’hole’ observable as was the case for the Extended Buddy Strategy.
This phenomenon will be there for any sequence of subcube requests and the number and
lengths of holes will be much more for the case of the Extended Buddy strategy as compared
to the Extended GC strategy even though both the strategies do not show complete subcube

recognition.

Theorem 4 The number of subcubes recognized by the Fxtended GC strategy is at most k
times the number of subcubes recognizable by the Extended Buddy strategy where k is the base
of the hypercube.

PROOF The Extended GC strateqy searches for a subcube starting from the location y® !,
y 18 the base and x 1s the required dimension of the subcube. The Fxtended Buddy strategy

starts its search from the location y®. Thus, if all required bases are k i.e. if y=k then k

12



times the number of subcubes will be recognized by the Extended GC' strategy as compared
to the Extended Buddy Strategy. For all possible combinations of any base < k, the ezxact
number of recognizable subcubes by the FExtended GC strategy, though varying on the pattern
requested, will always be less than k times the number of recognizable subcubes by the Fxtended
Buddy strategy. This implies that the maximum improvement in subcube recognition for the
Extended GC strategy would be k times the subcube recognition ability for the Extended Buddy
strategy.

B. Subcube of bases 0,1 or 2

All incoming requests have to be allocated to a subcube, S, g and the difference from the
previous case is that now R = [log,(I)], where I is the number of nodes requested. The
case when m=0 is trivial. For the case when m=1, the case is again trivial because it means
that only one node is to be allocated. The third case is for the request of a subcube with

base 2. We state a theorem for such a case,

Theorem 5 If the base of the hypercube is greater than or equal to 2, then there will always
exist a recognizable subcube of base 2 and dimension R, i.e., Sy g, R < N.

PROOF There would be at least one recognizable subcube of base-2 whose nodes have ad-
dresses differing in a single digit with the difference being 1 or (k-1) for that particular digit.
This 1s nothing but the criteria for a binary hypercube and so we infer that at least one base-2

subcube exists in any hypercube of base greater than 2.

1)  Extended Buddy Strategy: STEP 1

Set z :=| I; |, where | I; | is the dimension of the subcube required to accomodate the ;%

request, I;. Also, y:= required base of the subcube for the request I;.
STEP 2

Determine the least integer z such that all allocation bits in the Allocation array in <<

2y, (z + 1)y® — 1 >> are 0’s, and set these allocation bits to 1.
STEP 3

13



Allocate nodes with addresses Dy(i) to the request, I;, Vi € << zy® (z+1)y°* —1>>

Processor Relinquishment:

Once the task is complete, reset every allocation bit in << zy®, (z +1)y* — 1 >> to 0.
The nodes with addresses Dy (i) are henceforth deallocated from the request and are

free to be used further.

2)  Eztended Gray Code (GC) Strategy: ~ STEP 1

Set z :=| I; |, where | I; | is the dimension of the subcube required to accomodate the ;"

request, I;. Also, y:= required base of the subcube for the request I;.
STEP 2

Determine the least integer z such that all (i mod k™ )th allocation bits in the Allocation
array, 1 € << 2y° 1 (z +y)y® ! — 1 >> are 0’s. Set all the allocation bits in this

region to 1.
STEP 3
Allocate nodes with addresses Gy (i mod k™) to the request I, Vi € << zy® ', (z+y)y® 1 —1>>.

Processor Relinquishment:

Once the task is over reset every allocation bit in << zy® ! (2 +y)y® ! — 1 >> .

Theorem 6 The number of subcubes recognizable by the Fxtended GC strategy is at least
twice the number of subcubes recognizable by the FExtended Buddy strategy.

PROOQOF The base of any required subcube will be at least 2. The Extended GC' strategy
searches for a subcube starting from the location y* 1, y is the base and z is the required

dimension of the subcube. The Extended Buddy strategy starts its search from the location

T

y®. Thus, if all required bases are 2, i.e., if y=2 then a minimum of twice the number of
subcubes will be recognized by the Extended GC strategy. For all possible combinations of
any base > 2 the exact number of recognizable subcubes by the Fxtended GC strategy, though
varying on the pattern requested, will always be greater than twice the number of recognizable

subcubes by the Erxtended Buddy strategy.
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Theorem 7 The Extended Buddy strategy as well as the Extended GC strategy are erroneous
for m=2.

PROOF We give the proof using an example. Let us assume that we have a Hsy. Now let
us assume that the hypercube is entirely free at initial time so any subcube can be allocated.
Now, let a request come in for a subcube Sy 2. With the Extended buddy and the Extended GC
strategies, the nodes chosen would be those having addresses (00,01,02,10) and (00,01,02,12)
respectively. These are shown in the Fig.2 and it is obvious that they do not form a subcube
at all. Thus the Extended Buddy as well as the Extended GC strategy fail for the case and

so they are erroneous for m=2.

3)  Sniffing Strategy:  Before we explain this strategy we would like to review some
important notation. < k > denotes the set { 0,1, ..., k-1 } and p,*,, # € <k >. A x,
implies that the integer p is the starting integer for the address at the digit where x*, is
located. For example, the starting integer for *, is 2. Given a subcube, say s, its address
can be (## x3 *¢)3 which means that the direction 1 will have values 0 &40, 0 B4 1, 0 By
2, i.e., 0,1 and 2 because the hypercube considered is Hy4 ( of base 4.) Also, direction 2
will have values 3640, 3B41, 3P42 ,i.e., 3,0 and 1. We notice that p can be incremented
only in steps of one till the increment equals m-1, m is the base of the subcube. A # means
that any integer from the set < k£ > can be placed at that location. Thus, in our example,
directions 3 and 4 can have any integer from < 4 >, i.e., {0,1,2,3}. Thus, the subcube can
be addressed by (00 x3 x0)3, (01 x3 *0)3, (30 %3 *0)3, (23 *3 *0)3, etc. In general, we can

address any Sy, g tn Hj y with the form

(#NF#N-1---Fri1 *pr ¥pr_1 - - ¥p2 *pl)m’

where p; and #; denote the integer value of p and # in direction i.

Algorithm used by the strategy
Set R :=| I; |, where | I; | is the dimension of the subcube required to accomodate the ;™
request, /;. Also, m:= required base of the subcube for the request /;. The number of *, is

equal to the dimension of the subcube which is R and in our strategy the subcube will take
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Figure 2: Comparison of strategies

16



the form (#nNF#N_1---FR+1 *pp *pp_1 - - *py *p1 )m.

BEGIN
0. fori:= R+1 to N do #; := 0 ; initialising all #; variables to 0;

1. found := false;
2. fori:=1toR do p;:=0 ; initialising all p; variables to 0
3. whilenot found do
begin

4.checkstars

5if #r = #r-1 = ... = #2 = #1 = k then goto 8

else if #; <k — 1 then #; = #; +1

else if #5 < k — 1 then #, = #, +1

else if #p 1 <k —1then #r 1 = #r 1 +1
else if #p <k — 1 then #rp = #r+1
6.if found then goto 11
7.end { of while }
8. if not found then goto 11
9. Subcube is (#N#N_1-- - FR+1 *pg *pp_1 - - - *p» *p, )m- Allocate the nodes corresponding to these
addresses to the request.
10.goto 13
11.No free subcube exists.
12.If found then allocate nodes with addresses corresponding to the subcube address to the job else got
13.END { of program }
procedure checkstars
BEGIN
0. while not found do
begin
1. if pp =pr-1= ... = p2 = p1 = k then goto 4
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else if py <k — 1 then py =p; +1
else if pp <k —1 then p, =ps +1

else if pp 1 <k —1then pr 1 =pr1+1
else if pr < k — 1 then pr = pr +1
2. found:=( Allocation bits for the addresses (F#NF#N_1.-.FR+1 *pp *
3. end {of while}
4. END {of procedure}

PR-1 "

We find that for the example of the Hj, if the request comes for a Sy;s then the

Sniffing Strategy will find nodes corresponding to the address (0#q*0); which are 00,01,10,11

and these form a subcube. This is shown in the Fig.2. Thus, we find that our strategy is
error free as compared to the Extended Buddy and the Extended GC strategy.

C. Subcube with3 <m<k-—1

Conjecture 1 In any hypercube,Hy n, a subcube with base, m, such that 3 < m < k —1
does not exist.

PROOF We have verified ( that will be a part of our future research ) this result by extensive
use of examples. Also, with the wraparound necessity in hypercubes, it is a must for the
subcube nodes to have addresses (for the nodes having dissimilar digits in only one direction

i) such that the mazimum difference is 1 or k-1 for that particular direction, k being the

base of the hypercube. Consider for example a Hyo. To find a subcube of the form, Ss 1 let us
take the nodes 00,01,02. These will not form a subcube, (refer to the fig.) as the wraparound
joining for 00 and 02 is non-existent. Also note that the maximum difference in direction
1 is 2 which is neither 1 nor 4-1=3. Thus, by our conditions as stated in the underlined

statement, we conjecture that no subcube will exist.

Theorem 8 The Sniffing strategy, can be used for the case when m=~k. Thus, as a general-

1zation, the Sniffing strategy is better than the Extended Buddy and Extended GC strategy.
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PROOF From Theorems 3,4 and 7 and Conjecture 1 we infer that the above statement is

true.

CONCLUSION

In this paper a new algorithm for the faster generation of k-ary Gray Codes has been ex-
plained and the set of parameters required for Reflected Gray Codes given. Three strategies
which have been explained for each of the three different cases of subcube bases. It has been
proved that even though all the strategies do not show complete subcube recognition, yet
in terms of sheer number of recognizable strategies, the Extended GC strategy is at least
two times and at most k times ( k is the base of the hypercube ) better than the Extended
Buddy Strategy. Our third strategy called the Sniffing strategy is shown to be the best as it
is error free for different bases and its virtues are specially clear in the case when there is no
restriction of base on the request for subcubes except that m < 3 or m = k, m is the base
of the subcube which is requested. We have not proved the optimality of our strategy in the
sense that the maximum number of subcubes are being recognized but the important fact is
that it does not recognize non-realizable subcubes. This is a study for future research. Also,
in the Sniffing strategy, we have not taken into consideration the case when the # and x,
interchange their positions or, in other words, permute. Thus, incomplete subcube recogni-
tion is being done, for example in Hy 4 a subcube, Sy 5 is searched in the Sniffing strategy in

the manner,
(#4735 *py *py )2-

We should also search in this fashion: (#4 %, #2%,,)2 and also as (x,, *,, #2#1)2, etc. We
have not incorporated such permutations in our strategy to avoid complicating the algorithm
at the cost of lower subcube recognization power. Also, we have not used the case in our
algorithm when the request is given in terms of the number of nodes and no specific base or

dimension is given. The redressal of such issues will again be a basis for future research.
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