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Abstract

The connectivity and fault tolerance measures of various interconnection networks assume
that all the neighboring nodes of any node could be faulty at the same time. The forbidden
faulty set analysis of restricted connectivity and fault tolerance assumes that a set of nodes
cannot be faulty at the same time. We discuss the difficulties in analyzing the fault-tolerance
of directed Cayley graphs using forbidden faulty sets. A new forbidden set is defined with
pairs of nodes as elements to study the fault tolerance of the Cayley digraphs. The fault
tolerance under this forbidden faulty set is shown to be (2n—5). We also present an algorithm
for determining the connectivity of Cayley digraphs under (2n — 4) faults and evaluate its

time complexity.

1 Introduction

Cayley graphs have been studied by many authors in recent years [4, 3, 12, 15, 21, 28, 10] as
efficient interconnection networks for parallel processing. Most of the interconnection networks
studied for efficient parallel computation are modeled as undirected graphs. However, in reality a
communication link between two processing elements (e.g. optical link) is often realized by two
directed links in opposite directions [15, 8, 16, 13]. This has led to the study of symmetric directed
interconnection networks as efficient topologies for multiprocessor networks [12, 15]. Machines
with directed communications are easy to construct, and they allow faster communication by
simplifying the protocols used at the link level [11, 27, 9]. The uni-directional counterparts of the
well studied undirected interconnection networks like the star graph [13], the hypercube [9, 16|, and
mesh [8] have also been proposed and analyzed by many researchers. Recently, a set of directed
Cayley graphs called rotator graphs has been introduced in the literature [12]. The cycle prefix
digraphs introduced by Faber, Moore, and Chen [15] were similarly defined. These sets of graphs
are isomorphic except for reversed directions. The diameter of n-rotator graph and cycle prefix
digraphs is lower than that of star and pancake graphs for the same number of nodes. Similar to

the star graph these directed Cayley graphs have a degree of (n — 1), but the average distance
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between nodes is lower than the star graph. A comparison of the diameter and the average distance
of star, pancake, hypercube, and n-rotator has been studied by Corbett [11].

The fault-tolerance of Cayley graphs [2, 1, 5, 6, 12, 1, 11] has been investigated extensively
in the literature. Communication structures with high fault tolerance have also been introduced
in the literature [19, 26, 20, 23, 7]. It is known that the hierarchical Cayley graphs [2, 12] and
hierarchical Cayley digraphs (with some exceptions, see [17, 6]) are optimally fault tolerant. One
of the widely used measure is the connectivity of the network. The fault tolerance of the network
with connectivity x is kK — 1. Apart from the connectivity, many other fault tolerance metrics
have been proposed. Pradhan and Meyer [25] discuss the inconsistencies of various fault tolerance
measures for interconnection networks. A multiprocessor network is considered to be functional
as long as there is a path between any two processors, under the presence of F faults [2]. A
directed graph must be strongly connected in order to be F-fault tolerant. A network is said to
be maximally fault tolerant when the fault tolerance is one less than the degree of the network.
This measure assumes that all the nodes (or links) connected to any node in the interconnection
network could fail at the same time. However, in reality the failure of all the nodes connected
to any node at the same time is highly unlikely. Therefore, an entirely different fault tolerant
analysis is necessary to study the fault tolerant properties of interconnection networks.

Esfahanian [14] introduced the concept of forbidden faulty sets for conditional fault tolerance
of interconnection networks, especially for n-cube. Latifi, Hegde, and Naraghi-Pour [22] have
recently generalized the forbidden faulty set concept introduced by Esfahanian [14] for n-cubes.
The generalized fault tolerant properties of star graphs have also been studied in the literature [29].
In this paper we study the fault tolerance properties of rotator and cycle prefix digraphs under
certain forbidden faulty sets. This paper is organized as follows. In section two, the definitions
of rotator and cycle prefix digraphs, fault tolerant measures and forbidden faulty sets are given.
The maximum fault tolerance of Cayley digraphs using forbidden sets is given in section three.
Section four discusses the algorithm for determining conditional connectivity of Cayley digraphs

and its time complexity. Section five concludes the paper with the summary of results.

2 Preliminaries

In this section we present definitions of directed Cayley graphs and other fault tolerance parameters
which will be used in subsequent sections. The definition of Cayley graphs and other group
theoretic terms can be found in Akers and Krishnamurthy [3, 4] and Harary [18]. The rotator
graph and the cycle prefix digraphs are denoted by R, and C,, respectively. The notation D, is
used to denote both R, and C,. The notation G is used to denote a general graph. The set of
nodes and edges of G are denoted by V and E respectively. Since D,, and R,, are directed graphs

the nodes and edges are denoted by V' and E respectively.



Definition 1 The generators of the (n, k)-rotator graph R, ) are of the form

T9T3...Til1Ti41---Tk zf2§z§k<n
1T ... TiTiy1 ... T = . .
ToTy... . Ti%Tiv1...2%; ifk<j<n

The total number of nodes and degree of R x) are n!/(n — k)! and (n — 1), respectively.
Definition 2 The generators of the (n, k)-cycle prefix digraph C(, xy are of the form

Til1 .. - Ti1Ti41 - - - Tg if2<i<k<n

1T ... T;Tjy1-.-Tp = ; .
et TjT1T2 .. . TiTjy1 - - - Th—1 sz<]§n

The number of nodes and degree of C, ) are the same as that of R, k).

In this paper we consider special cases of R, ) and C(, 1), the n-rotator R,, and the n-cycle prefix
digraph C,. The generators of R,, and C, are of the form @&y ... %Tis1 ... Tn 2> ToTs ... TiZ1Tiss
co.Tpand 1Ty .. TiTiLy - Ty I . X 1Tiy1 - - - Tp, respectively. Both R, and C, have n!
vertices, degree (n — 1), connectivity (n — 1), and diameter (n — 1). The results obtained for R,
and C,, can be easily extended to R, ) and C(, ). Most of the results presented here for directed
Cayley graphs refer to the rotator graph. We use the terms rotation and generator interchangeably,
while discussing rotator graphs. It should be noted that the rotator graphs are isomorphic to the
cycle prefix digraphs with the direction of the edges reversed [12]. Fig. 1 shows an example of
the 4-rotator graph. The direction of the links are indicated by the arrows. Since the generator
go is reversible, the resultant directed links between two adjacent vertices are denoted by thick
undirected links. The link denoted by an alphabet (0) denotes an outgoing link. This link is
connected to the node with a link marked with the same alphabet and (i) (means incoming). We

summarize some of the known properties of R,, [12, 15, 24].

e R, is hierarchical and vertex symmetric.

The diameter of R, is (n — 1).

The in-degree and out-degree of R,, is (n — 1).

The fault diameter of R, is less than or equal to (n + 1).

R, is one step (n — 1)-fault diagnosable.

Definition 3 The vertex connectivity k(G) of G is defined as the minimum number of faulty

vertices S required to disconnect G.

The fault tolerance f is the maximum number of faults that G can tolerate without being

disconnected. Therefore, fault tolerance f of G is one less than the connectivity. In the case of

Cayley digraphs D, if a directed edge € = (u,v) € E, then the node v is adjacent to node u
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x(0) w(o) ro) q(o)

Figure 1: 4-rotator graph (R4)

(converse is not necessarily true). Every node has (n — 1) incoming links and (n — 1) outgoing
links. All the nodes connected to the incoming links will be referred to as incoming nodes and
the nodes connected to the outgoing nodes will be referred to as outgoing nodes. The set of all
incoming nodes of u are denoted by In(u), and the set of all outgoing nodes of u are denoted by
Out(u). There is exactly one node z for every node u in D, where z € In(u) and z € Out(u),

due to the only reversible generator g-.

Definition 4 All the incoming and outgoing nodes of any node u € V, (totaling 2n — 3) will be
referred to as neighboring nodes N(u) of u, where N(u) = (In(u) U Out(u)) — (In(u) N Out(u)).

A node v = Out(u), can also be represented as v = g; X u, i.e., v is obtained from u by applying the
generator g;, where 2 < i < n. We use the terms vertex, node, and permutation interchangeably.
We use the notation *C', to denote the binomial co-efficient throughout this paper. All n! nodes
of D,, are associated with a unique permutation m of n numbers. The number at the i** position
of the permutation 7 is referred to as 7[i], where 1 < ¢ < n.

3 Fault tolerance of Cayley digraphs

Let S € V, such that |S| = k(R,) = (n — 1). If the failure (or removal) of the nodes in the set
S results in a disconnected graph of size R, — |S|, the set S is called a minimum cut. There are
n'C, distinct subsets of size k, and only n! of them are minimum cuts. Since the ratio n!/™C, is
very small as n increases, the probability of failure of all elements of n! minimum cut sets is very

small.



The fault tolerance and connectivity measures assume that any subset of processors (or links)
is equally likely to be faulty. A forbidden set of undirected graphs [14, 29] is defined as the set
of all nodes adjacent to any node. The generalized fault tolerance under forbidden sets is usually
higher than the fault tolerance of the graphs without forbidden sets. This is due to the fact that
any node can communicate in each direction with at least one adjacent node. Therefore, each
minimum cut can be a forbidden faulty set, i.e, we can assume that all the neighboring nodes
of any node in R,, cannot fail at the same time. However, the forbidden sets of directed Cayley
graphs are different. There are (2n — 3) neighbors of a node in R,,. If the forbidden faulty set
is the set of all neighboring nodes of any node, then the generalized fault tolerance under this
condition will be the same as the fault tolerance of R,, without forbidden sets. Since all the nodes
of a forbidden set cannot fail at the same time, in the worst case, one incoming or outgoing node
will be non-faulty. This will not make any difference in the generalized fault tolerance measure of
R, since the failure of all the (n — 1) outgoing or incoming nodes will disconnect the graph. The
generalized fault tolerance under this condition is (n — 1).

The above selection of forbidden sets is too restrictive and cannot be used for comparison with
other undirected graphs. Therefore, the forbidden faulty set F; is defined as the the set of (n —1)
elements, F; = {(z), (x3,93), ..., (Tn,yn)}. The element x is the node obtained by the generator
g2 of R,,. There are (n — 2) remaining elements in i, each consisting of a pair of nodes. An
element (zy,y;) of Fi, indicates that for any node u, zj is the incoming node obtained by the
generator g (i.e., for some node p, p = g X u) and yy is the outgoing node (i.e., for some node g,
u = g X q), where 3 < k < n. All the elements of F; cannot be faulty at the same time, i.e., at
most (n — 2) elements can be faulty at the same time.

Lemma 1 There exists cycles of length k in D,,, where 3 < k <n and n > 3.

Proof. The proof of this lemma follows directly from the definition of the directed Cayley graphs
[12]. O

Lemma 2 For any pair of vertices (u,v) in R, where v = g; X u, the number of nodes common

to the neighboring nodes of u and v, excluding the nodes u and v s,

1 ifi=3
0 otherwise

{N(w) v} N {N@) — u}] = {

Proof. The generator g, is the only generator of R,, that is reversible. Consider a pair of vertices
(u,v) € V, and v = g3 X u. Since there are no 3-cycles (cycles of length three) in R, with two
nodes connected by generator gy, both nodes u and v have 2(n—2) distinct neighbors each. Similar
argument holds for nodes connected by generators g4, gs, . .., g,. However, if v = g3 x u, then g3

applied twice to v would result in node u. Therefore one of the outgoing node of v is an incoming
node for w. This makes {N(u) —v} N{N(v) —u}| =1. O

Lemma 3 For any pair of arbitrary nodes (u,v) in R,, the total number of distinct neighbors of
uwand v is [{{N(u) — v} U{N(v) —u}} — {{N(u) —v} N {N(v) — u}}| > 4n — 10, for n > 4.
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Proof. Let us consider five possible pairs of nodes (u, v).

Case I. v = g; X u, where i = 3: It is known from Lemma 2 that [{N(u) — v} N {N(v) — u}| =1,
for i = 3. Therefore, [{{N(u) —v} U{N(v) —u}} —{{N(u) —v} N {N(v) —u}} = 4n — 10 (see
Fig. 2).

Figure 2: 3-cycle in R,

Case II. v = g; X u, where i = 2,4,5,...(n —1): Since no two neighboring processors in any 3-
cycle of R,, are connected by any of these generators, [{{N(u) — v} U{N(v) —u}} — {{N(u) —v} N {N(v) —u
=4n — 8.
Case III. v ¢ In(u) and v & Out(u) and the pair (u,v) is contained in a 4-cycle: It should be
noted that there are only three ways to generate 4-cycles in R,, with any node u. The sequence of
generators of the three /-cycles are s; = (94949494), $2 = (92939293), and s3 = (g3929392). It can be
observed from Fig. 3 ( for sequence s;1) and Lemma 2 that [{{N(u) — v} U {N(v) —u}} — {{N(u) — v} N {N(x
4n—10. Similarly, for the sequences ss and s3, [{{N(u) — v} U{N(v) —u}} — {{N(u) — v} N {N(v) — u}}|
= 4n — 10.

Figure 3: 4-cycle in R, (94949494)



Case IV. v & In(u), v & Out(u), the pair (u,v) is not contained in any 3-cycles or 4-cycles of
R., and v 1s two hops away from w: In this case there is only one node which is common to the
neighboring sets of u and v. Therefore, the number of distinct neighbors of (u,v) is 4n — 8.

Case V. v & In(u), v ¢ Out(u), the pair (u,v) is not contained in any 3-cycles or 4-cycles
of Ry, and v s at least three hops away from w: Since there are no common nodes between the
neighboring sets of u and v, [{{N(u) — v} U{N(v) — u}} — {{N(u) — v} N {N(v) — u}}| = 4n—6.

Therefore, any pair of arbitrary vertices (u, v) in R,, have at least 4n — 10 distinct neighboring
nodes, for n > 4. O

Theorem 1 The generalized fault tolerance of R,, under the forbidden set Fi is 2n —5 forn > 3.

Proof: Let us consider a pair of non-faulty nodes (u,v) € V in D,,. We consider four cases.

Case I: v = g3 x u or u = g3 X v: Nodes u and v have (n — 3) distinct incoming nodes, (n — 3)
distinct outgoing nodes, and one node each obtained by generator g;. One of the incoming nodes
of u (or v) is the outgoing node of v (or u). Again, the graph is always connected if the node
common to the node sets {N(u) — v} and {N(v) — u} fails, since there is at least one input and
output non-faulty node. However, if all the three nodes in the directed 3-cycle are non-faulty (Fig.
2), then the graph will become disconnected if all the incoming or outgoing nodes of all three
nodes in the 3-cycle are faulty. For the graph to be strongly connected, at least one incoming node
and one outgoing node should be non-faulty in any of the three non-faulty nodes in the 3-cycle.
Therefore, the generalized fault tolerance under this condition is 3(n —2) —1=3n — 7.

Case II: v & In(u), v € Out(u) and (u,v) are elements of a 4-cycle: Similar to Case I, the
failure of any of the common neighboring nodes to u and v will not disconnect the graph. When all
the nodes in the 4-cycle containing (u, v) are non-faulty, the fault tolerance is 4(n—2)—1 =4n—9
(Fig. 3).

Case III: v = go Xxu and u = go X v: For each node u and v, there are (2n—4) distinct neighbors
((n—2) incoming and (n —2) outgoing nodes), excluding nodes u and v. If all the (n —2) incoming
(or outgoing) nodes of both u and v are faulty, then the graph will not be strongly connected.
Therefore, at most (2n — 5) incoming or outgoing nodes can be faulty without disconnecting the
network.

Case IV: v & In(u), v & Out(u), and (u,v) is not contained in any 4-cycle: It can be easily
shown that the fault tolerance under this condition is at least 2n — 5. An example is given in
Fig. 4. Consider the case when all the nodes in Fig. 4 are non-faulty. Since all the incoming
and outgoing nodes of the nodes between u and v can be faulty, the worst case occurs when all
the incoming nodes of u and u' (= go X u) or all the output nodes of v and v' (= go X v) are
faulty (since the nodes in Fig. 4 form a directed path). Therefore, the fault tolerance under this
condition is 2n — 5. Similar arguments hold when node v is two hops away from node u. O

These Cayley digraphs offer high fault tolerance under the forbidden faulty sets. It can be
observed that the fault tolerance is (2n — 5) only under one condition (i.e., when the nodes
connected by the generator g, are non-faulty), otherwise the fault tolerance is at least (3n — 7).

There are n!/2 possible pairs of nodes connected by generator g, in D,,. Each pair has two possible



Figure 4. An example of non-adjacent nodes (u,v) in R,

sets of (2n—4) nodes (i.e., either incoming or outgoing nodes). Therefore, there are only n! possible
faulty sets with (2n — 4) nodes that can disconnect D,,. Since the maximum possible number of

(2n — 4) processor sets is "!C’(gn,4), the ratio n!/"!C’(gn,4) becomes very small as n increases. For
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of failure of such sets is very small in D,,.

and when n = 4, the ratio is —=. Therefore, the probability

example, when n = 3, the ratio is 6T

4 Algorithm for conditional connectivity

In this section we present algorithms for determining connectivity of the directed Cayley graph in

the presence of (2n — 4) faults or less. Let f be the set of faulty nodes in R,,, and |f| < 2n — 4.
Algorithm 1:

Step 0: If |f| < (n — 1), then R,, — | f] is connected. Stop.

Step 1: If (n—1) < |f| < (2n—4), and if there exists a node u € V, such that u ¢ f and In(u) C f

or Out(u) C f then R, — |f] is disconnected. Stop.

Step 2: If |f| < 2n — 4, then R,, — |f| is connected. Stop.

Step 3: If |f| =2n—4 and ( |f| = {In(u) U In(v)} or |f| = {Out(u) U Out(v)} ), for (u,v) € V,

and u = gy X v, then R,, — |f]| is disconnected; otherwise R,, — |f| is connected. Stop.

Time complexity analysis: Step 0 and Step 2 require constant time. In Step 1, since a
vertex v € f, may be an incoming node or outgoing node for any other node, we need to examine
(2n — 3)|f| vertices. For each such vertex, at most (n — 1)|f| comparisons are necessary to check if
In(v) C f or Out(v) C f. Therefore, the worst case computational requirement is O((n|f|)?). R,
with |f| = 2n — 4 faulty nodes, will be disconnected only when all the faults occur at the input or
output nodes of two adjacent nodes (u,v), where v = go x u (Theorem 1).

Before we discuss the implementation of Step 3 of Algorithm 1, we present some properties of
the neighboring sets of v and v. Consider any two nodes of R,,, namely 7, = 1234...(n — 1)n
and m, = 2134...(n — 1)n, where m, = go X m,. The set of incoming nodes and the set of outgoing

nodes of m, and 7, are of the form,

31245...(n — 1)n,
41235.. . (n —1)n,

nl123...(n—2)(n—1)




((23145...(n — 1)n,
23415...(n — 1)n,

Out(m,) = { 23451...(n—1)n,
| 23456...n1

((32145...(n — 1)n,

42135...(n — 1)n,

In(r,) = { 52134...(n —1)n,

n2134...(n — 2)(n — 1)

13245...(n — 1)n,

13425...(n — 1)n,

Out(r,) = { 13452...(n—1)n,
13456...n2

There are few things to note here. All the permutations in the incoming or the outgoing sets of
m, and m, have the same symbol at the second position. Only one permutation in any set has
a last symbol different from other elements of the set, and all other elements have the symbol
mu[n| (same as m,[n|) at the last position. Once the permutation with a different last symbol is
identified, it is easy to identify the permutations (m,,7,) and check whether their neighbors are
in the faulty set f. Now, Step-3 can be implemented as follows;

1. If m;[2] is not same for all m; € f, then divide the faulty f set into two equal sets f; and
f2 with the same 7[2]. If the division is not possible return not disconnected. If m;[2] is the
same for all m; € f, divide f into two sets f; and f» with the same 7[1], respectively. If not,

return not disconnected.

2. If (n — 3) permutations of the total (n —2) permutations of f; do not have same last symbol
and one permutation has a different last symbol, or (n — 3) permutations of f> do not
have same last symbol and one permutation has a different last symbol, then return not
disconnected. The permutations with a different n'" symbol in f; and f, are denoted as 7y,

and g, respectively.

3. Insert 7y, [1] and 7y, [1] in the n'™ positions of 7y, and 7y, to generate the permutations m,
and ,, respectively. If 7, and 7, satisfy the condition, 7, = g x m,, and (7, m,) & f,
and In(m,) C f and In(m,) C f, then return disconnected. If not, insert the symbol 7y, [n]
and 7y,[n] in the first position of the permutations 7y, and 7y, respectively. If the resultant
permutations z and y satisfy the condition, z = g, x y and (z,y) € f, and Out(n,) C f and
Out(m,) C f, then return disconnected. If not, return not disconnected.

It requires O(| f|) steps to compare elements 7;[2] and 7;[1] for all w; € f. The next step to identify

7y, and my, also requires O(|f|) steps. The comparisons in part three requires O(|f[?) steps in
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the worst case to find out whether the graph is disconnected. So, Step 3 requires O(|f|?) steps.
Therefore, the time complexity of Algorithm 1 is O((n|f])?).

5 Conclusion

In this paper we have used the forbidden faulty sets to analyze the fault tolerance of directed
Cayley graphs. A new forbidden set is defined with pairs of nodes as elements to study the fault
tolerance of the Cayley digraphs. The fault tolerance of Cayley digraphs under this forbidden
faulty set is shown to be (2n — 5). The fault tolerance of rotator graphs is (2n — 5) only when the
nodes connected by the generator g, are non-faulty. In other cases the fault tolerance is shown
to be at least (3n — 7). The Cayley digraphs become disconnected only when any two nodes
connected by the reversible generator are non-faulty and all their incoming nodes or outgoing
nodes are faulty. Therefore, there are only n! sets of size 2n — 4 which can disconnect the directed
Cayley graphs. In comparison to the total ™Cy, 4 sets of size (2n — 4), n! is very small as n
increases. We also presented an algorithm for the determining the connectivity of directed Cayley

graphs under (2n — 4) faults and evaluated its time complexity.
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