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Subcube Allocation Strategies in a K-aryN-CubeVikas Gautam and Vipin ChaudharyAbstractThis paper proposes extensions of two previous schemes as well as a novel schemecalled the sni�ng strategy, to recognize m-ary R-subcubes (of base-m and dimension R,henceforth called the subcube) in a k-ary N-cube (of base-k and dimension N, herebycalled the hypercube) where m is less than or equal to k. Note that the dimension of thesubcube, R, is less than or equal to the dimension of the hypercube, N. The importantaspect of the node con�guration in a hypercube is that each contiguous pair of nodesdi�er from the other in one digit only and the di�erence is either unity (1) or (k-1)for that particular digit. A set of codes having excellent properties needed for nodeutilization is the Re
ected k-ary Gray Codes where each succeeding codeword di�ersfrom its predecessor in one digit by unity or, in the cyclic case, by k-1. This paperutilizes a new algorithm to recursively generate these Gray codes and identify a subcubefrom it. We initially address the problem of subcube allocation in two ways. First theBuddy strategy and later the Gray Code (GC) strategy are considered and extendedto the k-ary hypercube from the trivial case of the binary hypercube. It is proved, forthe speci�c case of all subcubes requested being of base k, that the number of subcubesrecognized by the Extended GC strategy is k times greater than that of the ExtendedBuddy Strategy. A minimum (2) and maximum (k) bound on the improvement in thesetwo strategies have been found. It has been shown that using either of these strategies,complete subcube recognition cannot be accomplished, and also, more importantly,they realize subcubes which actually do not exist in the hypercube. Further, it isshown for base-2 subcubes that the Extended Buddy and Extended GC strategies fail1



in the sense that they recognize non-realizable subcubes. Our sni�ng strategy onthe other hand is foolproof in that each subcube recognized by it actually exists and socan be allocated to the job in hand. This paper also conjectures that for any hypercubeof base k, k > 2 it is impossible to recognize a subcube of base, m such that 2 < m < k.I. INTRODUCTIONConsiderable activity has recently been generated in the study of hypercube topology ininterconnecting multiple processors because it has become one of the most popular archi-tectures for parallel processing. Popular machines such as the Intel iPSC-2 and Ametek2010 are examples of k-ary hypercube [8], [1]. The hypercube has many desirable propertieslike low degree and diameter, strong heirarchy, easy construction and structural regularity,etc.[5], [2]. This paper is concerned with the general form of binary hypercubes called thek-ary hypercube which di�ers in that its base is not 2 but some other integer k.The reason of studying k-ary hypercube topology is to determine some additional aspectsof the binary hypercubes which have not yet come to light. A hypercube is a network ofcomputers in which the nodes form the processors and the edges constitute the communica-tion channel. A k-ary N-cube is a N-dimensional, base-k hypercube de�ned as an undirectedgraph, G=(V,E) with V = 0,1, . . . ,kN � 1 and 8 i; j 2 V; (i; j) 2 E i� the k-ary represen-tation of i and j di�er in a single digit by unity or k-1. More formally, we de�ne a hypercubein the following manner. Let< Z >= f0; 1; 2; 3; :::; Z � 1g for some integer Z � 1A n-node base-k hypercube of dimension N called Hk;N for short is a graph G = (V;E)where, V = fxjx = xNxN�1 : : : x2x1 where xi 2< k >; i = 1 to Ng and E = f(x; y)jx; y 2V; x = xNxN�1 : : : x2x1; y = yNyN�1 : : : y2y1 and there exists j, 1 � j � k; such thatyj = (xj + 1) mod k and xi = yi for i 6= j g. A k-ary hypercube represented by Hk;N havingbase-k and N dimension consists of n=kN nodes (processors) and each processor is uniquelyaddressed by a base-k integer. The address scheme is such that the di�erence in the adjacentnodes is in a single digit only and di�ers by unity or k-1. The addresses lie between 0 and2



kN � 1 and the representation is in N digits (dimension).In such a hypercube any incoming job may require a subcube to process it and so manysuch jobs can be executed in parallel using arbitrary dimensions and bases for the subcube.Thus, the problem of subcube allocation assumes importance so as to enable the most e�-cient distribution of jobs. The major focus of this paper is in the subcube recognition abilityof di�erent approaches and a comparison of the same and to the authors' knowledge, this isthe �rst such attempt for k-ary N-cubes. A subcube is de�ned as a hypercube having base mand dimension R both of which are less than or equal to the base-k and dimension-N of the k-ary hypercube, respectively. A subcube denoted by Sm;R, of the above mentioned hypercube,Hk;N , is a contiguous collection of mR processors which forms a base-m hypercube. Notethat the address scheme for every subcube follows the Hk;N addresses and m � k; R � N:Each subcube Sm;R can be uniquely addressed by a combination of strings from the setf�p; 0; 1; 2; : : : ; m�1g; p 2 < k >; and the number of �p's in the address equals the dimensionR of Sm;R. A �p denotes any string from the set < k >; where < k >= f0; 1; 2; : : : ; k � 1g:Also note an important fact that whereever there is a �p, the values of p, taken in orderare, (p�k 0); (p�k 1); : : : ; (p�k i); : : : ; (p�k (m� 1)), where, �k denotes addition in basek of the hypercube and not base m, of the subcube. The address of the subcube S3;2 in H4;4is of the form, say (�0 2 1�2)3; i.e., it includes all nodes with addresses ( 0212, 0213, 0210,1212, 1213, 1210, 2212, 2213, 2210 ). Another example is a subcube, S2;2, whose addresscan be (2 �1 1 �2)2; i.e., it contains the nodes having addresses f 2112, 2113, 2212, 2213 g.For hypercube node identi�cation one can use simple k-ary codes or a special class of codescalled the Gray Codes. We have used the simple codes in the Extended Buddy strategyand the Gray Codes in the Extended GC strategy. In this paper we are going to utilize anew algorithm to generate the special class of Codes called the k-ary Re
ected Gray Codes(KRGC). This algorithm is a part of another paper [6].In any multi-user system there is an active request and release of subcubes depending onwhether there is an incoming request for job allocation or the job is completed. The dimen-sion, R, of the allocated subcube depends on the minimum number of processors required for3



that speci�c job and is numerically equal to dlogm(I)e where m is the base of the subcubeand I is the required number of processors for the job. dxe denotes the greatest integer � x.Whether a subcube is actually allocated to that request is a di�erent aspect altogether. It iscontingent on the fact that an exact number (mR) of a contiguous set of processors startingfrom a particular address are simultaneously free or not. This set of nodes should form thenodes of a subcube and this fact is of prime importance. Which starting address is to bechosen depends on which strategy we are working on.We consider two common strategies for subcube allocation in a binary hypercube andextend them to the case of the k-ary hypercube. The �rst strategy is the Buddy strategyand the second is the Gray Code strategy (GC strategy), [7], [3], [4] and their extensions tothe kary hypercube are respectively called the Extended Buddy strategy and the ExtendedGC strategy. A new algorithm [6] for the generation of k-ary Gray Codes is also coveredwhich has been used in the Extended GC strategy. This strategy has been shown to bemuch better in comparison with the Extended Buddy strategy in the following way. Forevery k-ary hypercube, complete subcube recognition cannot be accomplished using onlya single Code. Thus, there is a maximum limit on the number of subcubes which can beallocated using any particular strategy. This limit is greater in the case of the ExtendedGC strategy than the Extended Buddy strategy for the case when all incoming subcubesrequest only a base k. In fact, for the particular case of the binary hypercube ( k = 2 ) thenumber of recognisable subcubes in the Extended GC strategy is twice the number in theExtended Buddy Strategy [3]. We have shown that when the base of the requested subcubeis 2 then both these strategies show some serious defects and so we have come up withanother strategy called the Sni�ng Strategy which is a more suitable subcube allocationscheme for a k-ary hypercube. II. PRELIMINARIESThe generation of Gray Codes of arbitrary base-k is the central theme of the Gray Codestrategy. So we came up with an algorithm to generate them in an e�cient manner. This4



algorithm is part of [6] but will be discussed brie
y in this paper for completeness. We startby stating a few de�nitions used for the same.De�nition 1 Hamming DistanceWe have, x & y as two integers represented by m digits of some base k.The base-k hammingdistance between x & y is de�ned as hk(x; y) = m if there exists i1 < i2 < i3 : : : < im suchthat xij 6= yij , j lies between 1 to m and xp = yp; p 62 fi1; i2; : : : ; img. In other words hk(x; y)is the number of base-k digit positions in which x & y di�er e.g., h4(1230; 0321) = 4:De�nition 2 Base-k N-digit Gray Code Gk(N)Let n=kN : A base-k Gray code is an ordered sequence f Gk0(N), Gk1(N),. . . ,Gkn�1(N) g of n,N-digit base-k integers, where Gki (N) denotes the ith codeword and the ordering is such thathk(Gki (N); Gki+1(N)) = 1i.e., each succeeding element di�ers from its previous code word in just one (1) digit and thedi�erence is either (k-1) or unity (1).De�nition 3 Partial rankLet S = fg1; g2; : : : ; gNg be a sequence of distinct integers. For 1 � i � N , the partialrank ri of gi is de�ned as the rank of gi in the set fg1; g2; : : : ; gig when the set is rearrangedin the ascending order. Thus, to get the partial rank of gi, sort all elements in S fromg1 to gi in ascending order and the index of gi in this order is the partial rank ri of gi.For example, the partial rank, r1 of the sequence S = f 3,1, 2 g is 1, the partial rank r2 ofthe sequence S = f3, 1, 2 g is again 1 and similarly, the partial rank, r3 of the sequenceS = f3,1, 2 g is 2De�nition 4 Direction iLet a sequence of strings have N digits. Then the rightmost (LSB) digit is called the direction1, second to the rightmost will be called the direction 2, and so on. Consider the string234101. The direction of the underlined digit is 3.De�nition 5 Symbol : AdnmLet A be a sequence of k-ary strings e.g. 301, 21 etc. of length x-1, where x > 1. Then a5



sequence of k-ary strings of length x, denoted by Adnm;where d 2 f0; 1; : : : ; k�1g is obtainedby the following rules1. If 1 � m � N � 1Inserting the digit, d into the position immediately right of the digit in the mth direction ofevery string in A.2. if m=NPre�xing the digit d to every string in A .For example Let A = 3121, N=4; then A2n2 = 31221 and A2nN = 23121De�nition 6 Inverse mapping : A*For any sequence of k-ary strings, A, let A* denote the sequence of k-ary strings obtained fromA by reversing the order of strings in A. e.g. Let A = f20,21,01g Then, A*= f01,21,20gand, (A�)2n2 = f 021,221,220,gA. ALGORITHMLet Gm be a GC ( Gray Code ) with parameters, gi; and S = fg1; g2; : : : ; gN ; g where S isa permutation of < ZN >, and < ZN >= f0; 1; : : : ; Z � 1g: We also have G1 =< k >=f0; 1; : : : ; k � 1g: Then, GN is de�ned recursively for 2 � m � N as the following:1. FOR ODD BASE - kGm = fG0nrmm�1 ; (G�m�1)1nrm : : : Gk�1nrmm�1 g2. FOR EVEN BASE -kGm = fG0nrmm�1 ; (G�m�1)1nrm : : : (G�m�1)k�1nrmgwhere rm as before is the partial rank of gk. For example, let k=3 and N=3. Also let, S=f3,1,2 g = f g1; g2; g3 g. Then, r1 = 1; r2 = 1 and r3 = 2: We have, G1 = f0; 1; 2g And alsoG�1 = f2; 1; 0g.Then we get G2 = fG0n11 ; (G�1)1n1; G2n11 g because, r2 = 1: This implies thatG2 = f00; 10; 20; 21; 11; 01; 02; 12; 22g and G�2 = f22; 12; 02; 01; 11; 21; 20; 10; 00g.Again, sincek can go upto N = 3 we have, G3 = fG0n22 ; (G�2)1n2; G2n22 g because, r2 = 2: From this we inferthat G3 = f000; 100; 200; 201; 101; 001; 002; 102; 202; 212; 112; 012; 011; 111; 211; 210; 110;010; 020; 120; 220; 221; 121; 021; 022; 122; 222g 6



Lemma 1 If S is the identity permutation of < k > i.e. S = f0; 1; :::; k � 1g then the gen-erated Gray Codes are k-ary REFLECTED Gray Codes. Thus if gi = i then the generatedcodes are called re
ected codes.Lemma 2 Let n=kN : Then the base-k cyclic Gray code Gb(N) is a base-k Gray code suchthat hk(Gk0(N); Gkn�1(N)) = 1 or k�1, which means that the last codeword in the whole codedi�ers from the �rst one by one single digit.We now state two theorems whose proof can be found in [6],[2]Theorem 1 If the base b of the codes is even then GN is cyclicTheorem 2 If the base b of the codes is odd then GN is not cyclic.Note: A method to generate cyclic Gray Codes for odd bases is given in [6],[2]A set of contiguous integers is called a region and we de�ne << a; b >>= fkja � k � b; k 2 I+gwhere I+ is the set of positive integers. We denote DN(q) as the general base k representa-tion of the integer q and GN(q) as the k-ary Gray Code representation for the integer, q. Itis obvious that the notation is in N digits, N being the dimension of the hypercube.III. SUBCUBE ALLOCATION STRATEGIESOur main emphasis in this paper is to address the problem of subcube allocation so as tohave the most e�cient scheme. Processors (nodes) must be allocated to incoming tasks in ahypercube so as to enable maximum subcube recognition and minimize system fragmentationwithin the framework of the selected strategy. We start o� by assuming that all incomingrequest are of same base, k, of the hypercube and consider initially the buddy strategy whichhas been expounded a number of times for the binary hypercube case. This strategy hasbeen extended to the k-ary hypercube in the form of an Extended Buddy strategy. Anotherstrategy called the Gray Code (GC) strategy is then explained as well as extended and ap-plied to the problem of subcube allocation in a kary hypercube. This Extended GC strategyhas been proved to be better than the Extended Buddy Strategy in the sense that more7



number of subcubes are recognizable. The principle underlying both the strategies is thelinear search of an array called the Allocation array in which each entry corresponds to a0 or a 1 depending on whether the node corresponding to that allocation bit is free or not.Thus a one-to-one mapping exists between the nodes and the Allocation array. As statedearlier, the number of nodes in a hypercube is kN which means that the size of the arrayis kN . To get the dimension of the subcube in such a case ( of same base, k ) the onlyparameter required is the dimension, R of the subcube.In the next section we prove that both these strategies fail for a subcube request of base2. We show that the Extended GC and Extended Buddy strategies recognize some of thosecubes which cannot exist in that particular hypercube. This feature is absent in theSni�ng strategy and is an important factor in proving that our scheme is better than thosetwo for the case when m = 2. Now, to recognize an arbitrary subcube, two parameters arerequired, which are the base and dimension of the subcube. The user can be asked to provideboth the parameters or the user can give the number of nodes required for the problem andso the algorithm may have to decide which base and dimension is to be allocated for thatproblem. But, in this case the decision to �nd the base and dimension of the subcube, Sm;R;becomes very complex and so some priority has to be prede�ned. At this point we statewithout proof that the choice should be made so as to make the value of R, the dimensionof the subcube, as small as possible and also the value mR must be as close to the requirednumber of nodes. It is obvious that sometimes an exact combination of m and R cannot bedetermined to exactly equal the requred number of nodes and so a heurestic approach hasto be undertaken. We have assumed in this paper that the user knows both the dimensionand the base of the required subcube to be allocated.A. All Subcubes of same base-kWe assume for all examples, nowonwards, that the hypercube is absolutely clear at time =0, i.e., all allocation bits are initially reset (0). We have also assumed that the incomingsubcube allocation request is for the base k of Hk;N . Any incoming request is allocated to a8



Figure 1: Connections for a H3;3 hypercube. The wraparound condition is shown only for thenode 020, but such connections exist for every node. The shaded area shows one of several3-ary 2-subcubes that can be realized. This particular subcube has the address (�02�0)2subcube Sk;R and the required parameter is either R, the dimension of the required subcube,or the number of nodes requested from which R can be obtained with the help of the simpleequation R = dlogk(I)e, where I is the number of nodes requested.Theorem 3 All subcubes of base k and dimension less than or equal to N, where k and Nare the base and the dimension of the hypercube, will always exist.PROOF Any subcube of same base but di�erent dimension is equivalent to removing a singledimension from the hypercube for each unit di�erence in N from R, the base of the subcube,but the topology required for the subcube would be exactly like the hypercube. For example, letboth N and R be equal to 3, i.e., consider H3;3 as shown in the Fig.1. Then, a subcube S3;2 issimply one of the planes (1 dimension less because N-R=1) and the conditions required from9



the hypercube of wraparound and hamming distances between nodes are met. The subcubeS3;1 is two(2) dimensions less than the hypercube but in itself forms a subcube as shown in�g. Extending the same logic we infer that since the essential topology of any subcube of basek, is same as the hypercube, for all R less than or equal to the N, therefore, such a subcubewill exist. The proof can also be given by induction. Let the case be true for R=0. Thisis the obvious case as one can always �nd a single node. Now let us assume that it is truefor some R i.e. Sk;R exists and is recognizable. Adding another dimension to this subcube,Sk;R, implies that we add another degree to each node. Thus a symmetry would exist evenafter addition of another dimension to this subcube. We know that the hypercube is stronglyhierarchial which means that if we disconnect the edges across the same dimension for all thenodes then we obtain a hypercube of dimension R-1 and same base where R is the dimensionof the original hypercube. Thus if a hypercube of dimenision R greater than 0 exists thenit implies that a subcube of dimension R-1 also exists. Reversing the logic implies that ifany hypercube of dimension R exists then a hypercube of dimension R+1, but same base alsoexists. Or if Sk;R exists, then Sk;R+1 also exists. Thus the proof.For this section, wherever we take up an example, the hypercube is to be taken of theform H4;4, i.e., of dimension and base, both equal to 4. This assumption, however, is onlyfor illustration and does not restrict our discussion.1) Extended Buddy Strategy: STEP 1Set x :=j Ij j, where j Ij j is the dimension of the subcube required to accomodate the jthrequest, Ij.STEP 2Determine the least integer z such that all allocation bits in the Allocation array in<< zkx; (z + 1)kx � 1 >> are 0's, and set these allocation bits to 1.STEP 3Allocate nodes with addresses DN(i) to the request, Ij; 8i 2 << zkx; (z + 1)kx � 1 >>10



Processor Relinquishment:Once the task is complete, reset every allocation bit, i, in << zkx; (z + 1)kx � 1 >> to 0.The nodes with addresses DN(i) are henceforth deallocated from the request and arefree to be used again.To recognize S4;2 in the assumed hypercube H4;4, the Extended Buddy strategy wouldchoose the subcube with address (starting from node 0000) in this way: x=2 implies that0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0030, 0031, 0032,0033 would be selected which is the subcube (00 �0 �0)4. After this selection let us assumethat S4;3 is desired. Now the strategy has to �nd the lowest z to meet its criteria. x=3implies that searches from allocation bit number z43 = 64z: It will �nd z=1 and startingfrom 1000 it goes on till 128-1=127, i.e., node 1333. Thus, it forms the subcube (1 �0 �0�0)4.But the important thing to note is that it missed out the nodes from locations 0100 to 0333which remain as a hole in the hypercube.Similarly the Extended GC strategy can be explained in terms of the allocation bits bythe following methodology,2) Extended Gray Code (GC) Strategy: Here the utlilisation of our algorithm togenerate KRGC is used for node identi�cation and the steps involved are:STEP 1Set x :=j Ij j; where j Ij j is the dimension of the subcube required to accomodate the jthrequest, Ij.STEP 2Determine the least integer i such that all (i mod kN)th allocation bits in the Allocationarray in the region << zkx�1; (z + k)kx�1 � 1 >> are 0's. Set all the allocation bits inthis region to 1.STEP 3Allocate nodes with addresses GN(i mod kN ) to the request Ij; 8i 2 << zkx�1; (z + k)kx�1 � 1 >> :11



Processor Relinquishment:Once the task is complete, reset every allocation bit in << zkx�1; (z + k)kx�1 � 1 >> tozero (0).The reason for having the mod kN term is to allow a circular search for a free subcube ofthe required dimension and base. It is stated that the set of Gray Codes we have used arethe Re
ected Gray Codes being, obviously, of base k.Taking the previous example, for the Extended GC strategy. to recognize S4;2 the Ex-tended GC strategy would choose (starting from node 0000) in this way: x=2 implies thatnodes having allocation bits in the region << 0; 15 >> would be chosen and the addresseswould be 0000, 0001, 0002, 0003, 0013, 0012, 0011, 0010, 0020, 0021, 0022, 0023, 0033, 0032,0031, 0030. After this selection let us assume that S4;3 is desired. Now the strategy has to�nd the lowest z to meet its criteria. x=3 implies that searches from allocation bit numberz42 = 16z: It will �nd z=1 and starting from allocation bit No.16 it would search for thenext 64 nodes till bit # 79 i.e. the region << 16; 79 >>. The addresses are 0130,0131, . . . ,1331. Remember that the nodes are addressed using Gray Codes and that too the re
ectedones which have been generated using our algorithm for the generation. Refer to Fig.2 for aset of Gray Codes for the case of H3;2. We observe that after the two subcubes have beenallocated there is no 'hole' observable as was the case for the Extended Buddy Strategy.This phenomenon will be there for any sequence of subcube requests and the number andlengths of holes will be much more for the case of the Extended Buddy strategy as comparedto the Extended GC strategy even though both the strategies do not show complete subcuberecognition.Theorem 4 The number of subcubes recognized by the Extended GC strategy is at most ktimes the number of subcubes recognizable by the Extended Buddy strategy where k is the baseof the hypercube.PROOF The Extended GC strategy searches for a subcube starting from the location yx�1,y is the base and x is the required dimension of the subcube. The Extended Buddy strategystarts its search from the location yx: Thus, if all required bases are k i.e. if y=k then k12



times the number of subcubes will be recognized by the Extended GC strategy as comparedto the Extended Buddy Strategy. For all possible combinations of any base � k, the exactnumber of recognizable subcubes by the Extended GC strategy, though varying on the patternrequested, will always be less than k times the number of recognizable subcubes by the ExtendedBuddy strategy. This implies that the maximum improvement in subcube recognition for theExtended GC strategy would be k times the subcube recognition ability for the Extended Buddystrategy.B. Subcube of bases 0,1 or 2All incoming requests have to be allocated to a subcube, Sm;R and the di�erence from theprevious case is that now R = dlogm(I)e, where I is the number of nodes requested. Thecase when m=0 is trivial. For the case when m=1, the case is again trivial because it meansthat only one node is to be allocated. The third case is for the request of a subcube withbase 2. We state a theorem for such a case,Theorem 5 If the base of the hypercube is greater than or equal to 2, then there will alwaysexist a recognizable subcube of base 2 and dimension R, i.e., S2;R; R � N .PROOF There would be at least one recognizable subcube of base-2 whose nodes have ad-dresses di�ering in a single digit with the di�erence being 1 or (k-1) for that particular digit.This is nothing but the criteria for a binary hypercube and so we infer that at least one base-2subcube exists in any hypercube of base greater than 2.1) Extended Buddy Strategy: STEP 1Set x :=j Ij j, where j Ij j is the dimension of the subcube required to accomodate the jthrequest, Ij. Also, y:= required base of the subcube for the request Ij.STEP 2Determine the least integer z such that all allocation bits in the Allocation array in <<zyx; (z + 1)yx � 1 >> are 0's, and set these allocation bits to 1.STEP 3 13



Allocate nodes with addresses DN(i) to the request, Ij; 8i 2 << zyx; (z + 1)yx � 1 >>Processor Relinquishment:Once the task is complete, reset every allocation bit in << zyx; (z + 1)yx � 1 >> to 0.The nodes with addresses DN(i) are henceforth deallocated from the request and arefree to be used further.2) Extended Gray Code (GC) Strategy: STEP 1Set x :=j Ij j; where j Ij j is the dimension of the subcube required to accomodate the jthrequest, Ij. Also, y:= required base of the subcube for the request Ij.STEP 2Determine the least integer z such that all (i mod kN )th allocation bits in the Allocationarray, i 2 << zyx�1; (z + y)yx�1 � 1 >> are 0's. Set all the allocation bits in thisregion to 1.STEP 3Allocate nodes with addresses GN(i mod kN ) to the request Ij; 8i 2 << zyx�1; (z + y)yx�1 � 1 >> :Processor Relinquishment:Once the task is over reset every allocation bit in << zyx�1; (z + y)yx�1 � 1 >> :Theorem 6 The number of subcubes recognizable by the Extended GC strategy is at leasttwice the number of subcubes recognizable by the Extended Buddy strategy.PROOF The base of any required subcube will be at least 2. The Extended GC strategysearches for a subcube starting from the location yx�1, y is the base and x is the requireddimension of the subcube. The Extended Buddy strategy starts its search from the locationyx: Thus, if all required bases are 2, i.e., if y=2 then a minimum of twice the number ofsubcubes will be recognized by the Extended GC strategy. For all possible combinations ofany base � 2 the exact number of recognizable subcubes by the Extended GC strategy, thoughvarying on the pattern requested, will always be greater than twice the number of recognizablesubcubes by the Extended Buddy strategy. 14



Theorem 7 The Extended Buddy strategy as well as the Extended GC strategy are erroneousfor m=2.PROOF We give the proof using an example. Let us assume that we have a H3;2. Now letus assume that the hypercube is entirely free at initial time so any subcube can be allocated.Now, let a request come in for a subcube S2;2. With the Extended buddy and the Extended GCstrategies, the nodes chosen would be those having addresses (00,01,02,10) and (00,01,02,12)respectively. These are shown in the Fig.2 and it is obvious that they do not form a subcubeat all. Thus the Extended Buddy as well as the Extended GC strategy fail for the case andso they are erroneous for m=2.3) Sni�ng Strategy: Before we explain this strategy we would like to review someimportant notation. < k > denotes the set f 0, 1, . . . , k-1 g and p; �p;# 2 < k >. A �pimplies that the integer p is the starting integer for the address at the digit where �p islocated. For example, the starting integer for �2 is 2. Given a subcube, say S3;2; its addresscan be (## �3 �0)3 which means that the direction 1 will have values 0 �4 0; 0�4 1; 0 �42; i:e:; 0; 1 and 2 because the hypercube considered is H4;4 ( of base 4.) Also, direction 2will have values 3�4 0; 3�4 1; 3�4 2 ; i:e:; 3; 0 and 1: We notice that p can be incrementedonly in steps of one till the increment equals m-1, m is the base of the subcube. A # meansthat any integer from the set < k > can be placed at that location. Thus, in our example,directions 3 and 4 can have any integer from < 4 >; i:e:; f0; 1; 2; 3g: Thus, the subcube canbe addressed by (00 �3 �0)3; (01 �3 �0)3; (30 �3 �0)3; (23 �3 �0)3, etc. In general, we canaddress any Sm;R in Hk;N with the form(#N#N�1 : : :#R+1 �pR �pR�1 : : : �p2 �p1)m;where pi and #i denote the integer value of p and # in direction i.Algorithm used by the strategySet R :=j Ij j; where j Ij j is the dimension of the subcube required to accomodate the jthrequest, Ij. Also, m:= required base of the subcube for the request Ij. The number of �p isequal to the dimension of the subcube which is R and in our strategy the subcube will take15



Figure 2: Comparison of strategies
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the form (#N#N�1 : : :#R+1 �pR �pR�1 : : : �p2 �p1)m:BEGIN0. for i := R+1 to N do #i := 0 ; initialising all #i variables to 0;1. found := false;2. for i := 1 to R do pi := 0 ; initialising all pi variables to 03. whilenot found dobegin4.checkstars5.if #R = #R�1 = : : : = #2 = #1 = k then goto 8else if #1 � k � 1 then #1 = #1 + 1else if #2 � k � 1 then #2 = #2 + 1...else if #R�1 � k � 1 then #R�1 = #R�1 + 1else if #R � k � 1 then #R = #R + 16.if found then goto 117.end f of while g8. if not found then goto 119. Subcube is (#N#N�1 : : :#R+1 �pR �pR�1 : : : �p2 �p1)m: Allocate the nodes corresponding to theseaddresses to the request.10.goto 1311.No free subcube exists.12.If found then allocate nodes with addresses corresponding to the subcube address to the job else goto 0.13.END f of program gprocedure checkstarsBEGIN0. while not found dobegin1. if pR = pR�1 = : : : = p2 = p1 = k then goto 417



else if p1 � k � 1 then p1 = p1 + 1else if p2 � k � 1 then p2 = p2 + 1...else if pR�1 � k � 1 then pR�1 = pR�1 + 1else if pR � k � 1 then pR = pR + 12. found:=( Allocation bits for the addresses (#N#N�1 : : :#R+1 �pR �pR�1 : : : �p2 �p1)m are free);3. end fof whileg4. END fof proceduregWe �nd that for the example of the H3;2 if the request comes for a S2;2 then theSni�ng Strategy will �nd nodes corresponding to the address (0�0�0)2 which are 00,01,10,11and these form a subcube. This is shown in the Fig.2. Thus, we �nd that our strategy iserror free as compared to the Extended Buddy and the Extended GC strategy.C. Subcube with 3 � m � k � 1Conjecture 1 In any hypercube,Hk;N ; a subcube with base, m, such that 3 � m � k � 1does not exist.PROOFWe have veri�ed ( that will be a part of our future research ) this result by extensiveuse of examples. Also, with the wraparound necessity in hypercubes, it is a must for thesubcube nodes to have addresses (for the nodes having dissimilar digits in only one directioni) such that the maximum di�erence is 1 or k-1 for that particular direction, k being thebase of the hypercube. Consider for example a H4;2. To �nd a subcube of the form, S3;1 let ustake the nodes 00,01,02. These will not form a subcube, (refer to the �g.) as the wraparoundjoining for 00 and 02 is non-existent. Also note that the maximum di�erence in direction1 is 2 which is neither 1 nor 4-1=3. Thus, by our conditions as stated in the underlinedstatement, we conjecture that no subcube will exist.Theorem 8 The Sni�ng strategy, can be used for the case when m=k. Thus, as a general-ization, the Sni�ng strategy is better than the Extended Buddy and Extended GC strategy.18



PROOF From Theorems 3,4 and 7 and Conjecture 1 we infer that the above statement istrue. CONCLUSIONIn this paper a new algorithm for the faster generation of k-ary Gray Codes has been ex-plained and the set of parameters required for Re
ected Gray Codes given. Three strategieswhich have been explained for each of the three di�erent cases of subcube bases. It has beenproved that even though all the strategies do not show complete subcube recognition, yetin terms of sheer number of recognizable strategies, the Extended GC strategy is at leasttwo times and at most k times ( k is the base of the hypercube ) better than the ExtendedBuddy Strategy. Our third strategy called the Sni�ng strategy is shown to be the best as itis error free for di�erent bases and its virtues are specially clear in the case when there is norestriction of base on the request for subcubes except that m < 3 or m = k; m is the baseof the subcube which is requested. We have not proved the optimality of our strategy in thesense that the maximum number of subcubes are being recognized but the important fact isthat it does not recognize non-realizable subcubes. This is a study for future research. Also,in the Sni�ng strategy, we have not taken into consideration the case when the # and �pinterchange their positions or, in other words, permute. Thus, incomplete subcube recogni-tion is being done, for example in H4;4 a subcube, S2;2 is searched in the Sni�ng strategy inthe manner, (#4#3 �p2 �p1)2:We should also search in this fashion: (#4 �p3 #2�p1)2 and also as (�p4 �p3 #2#1)2; etc: Wehave not incorporated such permutations in our strategy to avoid complicating the algorithmat the cost of lower subcube recognization power. Also, we have not used the case in ouralgorithm when the request is given in terms of the number of nodes and no speci�c base ordimension is given. The redressal of such issues will again be a basis for future research.References[1] C.L.Seitz et al., \ The architecture and programming of the Ametek Series 2010 multi-19
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