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Abstract 

In this paper we present two new fault-tolerant routing algorithm for hypercubes. The first 
algorithm requires only local knowledge of the faulls whereas the s m n d  algorithm requires global 
knowledge. Unlike previous fault-tolerant muting algorithms, our algorithms take into considemtion 
the dynamic conditions (link contention) of the network. We have shoum that checking for dynamic 
conditions in fault-tolerant algorithms U essential. Performance evaluation by  extensive simulation 
of our algorithm3 and other fault-tolerant muting algorithms show that ours are better than previous 
algorithms by  as much as 50% and 500% in time and space, respectively. We ala0 observed that 
global information about the location of faults does not give ILE additional benefit. This observation 
is true regardless of the considemtion of the dynamic conditions in the network. 

1 Introduction 
The hypercube topology has been a popular candidate for multiprocessor machines in recent 

years. The Cosmic Cube 1 [I], iPSC-2 [2], and Ametek 2010 are commercially available hyper- 
cube architectures. Hypercubes have many desirable properties such as structural regularity, easy 
scalability, strong hierarchy, and low degree and diameter [5]. A good routing algorithm is a must 
for efficient execution of problems in any multiprocessor machine. The routing algorithm must be 
adaptive. Furthermore, due to presence of thousands of components in such a machine, the routing 
algorithm must be capable of routing despite the failure of a few of these components. As there exist 
many parallel paths between any two nodes in a hypercube 151, it is easy to develop both adaptive as 
well as fault-tolerant routing algorithms for hypercubes. In this paper we present two fault-tolerant 
routing algorithms for hypercubes which consider the dynamic conditions of the network. These 
algorithms are shown to be much superior to the existing algorithms. 

free deterministic routing algorithm in which a message is routed in increasing order of dimensions. 
The path taken by a message is fixed for a given source and destination node pair. Though this 
algorithm is simple and easy to implement in hardware, it is too restrictive and does not use the rich 
connectivity of the hypercube. Several adaptive, minimal path routing algorithms have also been 
proposed for hypercubes. Li [9] proposed an algorithm called k - 1 in which there exist k paths in 
one direction and one path in the opposite direction between any two nodes which are k hops apart. 
This algorithm is not fully adaptive and its performance is similar to the deterministic algorithm 
at high network traffic. Konstantinidou [SI presents another partially adaptive algorithm. In his 
algorithm certain nodes become the bottleneck even during moderately heavy traffic. 

As the size of the network grows the probability of a component failure increases. Hence, the 
routing algorithm must be capable of avoiding these areas of faults. Fault-tolerant routing algorithms 
for several networks have been proposed. Gordon and Stout [7] present a framework for the analysis 
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Numerous routing algorithms have been proposed for hypercubes. Sullivan [3] proposed a deadlock- 
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of fault-tolerant routing algorithms for hypercubes. They study the probability of a component 
failure versus the probability of successful delivery of messages. &f&anian and Hakimi [4] present 
fault-tolerant routing algorithms for DeBruijn networks. Chen and Shin 161 present two fault-tolerant 
algorithms for the hypercubes. In the first algorithm each node requires knowledge only about the 
links connected to it, whereas in the second algorithm the nodes require global knowledge. None of 
these fault-tolerant routing algorithms consider the dynamic behavior of the network l i e  avoiding 
link contention. 

The contributions of this paper can be summarized as follows: 
We show that checking for dynamic conditions in fault-tolerant routing algorithms leads to 
much improved performance. 
We present two fault-tolerant algorithms for hypercubes which incorporate checks for dynamic 
conditions (link contention). The first algorithm requires no global knowledge of the network 
fault conditions while the second algorithm requires fault information for every link or node. 
These algorithms perform as much BS 50% and 500% better than previous algorithms in time 
and space, respectively. Our results are based on extensive simulation of the algorithms. 
We also observe that global information about the location of faults does not give us additional 
benefit. This observation is true regardless of the consideration of the dynamic conditions in 
the network. 

The rest of the paper is organized as follows. Section 2 describes the necessary notation and 
definitions followed by a description of the two fault-tolerant routing algorithms suggested by Chen 
and Shin [6] in Section 3. The deficiency of both these algorithms is also shown in Section 3 using an 
example to create a live-lock situation. Section 4 describes the two new adaptive algorithms. The 
simulation model used is described in Section 5 .  Section 6 discusses the results of the simulation 
and compares the performance of the algorithms. The paper concludes with Section 7. 

2 Preliminaries 
In this section we describe the necessary notation and definitions that will be used in this paper. 
A hypercube of dimension 'n' or an n-cube consists of N = 2" nodes, with the nodes numbered 

from 0 to 2" - 1. Every node in an n-cube is represented as an n-bit binary number. The least 
significant bit or LSB represents dimension 1, the next significant bit represents dimension 2, and 80 
on till the most significant bit or MSB, which represents dimension n. There exists a link between 
any two nodes iff the binary representation of their numbers vary by one bit. Each link is represented 
by a binary string with a lL-" symbol in the corresponding dimension. For example, the link between 
101 and 111 is represented by 1-1 as shown in Figure l(a). 

Following are some definitions of terms that will be used frequently in this paper. 
A connected hypercube with faulty nodes or links is called an injured hypercube. 
The Hamming distance between two nodes A and B with addresses %an-l ... a1 and bnbn-l ... b l  
is defined as [6] 

A path in a hypercube can be represented as a sequence of nodes in which every two successive 
nodes are neighbors. For example, let ra = 4, message source node be 3 = 0011, and destination 
node be 12 = 1100. One path between the two nodes is {3,7,15,14,12). An optimal path 
is a path whose length is identical to the Hamming distance between the source and the 
destination. 
A coordinate sequence [cl,cz, .... cn] represents the order of dimension in which two nodes 
M e r .  A path between any two nodes can also be represented as a coordinate sequence. For 
example, the coordinate sequence for the path in the previous example is [3, 4, 1, 21. 

We now state a few relevant properties of a hypercube. If A and B are any arbitrary nodes in an 
n-cube and k = H(A,  E) is the Hamming distance between the two nodes t,hen [5], 

There are k node disjoint optimal parallel paths between A and B. 
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There are k! optimal parallel paths between A and B. 
There are exactly n node disjoint parallel paths between A and B, of which k paths are of 

Ekom the above properties it is obvious that if the number of faulty nodes and links is less than 
n, then there is at least one path of length k + 2 between any two non faulty nodes, k hops apart 

length k and the remaining n - k paths are of length k + 2. 

(51. 

3 Drawbacks of previous fault-tolerant algorithms 
In this section we describe two fault-tolerant routing algorithms suggested by Chen and Shin 

[6]. The deficiency of both these algorithms is also shown by using an example to create a live-lock 
situation. 

Previous work on fault-tolerant routing [4, 6, 71 do not take into consideration the dynamic 
conditions in the network. In this section we discuss two fault-tolerant algorithms, namely, A 1  
and A 2  [SI. Both A 1  and A2  route a message in a hypercube with a maximum of n - 1 faulty 
components. Besides the message itself, every packet carries a coordinate sequence of the path and 
a tag field given by (&dl ... &-I). The latter is used to keep track of spare dimensions that are used 
to bypass faulty nodes or links. The n bits of the tag are r a t  to 0 at the start of the message. So, 
a message is represented as ( k , [ q , c 2 ,  .... cL],tag,messc~ge) where k is the number of hops remaining 
to be traversed by the message. On receipt of a message each node checks the value of k .  A message 
reaches the destination if k = 0, else each node attempts to route the message via an available 
optimal path dong the dimensions in the coordinate sequence. If all such paths are faulty then 
the node uses a spare dimension to bypass the injury, and the information that the message used a 
spare dimension is stored in the tag carried along with the message. 

The difference between the two algorithms A 1  and A2  is in the amount of network information 
present at each node. In A l ,  each node has information only about those liiks connected to itself. 
Due to the limited information the path chosen by a message is not always optimal. On the other 
hand, in A2, enough information is available a t  each node to enable the message to be routed along 
an optimal path (if one exists) [SI. As a result the message is capable of bypassing faulty nodes or 
links along the path to the destination. For details about algorithms A 1  and A2, refer to [6]. 

1-1 

(4 (b) 

Figure 1. Illustrating the failure of Algorithm A l .  

We now present an example to illustrate algorithm A l .  Consider a 3-cube shown in Figure l(a) 
where the links -10 and 01- are faulty. Let node 1 generate a message “m” for the destination 
node 2. The original message as semt by the sourw is (2,[2,1],OOO,m). It sends (1,[1],000,m) 
to node 3. Since the first dimension is faulty and no other optimal path exists, node 3 will use a 
spare dimension and route (2,[1,3], 101,m) to node 7,  which sends (1,[3],101,m) to node 6. Now 
dimension 3 is faulty and no other optimal path exists. So node 6 uses a spare dimension and 
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sends (2,[3,2], 111,m) to node 4 which sends (1,[2],11l,m) to node 0, and finally node 0 sends 
(0, [I, l l 1 ,m)  to 2, which is the destination. The total number of steps required to route is six. 

Based on the above algorithm we can observe the following [6]: 
The number of hops is increased by two whenever a spare dimension is used. 
The maximum number of hops required to route using A1 algorithm is H ( A ,  B) + 2 * (n - 1). 

Algorithms A 1  and A2 are both fault-tolerant but they do not take care of the dynamic conditions 
of the network. In each of the above algorithms, the condition of a link is either faulty or not faulty. 
A message requiring a link that is busy must wait until that link is free. It cannot be routed on 
one of the remaining dimensions even though these links may be idle. The major advantage of 
the hypercube architecture is its rich connectivity. The number of optimal parallel paths between 
two nodes A and B is H ( A ,  B)!. But these algorithms are not capable of using all the potential 
paths. We now present an example to illustrate the need for new algorithms. Figure l(b) shows the 
occurence of a live-lock situation if we use algorithm A1 to take care of dynamic conditions. 

Figure l(b) shows a 3-cube with links -10 and 01- faulty. The source and destination are nodes 0 
and 7, respectively. Further, let links -00 and 00- be busy with other messages. Initially, the message 
a t  node 0 is (3, [3,2,1],000,m). Node 0 finds link -00 busy and sends message (2, [3,1]000,m) to 
node 2 along dimension 2. Since there is no optimal path from node 2 to node 7, the message 
(3, [3,1,2], 111,m) is sent back to node 0. If the links -00 and 00- are still busy then the message 
(2,[3,1],111,m) willberoutedagain tonode2alongdmension 2. When asearchforsparedimension 
is made, the message finds all bits of the tag to be set. Thus, the message will not be able to route 
from node 2 and suffers live-lock. 

This follows from the fact that a message may use at most n - 1 spare dimensions. 

Algorithm N1 
if ( the message has not terminated) t hen  

Try rout ing along a dimension i n  the remaining coordinate sequence. 
if (spare dimension was not used l a s t  hop) then  

check a l l  k dimensions 
if (one of the required l ink is not f au l ty  and not busy) t h e n  

if ( a t  l e a s t  one of the required l inks is not faul ty  but busy) t h e n  

if ( A l l  required l i nks  are f au l ty )  t hen  

route  message 

block message 

Record a l l  f au l ty  dimensions. 
Choose a spare dimension ( a  l i n k  along a non-optimal path) 
if ( t ha t  channel is f r ee )  t hen  

else 

Set tagmodified b i t .  

route  message 

block message 
else /* Spare dimension was used last hop */  

check only the f i r s t  'k - 1' dimensions 
if (the required l i n k  is not f au l ty  and not busy) then  

if (at l e a s t  one of the required l inks is not f au l ty  but busy) t h e n  

if ( A l l  required l i nks  are f au l ty )  t hen  

route  message 

block message 

backtrack on t he  kth dimension 
end .  

4 New fault-tolerant algorithms 
In this section we present two new fault-tolerant algorithms for an injured hypercube with a 

maximum of n - 1 faulty nodes or links. These algorithms take into consideration the dynamic 
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condition of the network. In algorithm N1 a node has information only about the links connected 
to it, whereas in N2 the nodes have sufficient information to route a message using optimal path. 
The procedure to acquire global knowledge is the same as in Chen and Shin's algorithm [SI. Detailed 
pseudo-code of algorithms N1 and N2 are given in appendix A. 

4.1 Algorithm N1 
In algorithm N1, the message is represented as (k, [c1,cz, ..., 9 1 ,  tag, tagmodified, m) where 

k is the number of hops from current node to destination node, 
[cI,cz, ..., ck] is the coordinate sequence from current node to destination node, 
tag is the n bit tag field containing information on faulty nodes visited (all n bits are initially 

tagmodified is a single bit that is set if tag is modified during the last hop (this bit is initially 

m is the message itself. 

cleared), 

clear), and 

In algorithm N1 the coordinate sequence is checked to see whether the message has reached the 
destination. If it has not reached then the tagmodiJid  bit is checked. If the tagmodified bit 
is cleared then the message did not use a spare dimension during the last hop and the algorithm 
attempts routing on all the k dimensions. If a l l  the k dimensions are faulty then the message uses 
a spare dimension (it. ,  a non-optimal path). Elm, the message blocks till a link becomes available. 

When the tagmodified bit is set, the algorithms attempts to route the message only along the 
first k - 1 dimensions in the coordinate sequence. This is due to the fact that the kth dimension 
was a spare dimension during the last hop and the message may backtrack iff the first k - 1 links 
are faulty. Otherwise, there is a possibility that the message could ping pong between two nodes. If 
one of the required links is not faulty and not busy then the message is routed along that channel. 
Again, if none of the links are available, but not all of these are faulty, then the message blocks till 
the link(s) become available. Finally, if all the k - 1 links are faulty then the message backtracks 
along the kth dimension. For detailed psuedocode please refer to [lo]. 

4.2 Algorithm N2 

Algorithm N2 
if (the message has not terminated) then 
Try routing along a dimension in the remaining coordinate sequence. 
if ((the required link is not faulty) and (not busy) and 
(there exist an optimal path along that link)) then 

if ((at least one of the required links was non-faulty) and (busy)) then 

if (all the required links are faulty) then 

route message 

message blocks 

Record all faulty dimensions. 
Choose a spare dimension (a link along a non-optimal path) 
if (that link is free) then 

else 
route message 

block message. 
end. 

In algorithm N2 we do not require the additional bit ( tagmodif id)  in the message header. If 
a message takes a spare dimension, say from node A to node B (because of all optimal paths from 
A to destination being blocked), then node B has the information that there exist no optimal path 
to the destination through A. So the message will never go back to node A from which it arrived. 
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Thus, we do not need tagmodi f ied in the message to show whether or not a spare dimension was 
used during the last hop. While checking the coordinate sequence the algorithm sets a flag if (an) 
optimal path(s) exists. If the message is not routed due to link contention, it must block. But if 
no such optimal path exists, then the flag stays reset and the message uses a spare dimension. We 
now present an example to illustrate algorithm N2. 

Consider the injured cube shown in Figure l(b) with links -10 and 01- faulty. Further, let node 
2 and node 7 be the source and destination of the message, respectively, and links -00 and 00- be 
busy with other messages. So, initially the message generated at node 2 is (2, [3,1], 000,m). Since 
all optimal paths from node 2 to node 7 are blocked, the message (3, [3,1,2], 111,m) reaches node 
0. Though links -00 and 00- are busy, the message will not try link 0-0 to node 2, but instead it sets 
a flag and blocks till one of the two busy links become free (since node 0 has information that there 
is no path to node 7 via node 2). Subsequently when the links become free the message is routed 
to node 7. For detailed psuedocode p l e a  refer to [lo]. 
5 Simulation Model 

This section describes in detail the model used during simulation. A total of 5 event driven 
simulators were written. The algorithm simulated were A1 and N1 (with no global information), 
A2 and N2 (with enough global information for optimal path routing), and finally the un-injured 
hypercube as a reference. In all these simulations the unit of time was the time required to transmit 
one bit between two adjacent nodes. Each node was assumed to have an infinite buffer to queue 
the messages that contend for the same channel. The simulation also uses a uniform reference 
pattern which means that all nodes are equally likely to be the destination. Message lengths are 
geometrically distributed in multiples of bytes with a mean of 25 bytes or 200 bits. 

The performance of a routing strategy is measured by means of the following parameters, namely, 
auemge message latency and the average message buger length A good routing algorithm has a 
small value for both these parameters. The effect of injuries on the maximum network traffic is 
studied, i.e., the value of inter-arrival time at which the network saturates due to hot-spots or large 
message buffer. We also study the effect of proximity to injured nodes or links on message latency 
and queue length. This was done by calculating the mean latency of nodes as a function of number 
of injured links they have. 
Each of these programs were executed for 

4-cube and 5-cube 

Keeping the value of n constant, the value of p was varied from 0.05 to 0.40 in steps of 0.05 
(By varying p we vary the mean interval). 

For each value of n and p,  50 dil€erent sets of n - 1 nodes from 2” nodes were randomly 
chosen. These nodes were designated as faulty nodes. 

For a given value of n and p and for a given set of injured nodes the simulation was executed 
with ten different initial values of random number. For each set the confidence interval is 95% 
with an error of less than 5%. 

Each of the simulation was run for a duration of two million time units 

For further details on the simulation model please refer to [lo]. 

6 Results and Discussion 
In this section we present simulation results of the fault-tolerant routing algorithms in an injured 

hypercube. We show that performance improves dramatically for our algorithms and also that 
additional gbbal information provided at  each node to route optimally does not improve performance 
at all. 

Figure 2(a) and Figure 2(b) show the variation of message latency with respect to the injection 
ratio p .  It can be seen that there is a dramatic difference between algorithms A1 and N1, and 
between A2 and N2. The improvement is more than 50% at high traffic. On the other hand 
the difference between N1 and N2, and A1 and A2 is negligible, which illustrates the fact that 
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(a) 4 Cube (b) 5 Cube 

Figure 2. Average Ltrteney us p .  

additional global information does not help. This is (due to the fact that the number of optimal 
paths that exist between two nodes in an injured hypercube is less than in an uninjured hypercube. 
So the remaining channels are loaded more heavily, which causes the queues to be much longer, 
thereby increasing the message latency. This problem gets worse as the traffic increases and finally 
these crucial links are used fully at which point the network can no longer sustain the traffic and 
we have unbounded queues on the nodes connected to these faulty links. Thus, the advantage of 
routing through an optimal path, namely, fewer number of hops, is offset by a reduction in number 
of parallel paths available. 

(a) 4 Cube (b) 5 Cube 

Figure 3. Average Queue Length vs p .  

Figure 3(a) and Figure 3(b) show the average length of the message buffers or queues in the 
network. We again see that the performance of algorithms N 1  and N2 are far superior to A1 and 
A2. At high traffic algorithms A1 and A2 require 5 t.0 10 times as much buffer space as N 1  and 
N2. The performance of N1 and N2 is only slightly mferior to routing in un-injured hypercube. 
firthermore, the negligible difference in queue length between N1 and N2,  and A1 and A2 clearly 
shows that additional global information does not improve performance. 

7 Conclusion 

In this paper we have proposed two fault-tolerant routing algorithms for injured hypercubes 
which also take into account the dynamic conditions ol'the network like link contention. Algorithm 
N1 requires each node to know only the fault information of its links and routes messages dong 
optimal paths. Non-optimal paths are used only if all the optimal paths are blocked as a result 
of faulty components. However, due to the insufficient information on faulty components, N 1  does 
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not guarantee optimal paths. To ensure shortest path routing, we proposed algorithm N2 which 
requires each node to have enough inbrmation to enable the message to be routed along optimal 
path, if one exists. 

n o m  our extensive simulation study we can conclude that checking the dynamic conditions of 
the network is very important. The proposed algorithms performed by as much as 50% and 500% 
better than previous fault-tolerant algorithms in terms of time and apace, respectively. 

We also observed that muting algorithms with global knowledge do not seem to perform much 
better than algorithms with knowledge only about their own links, when routing along optimal path 
whenever possible. The improvements in time and space using global knowledge is marginal whereas 
the overhead in acquiring this global knowledge can be substantial. 
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