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Abstract 
We show the universality of the VEDIC network 

in simulating other well known interconnection net- 
works b y  generating the parameters of the VEDtC net- 
work automatically. Algorithms are given to  represent 
chordal rings, toroidal meshes, binary hypercubes, k- 
ary n-cubes, and Cayley graphs - star  graph and pan- 
cake graph, as VEDIC networks. Using these param- 
eters the VEDIC network can be used as a tool for 
generating currently known and new interconnection 
networks. 

1 Introduction 
One of the problems impeding the parallelism at- 

tainable in a MIMD multicomputer is interprocessor 
communication. The interconnection network deter- 
mines several characteristics of the multiprocessor sys- 
tem, such as performance, expansibility, fault toler- 
ance, etc. In general, the interconnection networks 
have been classified into dynamic and static networks 
[l]. This distinction comes from the type of computa- 
tion performed by the node: dynamic network nodes 
perform only the routing whereas static network nodes 
perform both computation and routing. The network 
topologies are benchmarked by the following features: 
diameter of the network, degree of the network, effi- 
cient and distributed routing strategies, expansibility, 
and fault tolerance. 

Several interconnection network topologies have 
been suggested in the literature which address one or 
more of the above features [2, 3, 4, 5 ,  6,  7, 8, 91. Since 
there is no single measure to compare these networks, 
each of the above examples has been justified for some 
application. For each of these networks, the diameter, 
degree, expansibility, fault tolerance, routing strate- 
gies, etc. need to be evaluated. 

This paper deals with the automatic mapping of 
the commonly known networks into VEDIC networks 
[lo, 111. The VEDIC network is described by eight 
topological parameters; varying the parameters gen- 
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erates different families of networks. By a suitable 
assignment of the parameters, most commonly known 
networks are realizable [2, 3, 4, 5, 6, 7, 81. The net- 
work’s size, diameter, degree, and number of links are 
evaluated in terms of the network’s parameters. This 
paper presents algorithms to automatically generate 
the parameters of the VEDIC network for a commonly 
known network. 

The advantages of such an interconnection network 
are numerous. First, the VEDIC network can be used 
as a tool to generate new interconnection networks 
which are application specific. The desired features 
of the networks can be obtained by manipulating the 
parameters. Secondly, the features need to be eval- 
uated only once for the VEDIC network. Substitut- 
ing the values of the parameters determines the fea- 
tures of the particular network. The unicast and mul- 
ticast routing strategies for the VEDIC network also 
hold for all the networks generated. The properties of 
the algorithms (such as deadlock-free) are also inher- 
ited by the networks generated. Deadlock-free multi- 
cast wormhole routing strategies have been suggested 
only for hypercubes and mesh connected multicom- 
puters [12, 131 yet. We have suggested deadlock-free 
wormhole unicast, single multicast and multiple mul- 
ticast algorithms for VEDIC networks [14]. Finally, 
the VEDIC networks provide a common framework for 
different types of interconnection networks, this can 
be used to study the interrelationships between the 
various families of networks. 

The rest of the paper is organized as follows. Sec- 
tion 2 discusses the concept of the VEDIC network 
briefly. Section 3 ,4 ,  5 , 6 ,  and 7 give algorithms to au- 
tomatically generate parameters of VEDIC network for 
chordal rings, toroidal meshes, binary hypercubes, k- 
ary n-cubes, and Cayley graphs, respectively. Finally, 
the concluding section suggests directions of ongoing 
and future research on the VEDIC network. 
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2 The VEDIC network 
This section describes the families of VEDIC inter- 

connection networks. They are regular or irregular 
hierarchical networks formed by interconnecting rings 
of various sizes. The lowest level, i.e., level 0, of the hi- 
erarchy is a ring consisting of n nodes. The next level 
consists of rings, each with an equal or lower num- 
ber of nodes than the lower ring. Each of the higher 
level rings necessarily has at least one node in common 
with a ring in the level immediately below that level. 
These rings formed at the higher level can also have 
subsets of other rings (at the same level) in common. 
The next level is formed by constructing rings using 
subsets of rings at the immediately lower level (not 
using any subset of the rings at levels lower than the 
immediately lower level). 

VEDIC network is represented as No[., I ,  m, k, q, w], 
where n is the number of nodes in the ring at level 
0, 1 is the number of levels of the network, m is the 
maximum difference between the number of nodes at 
adjacent levels, k is the number of nodes common to 
two rings at the same level, q is the number of nodes 
common to two rings at adjacent levels, and w is the 
distance between two rings at the same level having 
common nodes. 

The distance between rings is defined as the dis- 
tance between the starting nodes of the two rings. Dif- 
ferent variations of m, k, q ,  and w generate families of 
networks (details can be found in [ lo,  111). 

3 Mapping Regular Networks into 

The VEDIC network can generate other well known 
networks by fixing some of the parameters. We can au- 
tomatically generate the parameters of the VEDIC net- 
work given the commonly known networks [15]. The 
VEDIC network in its most general form is a very pow- 
erful framework for studying the properties of other 
networks. These examples show the versatility of the 
network in modeling a general network [ l l ,  151. Also, 
since all the networks are studied in the same frame- 
work, the interrelationships between the networks be- 
comes apparent. 
3.1 Chordal rings 

The chordal rings, defined by Arden and Lee [2], 
are a family of degree three, graphs. The graph is reg- 
ular and has a very simple representation. The sim- 
plicity of the network makes it possible to evaluate 
different properties of the network and have efficient 
distributed routing schemes. The network is gener- 
ated by adding to each node of a ring an additional 
link, called a chord, to some other node across the net- 

The 
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work. For the chordal ring the number of nodes in the 
ring n is even, and the distance between the ends of 
the chord, (the chord length) wchord, is kept constant. 
Therefore, every odd numbered node i is connected to 
the (i + Wchord) mod n node on the ring. The chord 
length is assumed to be positive odd. For a ring of size 
n different chordal rings can be obtained by varying 
the chord length WchWd. The chordal rings structure is 
also incrementally extensible by adding pairs of nodes 
to the original network. The figure 1 shows a chordal 
network of size 16 and chord length 3. 

The chordal ring maps into the VEDIC network by 
mapping the ring to the level 0 ring and the chords 
form the level 1 rings. More specifically, in the VEDIC 
network, we set n to be even, m = n-q, q = Wchord+l, 

w = 2, and k = wchord - 1. As figure 1 illustrates, by 
fixing m = n - q the maximum level of the network 
becomes 1. The figure shows the example for n = 16, 
w = 2, q = Wchord + 1 = 4, and k = 2. The indexing 
of the nodes reduces to just the node number on the 
ring. Further generalizations of the chordal ring [16] 
can easily be incorporated into the VEDIC network. 
3.2 Toroidal Meshes 

Toroidal meshes are mesh connected networks with 
end-around connections. The end-around connections 
make the network regular. The torus connected mesh 
has two parameters, the width W and the height H. 
In the case when W = H the mesh is a special case 
of a k-ary n-cube (k = W and n = 2). I t  can be 
shown that the torus connected mesh always has a 
Hamiltonian circuit. Using that the VEDIC network 
parameters can be computed. 

The first case 
where the parameter H is even and the second case 
when it is odd. Figure 2 illustrates the two cases. The 
Hamiltonian circuit is not unique so the equivalent 
VEDIC network parameters also vary with the algo- 
rithm to compute the Hamiltonian. However, some 
of the parameters remain independent of the Hamil- 
tonian. For eg., the number of nodes in the level zero 
ring n remains constant and is H x W; the number 
of levels 1 is 2 .  Figure 2 gives an example of a torus 
connected mesh with the equivalent VEDIC network. 
3.3 Hypercube network 

Binary hypercube topology is based on the n- 
dimensional cube. The binary hypercube is a very 
regular interconnection, where each node has a degree 
equal to the dimension of the cube [3]. In a cube of 
dimension ncube, a node is represented as nk where 
k is an ncub,-digit binary number. There are ncube 
neighbors of each node, one corresponding to each di- 
mension. Two nodes ni and nj are connected if and 
only if i and j differ in exactly one digit. 

Two cases can be distinguished. 
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Figure 1: Example of a Chordal ring and the equivalent VEDIC network 

Figure 2: Example of toroidal meshes. (a) H even (b) H odd; and the equivalent VEDIC network. 

The hypercube (or n-cube) has some interesting 
properties which make it a very useful network. By 
using these properties and translating them into re- 
strictions in the parameters of the VEDIC network, 
the hypercube can be generated from the VEDIC net- 
work. The significant property here is that the n-cube 
always has a Hamiltonian circuit. The Hamiltonian 
circuit is generated by using the binary reflected Gray 
codes [17]. A simple algorithm to generate the circuit 
is: 

1. Start from node no. 

2. From ni go to  node n j  such that j is the next 

If the network is traversed by the Hamiltonian cir- 
cuit, then all the nodes together form a level zero ring. 
The other interconnections can be presented as chords 
of this basic ring. The parameters depend on the di- 
mensions of the n-cube. The number of nodes in the 
level zero ring n is equal to 2nc-be. The number of 
levels 1 is 2. The difference between number of nodes 
in adjacent levels m is 2nc*bs. The number of nodes 
common to rings in the same level k is 0. The distance 
between start and end of ring q is equal to {2"~*b*-~,  
2ncuba-2 2"). The number of rings starting from 
each node y is ncubc - 2. Figure 3 gives an exam- 
ple of a 4-cube and the equivalent VEDIC network. 
Note that  this is only one of the ways the network can 

Gray code after i. 

be generated from the VEDIC network; by consider- 
ing a different ring as the basic level 0 ring, another 
equivalent network can be designed. This can also be 
generalized to the case of cube connected cycles. 
3.4 k-ary n-Cube network 

k-ary n-cubes are generalization of the binary n- 
cube where the cube is of dimension ncube and there 
are k nodes in each dimension. The graph of the net- 
work is defined as [18] G = (V, E), where 

V = {z I x is a ncube-digit basek integer, i.e., 
z = x,x,-1 ...xl, and xi E< b >} 

{(x, y) I x,y E V, and there exists 
1 5 j 5 ncube such that (xj  - yj)modk = 1 
and xi = yi for all i # j} 

and 
E = 

Thus, two nodes in G are connected if and only if their 
labels differ in exactly one base-k digit by one. 

The networks are regular and each node has a de- 
gree D where 

ncube if k = 2 
D = {  2ncube else 

Like the binary n-cubes the k-ary n-cubes also are as- 
sured to have a Hamiltonian circuit. The Hamiltonian 
is generated by using the generalized cyclic Gray codes 
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Figure 3: Example of 4-cube and the equivalent VEDIC network. 
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Figure 4: Ezample of %ary %cube, its Hamiltonian cycle and the equivalent VEDIC network. 
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[MI. There are numerous algorithms to  generate these 
cyclic Gray codes and depending on the algorithm the 
VEDIC parameters can be evaluated. However, in each 
case the basic level 0 ring is the Hamiltonian circuit 
and the other interconnects are the level 1 rings. The 
level 0 ring size n is kncrbs. The number of levels 1 is 2. 
The difference between number of nodes in adjacent 
levels m is knc=b*.  The distance between start and end 
of ring q depends on the Gray coding algorithm used. 
Figure 4 gives an example of a 3-ary 3-cube and the 
equivalent VEDIC network. 
3.5 Cayley Graphs 

Cayley graphs are group theoretic models for de- 
signing and analyzing symmetric interconnection net- 
works. Given a set of generators for a finite group GI 
a Cayley Graph is generated by making a graph where 
the vertices correspond to the elements of the group G 
and the edges correspond to the action of the gener- 
ators [9]. Cayley graphs are vertex symmetric graphs 
and it has been conjectured that there exists a Hamil- 
tonian cycle for all Cayley graphs. For specific graphs 
the Hamiltonian property can be demonstrated. In 
this paper we discuss the mapping of two specific ex- 
amples of Cayley graphs into VEDIC networks. 

3.5.1 Pancake Graphs 

Pancake graphs are Cayley graphs where the genera- 
tors correspond to pancake flips. For a size n permu- 
tation the flipping of the top i pancakes with a spatula 
gives the i th generator. Thus there are (n - 1) gener- 
ators and the graph has n! vertices each with degree 
(n - 1). The Pancake graphs have a Hamiltonian cir- 
cuit. Suppose the ith generator is denoted by gi then a 
edge connected to a vertex can be represented by the 
corresponding generator and a path between two ver- 
tices can be represented by a sequence of generators 
corresponding to the sequence of edges belonging to 
the path. The Hamiltonian cycle can be represented 
as a sequence of n! generators. Consider the following 
sequence of generators: 

(1.0) Take a sequence of n! 91s. 
(2.0) for i = 2 to  i = n 

(2.1) replace every ( i!)*h symbol with gi. 

It can be shown that the resultant path is a Hamilto- 
nian circuit. Given the Hamiltonian cycle it is easy to 
evaluate the VEDIC network parameters. The network 
has only two levels and the base level 0 has n! nodes 
and the number of level 1 rings from each node is equal 
to n - 3. The span of the level 1 rings varies with the 
node, however it follows a sequence, for eg. in case of 

n = 4 the sequence is {6,13,8,18,13,20}. Similar ex- 
pressions can be obtained for other n-Pancake graphs. 
Figure 5 shows a 4-Pancake graph and the equivalent 
VEDIC network. 

3.5.2 Star Graphs 

Consider a graph whose vertices are labeled as the 
permutations of 1 through n. Also, two permutations 
are connected if by interchanging the first symbol with 
another symbol in the first permutation results in the 
second permutation. The resultant graph is the s tar  
graph [9]. Star graphs are attractive alternative to  the 
n-cube because the topological properties are better 
or comparable to the n-cube. The degree of the graph 
is n - 1 and it interconnects n! vertices in the graph 
while the n-cube interconnects 2" vertices with degree 
n. 

It has been shown that star graphs have a Hamil- 
tonian cycle [19]. Once the Hamiltonian has been ob- 
tained it is easy to construct the equivalent VEDIC 
network. The parameters of the network are obtained 
from the topological description of the star graph and 
its Hamiltonian circuit. Figure 6 illustrates the case 
of n = 4. The level 0 ring has n! = 24 vertices. Each 
vertex has n - 3 = 1 level 1 ring originating from it. 
The span of the level 1 rings varies with the vertex but 
follows a sequence; in this case {6,16,8,18,10,20}. 

4 Conclusion 
The main conclusion of this paper is that we have 

convincingly shown that VEDIC networks are univer- 
sal and there exist simple algorithms to evaluate the 
paramaters of the VEDIC networks for most commonly 
known networks. If the networks to be modeled do 
not have hamiltonian circuits then the evaluation of 
the VEDIC parameters is more involved. But, as we 
have noticed, most commonly used interconnection 
networks do have hamiltonian circuits. 

The VEDIC network as a tool not only models the 
existing interconnection networks, but also offers a 
fertile source for generating new network topologies. 
The universality of the VEDIC network enables us to 
present the generated networks in a uniform and com- 
parable framework. 

One of the immediate advantages of the VEDIC 
network is to generate new interconnection networks 
which are application specific. The desired features of 
the networks can be obtained by manipulating the pa- 
rameters of the VEDIC network. The features need to 
be evaluated only once for the VEDIC network. Sub- 
stituting the values of the parameters determines the 
features of the particular network. 
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Figure 5: Pancake graph with n = 4 and the equivalent VEDIC network 
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Figure 6: Star graph with n = 4 and the equivalent VEDIC network 
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We have shown the efficacy of the VEDIC network 
by suggesting deadlock-free wormhole unicast, multi- 
cast, and multiple multicast routing algorithms for the 
VEDIC networks. Since most of the known networks 
are special cases of the VEDIC network, the proposed 
unicast and multicast routing algorithms are applica- 
ble to all these networks. Thus, we rid ourselves of 
proposing different multicast routing algorithms for 
each network. 

The VEDIC network in its most general form is a 
very powerful framework for studying the properties of 
other networks and their interrelationships. The fam- 
ilies of networks generated by this network on varying 
certain parameters can be investigated in detail. We 
are currently investigating the generation of intercon- 
nection networks for specific applications like image 
processing and computer vision. We are also mapping 
the proposed routing algorithms onto the more com- 
mon networks and optimizing them. 

We believe that we have hardly touched upon the 
possible network topologies that can be generated by 
the VEDIC network. The areas of future research on 
VEDIC network would be to quantize the correlation 
between the various parameters and their physical sig- 
nificance. One could then automatically generate net- 
works for a specific application. 
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