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A comparative study of star graphs androtator graphsSubburajan Ponnuswamy and Vipin ChaudharyAbstractMost of the popular interconnection networks can be represented as Cayley graphs. Stargraph is one of the extensively studied undirected1 Cayley graphs, which is considered to bean attractive alternative to the popular binary n-cube. The n-rotator graph and the cyclepre�x digraph are a set of directed Cayley graphs introduced recently. Since the recentlyintroduced directed Cayley graphs have some interesting properties, a comparative study ofstar and directed Cayley graphs is worthy of study. In this paper we compare the structuraland algorithmic aspects of star graphs with that of directed Cayley graphs. In the process wepresent some new results for star graphs and directed Cayley graphs. We present a formulato calculate the number of nodes at any distance from the identity permutation in stargraphs. The minimum bisection width of star and rotator graphs is obtained. Partitioningand fault tolerant parameters for both star and directed Cayley graphs are analyzed. Thenode disjoint parallel paths and hence the upper bound on the fault diameter of rotatorgraphs are presented. We compare the minimal path routing in star and rotator graphsusing simulation results. Broadcasting and embedding in star and directed Cayley graphsare also compared.Key Words: Bisection width, broadcasting, fault diameter, optimal routing, sphere oflocality. I. IntroductionThe performance of any multiprocessor system depends mainly on the communication e�ciencyof the underlying interconnection topology. Numerous interconnection networks for both generalpurpose and special purpose applications have been introduced in the literature. Continuing searchfor communication e�cient symmetric interconnection structures for multiprocessor networks hasled to Cayley graphs as possible interconnection networks. Some examples include star graph[1, 2], rotator graph [3], and cycle pre�x digraphs [4]. It should be noted that the well studiedbinary n-cube and the cube connected cycles can also be represented as Cayley graphs. Due to theirsimplicity and the fact that the real world communication links (e.g. optical links) are often realizedby directed communication links, the directed counterparts of some of the undirected networkshave also appeared in the literature, e.g., uni-directional hypercube [5], and uni-directional star1By de�nition Cayley graphs are directed graphs. When the generators are closed under inverse, as in the caseof star graphs, the Cayley graph can be viewed as an undirected graph.1



graphs [6]. The n-rotator graph and the cycle pre�x digraphs are directed by de�nition. Sincethese directed Cayley graphs have some interesting properties like easy routing, low diameter andaverage diameter compared to the star graph, a comparative analysis of these graphs is worthyof study. Throughout this paper, the term directed Cayley graph refers to the rotator and cyclepre�x digraphs.The binary n-cube is a widely used interconnection topology in practical parallel computers.However, the number of links in the binary n-cube, the degree, and the diameter are higher thanthe star and directed Cayley graphs for the same number of nodes. A comparative study of starand hypercube can be found in [7]. Star graph is one of the extensively studied interconnectionnetworks after binary n-cubes. In this paper, we present some new results for star and directedCayley graphs. We present a formula for calculating the number of nodes at any distance from theidentity permutation, using the cyclic structure of the star graph. The minimum bisection width,an important measure in VLSI models, is obtained for both star and directed Cayley graphs.We show that the rotator graphs of size n! have n � 1 node disjoint parallel paths of length atmost n + 1 for n > 2. Other fault tolerant measures like fault diameter, the number of fault freesubnetworks available in the presence of faulty nodes, incomplete networks, etc., are discussed.Latency and average diameter are very important in systems with �ne grain parallelism and realtime computations. We compare the latency and link utilization in the minimal path routing ofstar and directed Cayley graphs using simulation results.This paper is organized as follows. In section two, we present the de�nitions of the networks andother parameters, which will be used in later sections. A method of calculating the number of nodesat any distance less than or equal to the diameter from the identity node in star graph is given insection three. The minimum bisection width of star and directed Cayley graphs are also discussedin section three. Section four is devoted to the partitioning and fault tolerant properties of starand directed Cayley graphs. Node disjoint parallel paths in directed Cayley graphs, fault diameter,and incomplete networks are discussed in this section. Section �ve presents a comparative analysisof routing, broadcasting, and embedding in star and directed Cayley graphs. Finally section sixconcludes with a summary of the results.II. PreliminariesWe use the terms vertex, node, and permutation interchangeably throughout this paper. Thede�nition of Cayley graph and other group theoretic terms can be found in [1, 2]. We denote then-star graph by Sn. The rotator graph and the cycle pre�x digraphs are denoted by Rn and Cnrespectively. The notation Dn is used to denote both Rn and Cn. The general notation Gn is usedto denote all the three graphs discussed in this paper (Sn, Cn and Rn). The graph Gn has a set of(n� 1) generators g = fg2; g3; : : : ; gng. We use D(Gn) to denote the diameter of Gn. If the node yis adjacent to node x and node y is obtained by applying the generator gi, where 2 � i � n. Thelink connecting x and y is the ith dimension link. A permutation is denoted as �, and the symbolsin � are referred to as �[i], where 1 � i � n. 2



De�nition 1 The generators Sn are of the form x1x2 : : : xixi+1 : : : xn gi) xix2x3 : : : x1xi+1 : : : xn.The action of the generator gi is the swapping of the �rst symbol x1 with the ith symbol, where2 � i � n.De�nition 2 The generators of the rotator graph R(n;k) are of the formx1x2 : : : xixi+1 : : : xk ) ( x2x3 : : : xix1xi+1 : : : xk if 2 � i � k < nx2x3 : : : xixi+1 : : : xkxj if k < j � nThe total number of nodes is n!=(n� k)!, and the degree of R(n;k) is (n� 1).De�nition 3 The generators of the cycle pre�x digraph C(n;k) are of the formx1x2 : : : xixi+1 : : : xk ) ( xix1 : : : xi�1xi+1 : : : xk if 2 � i � k < nxjx1x2 : : : xixi+1 : : : xk�1 if k < j � nThe number of nodes and degree of C(n;k) are the same as that of R(n;k).In this paper we consider the special cases of R(n;k) and C(n;k), the n-rotator Rn and the n-cycle pre�x digraph Cn. The generators of Rn and Cn are of the form x1x2 : : : xixi+1 : : : xn gi)x2x3 : : : xix1xi+1 : : : xn and x1x2 : : : xixi+1 : : : xn gi) xix1x2 : : : xi�1xi+1 : : : xn, respectively. Boththe set of graphs have n! vertices, degree (n� 1), connectivity (n� 1), and diameter (n� 1). Theresults obtained for Rn and Cn can be easily extended to R(n;k) and C(n;k). Most of the resultspresented here for directed Cayley graphs refer to the rotator graph. We use the terms rotation andgenerator interchangeably, while discussing rotator graphs. It should be noted that the rotatorgraphs are isomorphic to the cycle pre�x digraphs with the direction of the edges reversed [3].Therefore, all the results obtained for rotator graphs apply to the cycle pre�x digraphs, and viceversa. The Sn and Rn are illustrated in Fig. 1 and Fig. 2. In Fig. 1 all the links drawnare undirected links (two unidirectional links in opposite directions). Links denoted by the samealphabet are connected together. In Fig. 2, the directed links are denoted by arrows, and thebold lines without arrows are undirected links. Every node in Rn has only one undirected link(i.e. the generator g2). The nodes marked with alphabets in Fig. 2 are directed links. The linkdenoted by an alphabet and (o) denotes that the link is an outgoing link. This link is connectedto the node with a link marked with the same alphabet and (i) (means incoming).De�nition 4 A container is a set of node-disjoint paths between any two vertices of a graph. Thewidth of a container is the number of node-disjoint paths it includes. The length of a container isthe length of the longest path in the container [8].Wide containers can be used to send multiple messages from one node to another node in manyapplications [8]. The length of the container of any graph is the upper bound for the fault diameterof the graph [9, 10]. 3
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F Figure 1: S4De�nition 5 The fault diameter Df(G) of any graph G with connectivity k is de�ned as themaximum diameter obtained from G by removing (k � 1) nodes [10, 9].De�nition 6 The routing tree of Dn is the tree structure obtained from the (minimal) pathsfollowed by a message when it is routed from every node to the identity node.De�nition 7 Any permutation � = x1x2x3 : : : xixi+1 : : : xn is divided into two regions, a leadingunsorted region x1x2x3 : : : xi and a trailing sorted region xi+1 : : : xn, where xi+1 < xi+2 < : : : <xn�1 < xn, xi > xi+1, and (n� i) is the length of the sorted sequence.De�nition 8 Two nodes x and y are said to be at bi-distance db, where db is the maximum of thedistance from x to y and from y to x.Since all the links are undirected in Sn, the distance from x to y is the same as the distance fromy to x. However, bi-distance can be used as a measure, for the number of nodes to which a nodecan communicate in both the directions in Dn.De�nition 9 The bisection width B(G) of a graph G is de�ned as the number of channels thathave to be cut in order to bisect the network G into two equal halves.III. Sphere of Locality and Bisection WidthA. Number of NodesIt is known that the calculation of the number of nodes at any distance from the identity node inSn is not trivial. In this section we analyze the number of nodes at any given distance in Sn and4
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Figure 2: R4Dn. We present a formula for calculating the number of nodes at any distance from the identitypermutation in Sn. The concentration of nodes at various distances from the identity node isanalyzed.Lemma 1 The number of permutations of n symbols with c cycles of length greater than two isEc(n) = cXk=0 �(�1)k � nCk hn�kc�k i�where hlmi is the Stirling numbers of the �rst kind [11] (or the total number of permutations of lsymbols, with exactly m cycles, including invariances), and c is the total number of cycles includinginvariances.Proof. We have N = [nc ] permutations of n symbols with exactly c cycles (including invariances).It is known that there are nCk ways to �x k symbols out of n [11]. Therefore, it is required tosubtract all the permutations with (c�1) cycles of length greater than two and one invariance, and(c� 2) cycles of length and two invariants etc., from N . The principle of inclusion and exclusioncan be used to count all the permutations with c cycles of length greater than one. First wesubtract the number of permutations nC1� h(n�1)(c�1) i from N . This underestimates the total numberof permutations, since not all of these permutations have invariants. Therefore, we add backnC2 � h(n�2)(c�2) i, etc. Using the principle of inclusion and exclusion [11] the number of permutationscan be calculated as [nc ] � nC1 hn�1c�1 i + nC2 hn�2c�2 i � : : : + (�1)n � nCc hn�c0 i. This excludes all thepermutations with invariances, resulting in the total number of permutations with exactly c cyclesof length at least two. 2 5



Theorem 1 The number of nodes Nd at d hops away from the identity permutation in any stargraph of size n! is given byNd = m1Xi=0((n� (q1 + i))n nCq1+i E(p1�q1+i)(n� q1 � i))+m2Xi=0 nn�1Cq2+i�1 E(p2�q2+i)(n� q2 � i)owhere (p1; q1) = ( (n� d; n� d� 1) when 1 � d � (n� 2)(d� n+ 2; 0) when (n� 2) < d � b3(n�1)2 c(p2; q2) = ( (n� d+ 2; n� d+ 1) when 3 � d � n(d� n; 0) when n < d � b3(n�1)2 cm1 = bn+q1�2p13 c, m2 = bn+q2�2p23 c, and the second summation is zero for d = 1 and 2.Proof: Given n and d we calculate the lower bounds for the number of cycles (including invari-ances) and the number of invariances (p; q) in Appendix A. The calculation of the upper bound mis also given in Appendix A. The upper and lower bounds are calculated from the formula givenby Akers and Krishnamurthy [2] for the distance of a permutation from the identity permutation.Lemma 1 gives the number of permutations with exactly c cycles of length greater than one. Thepermutations of an Sn are generally classi�ed as two sets one with the �rst symbol �[1] = 1 andanother with �[1] 6= 1. Let us consider a pair (p; q), where p is the number of cycles, includinginvariances and q is the number of invariances. There are nCq ways to �x the q invariances [11],but n�1Cq�1 of them will have �[1] = 1. Therefore, the number of ways to �x q symbols reduces tonCq�n�1Cq�1, where �[1] 6= 1. The rest n�q symbols formE(p�q)(n�q) permutations with exactlyp� q cycles of length greater than two. Therefore, the total number of permutations of n symbolswith q invariances and p� q cycles of length greater than two is [nCq � n�1Cq�1]�E(p�q)(n� q).Similarly the number of permutations with �[1] = 1, q invariances, and p � q cycles of lengthgreater than two is n�1Cq�1�E(p�q)(n� q). For every pair of solutions (p; q), the number of per-mutations are calculated and added to get the total number of permutations. It can be observedfrom the formula for the distance [2] that, if there are two pairs of solutions (p1; q1) and (p2; q2),and q2 = q1 + 1, then p2 = p1 + 2. 2Recently, Qiu, Fragopoulou, and Akl [12] have proposed another recursive formula for calculat-ing the number of nodes at any distance in Sn. Their formula is entirely di�erent and the proof ismuch lengthier than our proof. Moreover, we have obtained the formula using the cyclic structureof the permutations. The number of nodes at any distance d from the identity node in Dn is givenby [3, 4], Nd = n!�(n�d)(n�d+1)! for 1 � d � (n � 1). It should be noted that Nd in Dn indicates onlythe number of nodes d hops away from the identity node. Since Dn is symmetric there are equalnumber of nodes from which the identity node is d hops away. However, the number of nodes towhich the identity node can communicate in both the directions within d hops is not the same asNd. In [13], the authors present a formula for calculating the number of nodes at bi-distance d6



from any node in Dn. Two nodes x and y in Dn are at bi-distance db when maxf ~E(x;y); ~E(y;x)g = db.The number of nodes at any distance (and bi-distance) less than the diameter of Sn and Rn for
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(b) Star vs Rotator: Nodes within distancesFigure 3: Comparison of number of nodes at and within various distances in star and rotatorgraphsn = 8 are plotted in Fig. 3 (a). The number of nodes at various bi-distances from the identityvertex are given in the Fig. 3 as rotator(B), for comparison purposes. While Fig. 3 (a) illustratesthe number of nodes exactly at distance d, Fig. 3 (b) gives the number of nodes that can bereached within distance d from the identity vertex.In Dn, the number of nodes increases as the distance increases. However, in Sn, the numberof nodes increases from d = 0 to d = (n� 1) and then decreases from d = n to d = b3(n�1)2 c for allvalues of n. This property plays a major role in the average distances of Sn. Though the averagedistance of Sn is higher than that of Dn, it is always close to (n� 1). Another observation is thatNd = (n � d) �Pd�1k=0Nk, for Dn. It is known that Nd = (n � d) � n!(n�d+1)! [3]. It can be easilyshown that n!(n�d+1)! = Pd�1k=0Nk. This explains the increase in number of nodes as the distanceincreases. When d = (n� 1), N(n�1) = n!2 , i.e., one half of the nodes in Dn are at a distance equalto the diameter of Dn. Since most of the nodes are concentrated at higher distances from theorigin, the average diameter of Dn is close to its diameter and has a lower bound of (n� 7=4) [4].B. Minimum Bisection WidthMinimum bisection width is one of the important parameters in measuring the area complexityof VLSI layouts of multiprocessor interconnection networks [14, 15]. It is known that the binaryn-cube network has a minimum bisection width of N , where N = 2n is the total number of nodesin the network [14]. Since the layout area of a graph with minimum bisection width B is at least7




(B2), k-ary n-cube interconnection networks o�er a better bound on the area than the binaryn-cube [14]. In this subsection we compare the minimum bisection widths of Sn and Dn.Theorem 2 The minimum bisection width of Sn with N = n! nodes, where n � 4 isB = 8<: N � h n2(n�1)i if n is evenN � h (n2�3)2n(n�2)i if n is oddProof. For even values of n, Sn can be viewed as two sets of S(n�1), each containing n=2 S(n�1)embedded on a two dimensional plane. These two sets can be embedded one on each side of themidpoint. Therefore, only the higher dimensional links connecting (n � 1)-stars will be cut. Forsimplicity, we consider the (n� 1)-substars with the last symbol �xed. The (n� 1)-substars withthe last symbol 1; 2 : : : n=2 �xed are placed above the bisection and the substars with the lastsymbols n=2 + 1; n=2 + 2; : : : n �xed at the last position are placed below the bisection. It can beobserved from Sn that the (n� 1)! higher dimensional (bidirectional) links going out of one S(n�1)are evenly distributed among all other substars. In other words (n� 2)! links out of (n� 1)! linksfrom an S(n�1) are connected to each of the other (n� 1) S(n�1). Therefore, bisection of an Sn foreven n, will cut n=2�n=2� (n�2)! bidirectional links. Considering, one bit wide channels in eachdirection, the bisection width becomes n�n!2(n�1) . For odd values of n, in addition to the links in thenth dimension links in the (n� 1)th dimension of one S(n�1) will also be cut. The arrangement ofthe substars for odd n can be done as follows; (n�1)2 S(n�1) with any of the (n�1)2 symbols out of thetotal n symbols �xed at the last position are placed above and below the midpoint. One S(n�1)left is placed in between the two sets of (n�1)2 S(n�1). All the links in the (n�1)th dimension whichare cut during the bisection are from this S(n�1). Also, exactly half of the higher dimensional linksfrom each set of (n�1)2 S(n�1) will be cut, making the total number of bidirectional links cut"(n� 1)2 � (n� 1)2 (n� 2)!# + "(n� 1)2 � (n� 1)2 (n� 3)!#+ "(n� 1)2 � (n� 2)!#Therefore, the bisection width for odd n is n!(n2�3)2n(n�2) . 2The minimum bisection of Sn is shown in Fig 4. It can be observed from Fig. 1 that B istwo and four for S2 and S3 . Similar arguments in theorem 2, apply to Dn. Only the links inthe nth dimension will be cut, when bisecting Dn, for even values of n. Similarly, for odd valuesof n, links in the (n � 1)th dimension of one D(n�1) will be cut in addition to the links in thenth dimension connecting other D(n�1). Since each bidirectional link is considered to have twochannels in opposite directions [14], the bisection width of Dn is the same as that of Sn for n � 4.The bisection of R3 is illustrated in Fig. 5. The bisection width of R3 is six, since links in alldimensions are cut for n � 3. Therefore, both the sets of graphs have the same bisection widthfor n � 4.Optimality of the bisection Finding the exact bisection width of a graph with given degree anddiameter is a NP-Complete problem. 8



Figure 4: Minimum bisection of S4

Figure 5: Minimum bisection of R3IV. Partitioning and Fault ToleranceNumerous fault tolerant metrics have been de�ned in the literature for comparing the fault tolerantproperties of interconnection topologies. It is known that Sn in strongly hierarchical, and it canbe partitioned into n copies of disjoint S(n�1), in (n� 1) di�erent ways [2, 7]. The n symbols canbe �xed at any of the (n�1) positions from 2 to n. This property of star graph is used in many ofthe applications like broadcasting [16, 17]. Therefore, the number of ways Sn can be partitionedinto S(n�p) [1] is n�1Cp n!(n�p)! . It is known from [1, 2] that Sn is maximally fault tolerant. Whenthere is a faulty vertex in Sn, it makes (n�1)Cp out of (n�1)Cp n!(n�p)! , S(n�p) faulty [1]. Therefore,the minimum number of faults f(n; p), necessary to make every S(n�p) faulty is n!(n�p)! .9



Theorem 3 The number of faults f(n; p) necessary to make every Dn�p of Dn faulty is greaterthan or equal to n!(n�p)! .Proof. Since Dn is hierarchical it be partitioned into n copies of D(n�1), by �xing any of the nsymbols at the last position. Therefore, the number of ways Dn can be partitioned into D(n�p) isn!(n�p)! . In Dn, one faulty node makes only one D(n�p) faulty i.e., any node of Dn is in only oneof the D(n�p). Therefore, the minimum number of faults necessary to make every Dn�p faulty isn!(n�p)! . 2Therefore, the lower bound on f(n; p) for Dn is same as that of Sn. For example, taking n = 4,f(4; 1) should be greater than or equal to four to make every S3 or R3 faulty.Theorem 4 The minimum number of fault free Sn�p and Dn�p available in the presence of Ffaults is Sn�p fFg = n�1Cp � � n!(n�p)! � F� and Dn�p fFg = n!(n�p)! � FProof. The proof of this theorem is directly from the lower bound of f(n; p) and the number ofSn�p (and Dn�p) available. 2Another important measure is the fault diameter Df(Gn) of a network. The container lengthof Sn is known to be b3(n�1)2 c+ 2 [7]. The exact value of fault diameter of Sn has been calculatedrecently by Lati� [10] as (b3(n�1)2 c + 2) for n = 4; 6 and (b3(n�1)2 c + 1) for all other values of n.In [4], it is stated that the maximum length of the node disjoint paths between any two verticesin Cn is n + 1 for n � 5. Here we prove that the container length of Rn is (n + 1) for all valuesof n > 2. Before we discuss the container length of Rn we de�ne (n � 1) subtrees of the routing
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Figure 6: Routing tree structure of Rntree of Rn. Level zero and level one of the routing tree structure of Rn is shown in Fig. 6. The(n � 1) subtrees of the routing tree are identi�ed as 2nd3rd : : : (n � 1)thnth subtree. There are nlevels in the routing tree and the node at level zero is the identity node. Nodes at ith level jthsubtree are of the form �ij = x1x2 : : : xi�1jxi+1 : : : xn, where 1 � i � (n� 1)(i is the length of thesorted sequence), 2 � j � n, i.e., �[i] = j for all the permutations. Any message originating fromor passing through the permutation �ij, in minimal path routing will always reach the identitypermutation through the jth dimension. We use the term \optimal rotation" to denote a rotationof length r applied to a permutation �, which increases the length of the sorted sequence in �10



by one, where 2 � r � n. Similarly we use the term \non optimal rotation" to denote all otherrotations applied to �.Theorem 5 The container length of Rn is (n+ 1).Proof. In order to have (n� 1) node disjoint paths of length at most (n� 1) + g from a node �ijto the identity node in Rn, the permutation �ij should be sorted into (n�2) distinct permutationsof the form �ab , where the distance between �ij and �ab is � n � a � 1 + g, g > 0, and b 6= j.The routing from �ij to �ab should follow disjoint paths and the shortest paths from all �ab to theidentity permutation are guaranteed to be disjoint, since the (n � 2) distinct permutations (�ab )belong to (n� 2) di�erent subtrees of the routing tree. Let r be the length of the rotation appliedto �ij in minimal path routing (optimal rotation). This rotation of length r increases the length ofthe sorted sequence from (n� i) to (n� i+ 1), where i � r � n. Rotations of length l � i wherel 6= r, would either result in a permutation with a sorted sequence of length (n� l+ 1) or (n� l).Similarly, rotations of length l < i, and l 6= r, would result in a permutation with sorted sequenceof length (n� i). If the rotation of length l > i, where l 6= r, applied to a permutation �ij resultsin a permutation with the sorted sequence of length (n� l + 1), then this resultant permutationwill be in any of the subtrees other than the subtree containing �ij. The distance from thesepermutations and the identity permutation is at most (n�1). If l � i and the length of the sortedsequence is (n� l), then the resultant permutations belong to the �[1]th subtree. Similarly, whenl < i, all the resultant permutations belong to the same subtree as �ij. Now already one generatorof non-optimal length has been applied to all these permutations. Thus at most l� 2 rotations ofoptimal length can be applied to these permutations without changing the subtree and followingnode disjoint paths. If any rotation of non-optimal length is applied before the (l� 2)th rotation,it brings the �rst symbol to the position just before the sorted sequence. This would lead to apermutation in another subtree. Now the optimal sorting of this permutation would lead to theidentity permutation. The (n�2) subtrees can be selected by rotating any of the (n�2) symbols.Therefore, at most two additional rotations of non-optimal lengths are required to get disjointpaths. This makes the length of the container length of Rn, (n+ 1). 2The generators used in the node disjoint parallel paths between all the vertices in R4 andthe identity permutation is given in Table I. The exact value of the fault diameter of Dn is notknown. However, from theorem 5 and the diameter of Dn, it can be easily concluded that thefault diameter of Dn could be either Dn+1 or Dn+2. Since D = n� 1 for Dn, the fault diameterof Dn will always be less than that of Sn. For comparison, let us assume that the fault diameterof Dn is (n+ 2), the worst case fault diameter of Dn. A comparison of the fault diameters for Snand Dn is given in Table II. The fault diameter of Dn is equal to the fault diameter of Sn, onlyfor n = 3. For all values of n > 3, Df(Dn) < Df(Sn)
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Table INode Disjoint Paths In R42134 ) f(g2); (g3g2g3); (g4g3g4g4)g 3421 ) f(g4g4g2); (g2g3g4g3g4); (g3g4g3g3)g3124 ) f(g3); (g2g3g3g2); (g4g3g3g4)g 4132 ) f(g4g2g3); (g2g4g4g3g2); (g3g3g4g4)g4123 ) f(g4); (g2g3g4g2); (g3g4g4g4g3)g 4231 ) f(g4g3g3); (g2g3g4g3g2); (g3g4g4g4)g3214 ) f(g3g2); (g2g3g3); (g4g3g2g4)g 1432 ) f(g3g4g3); (g2g3g3g4g4); (g4g4g3g2)g4213 ) f(g4g2); (g2g3g4); (g3g4g3g4g3)g 2431 ) f(g4g4g3); (g2g3g4g4g4); (g3g4g3g2)g1324 ) f(g2g3); (g3g3g2); (g4g4g3g4)g 2143 ) f(g3g2g4); (g2g3g2g4g2); (g4g3g4g3)g2314 ) f(g3g3); (g2g3g2); (g4g4g2g4)g 3142 ) f(g4g2g4); (g2g4g4g4g2); (g3g3g4g3)g4312 ) f(g4g3); (g2g4g4); (g3g4g3g4g2)g 1243 ) f(g3g3g4); (g2g3g3g4g2); (g4g4g4g3)g1423 ) f(g2g4); (g3g4g2); (g4g4g3g3)g 3241 ) f(g4g3g4); (g2g3g4g4g2); (g3g4g4g3)g2413 ) f(g3g4); (g2g4g2); (g4g4g2g3)g 1342 ) f(g3g4g4); (g2g3g3g4g3); (g4g4g4g2)g3412 ) f(g4g4); (g2g4g3); (g3g4g3g3g2)g 2341 ) f(g4g4g4); (g2g3g4g4g3); (g3g4g4g2)g4321 ) f(g4g3g2); (g2g3g4g3g3); (g3g4g3g4)gTable IIComparison of Fault Diameters of Sn and Dnn 3 4 5 6 7 8 9 10 11Sn 4 6 7 9 10 11 13 14 16Dn 4 5 6 7 8 9 10 11 12Another interesting problem to investigate is the incomplete or clustered networks [18]. We restrictour analysis to the problem of removing sub-networks of size (n � 1)! from Gn. The incompletenetwork Gmn�1 is de�ned as the network obtained from Gn by removing (n�m) of its G(n�1). Theclustered star network [18] and the clustered rotator graphs [13] have been studied in the literature.A variation of this problem for an arbitrary number of nodes in star [19] and rotator [20] havealso been studied in the literature. The R23 is shown in Fig. 7. S23 can be obtained similarly
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Figure 7: Incomplete rotator (R23)with two links the the fouth dimension connecting the two 3-substars (see Fig. 1). The study of12



clustered networks can be used in processor allocation and fault tolerant applications. A new classof networks with variable number of nodes with properties similar to the original network can alsobe obtained from these clustered networks. The clustered rotator graphs have been shown to beHamiltonian for all values of m, where 1 � m � (n � 1) [13]. Similar network obtained for thestar graph [10] is not Hamiltonian for all values m. Smn is shown to be Hamiltonian for m = 4 andm = 3k; k 6= 2. It can be observed from Fig. 1 and Fig. 7 that R23 is Hamiltonian, whereas S23is not Hamiltonian. However, the diameter of Smn�1 is the same as the diameter of Sn [18] for allvalues of n. Since there is a unique shortest path between any two vertices the diameter of Rmn�1higher than the diameter of Rn.V. Information Dissemination and EmbeddingRouting from one node to another node, one to all broadcasting, and all to all broadcasting are thethree important information dissemination problems that often arise in most of the applicationsinvolving parallel computations. In this section we analyze the information dissemination problemsin Sn and Dn.A. RoutingIn any Cayley graph, routing from a vertex x to vertex y is simply the sorting of the permutationxy�1 to the identity permutation using the generators of the graph [2, 3]. The greedy approachpresented in [2] results in optimal path routing in Sn. Similarly the optimal routing algorithm forDn is also simple [3, 4]. The disjoint paths between any two vertices of Sn has been investigatedby many authors [21, 7]. The length of the disjoint paths between any two vertices x and y canbe either c + m or c + m + 2 or c + m � 2, depending on the �rst symbol of the permutationxy�1, where c is the number of cycles in xy�1 of length at least two and m is the total number ofmisplaced symbols in xy�1. We have presented the node disjoint paths in Dn in an earlier section.It is known that only one path out of the (n� 1) node disjoint paths between any two vertices inDn is optimal. In Fig. 8(a) simulation results of comparison of latencies in minimal path routingof Sn and Rn, for n = 3; 4 and 5 are given. It can be observed from the �gure that Rn performsbetter than Sn under low tra�c, but the performance degrades under heavy tra�c. Fig. 8(b)illustrates the percentage of links used in each dimension, for a speci�c value of tra�c intensity. Itcan be observed from the �gure that the higher dimensions in Rn are used more number of timesthan the lower dimensions, whereas the message distribution is almost uniform in Sn. The edgesymmetry of star graph ensures uniform message distribution under heavy tra�c. The resultsshown for the minimal path routing in Sn selects the lowest possible dimension if multiple pathsare available and the link is free i.e. when more than one optimal path is available from the sourceor intermediate node to the destination node the dimensions leading to the optimal paths areprobed from the lowest dimension.It should be noted that, the number of nodes in Sn which have an unique shortest path fromthe identity permutation Nu = Pnk=2 (n�1)!(n�k)! . There is an unique shortest path between vertexP = p1p2 : : : pn and the identity permutation if P contains only one cycle of length at least twoand p1 6= 1. Therefore, this is simply the total number of permutations with one cycle of length13



0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80 90

la
te

nc
y

injection rate in percentage

3-rotator
3-star

4-rotator
4-star

5-rotator
5-star

(a) Star vs Rotator: Latency 0

20

40

60

80

100

0 1 2 3 4 5

lin
k 

ut
ili

za
tio

n

dimension

3-rotator
4-rotator
5-rotator

3-star
4-star
5-star

(b) Star vs Rotator: Link UtilizationFigure 8: Comparison of average latency and link utilization in rotator and star graphs for n = 82; 3; : : : and n, excluding the permutations with the symbol one at the �rst place. The number ofpermutations with one cycle of length k and (n� k) invariances can be calculated from Cauchy'sformula [22] as n!(n�k)!k , where 2 � k � n. The number of permutations with p1 = 1 and onecycle of length k is (n�1)!(n�k�1)!k , and this can be subtracted from n!(n�k)!k , for every value of k, tocalculate the total number of nodes have unique shortest path. This leads to a total number ofPnk=2 (n�1)!(n�k)! nodes. Whereas in Dn, when messages are routed from every node to the identitynode the number of times ith dimension is used is the same as the number of nodes at distance iaway from the identity node [13]. It is known from section two that number of nodes increases asthe distance from the origin increases. This explains the maximum use of the higher dimensionallinks in minimal path routing.The spanning tree structure of Sn is analyzed in [7]. They present a balanced spanning treeand calculate the balance factor to be BF (Star) = P(n�1)k=1 k!(n�1)! . The value of BF (Star) convergesto 1 as n increases. However, the height of the spanning tree structure obtained is 2n� 3, whichis not optimal. A balanced communication can be achieved by a careful selection of the routingpath. It can be observed from Fig. 8 (a) that the average link utilization for the lower dimensionsare slightly higher than that of the higher dimensions. This is due to the order in which thedimensions of multiple optimal paths are probed to �nd whether they are free. Since the probingis always done from the lower dimension to the higher dimension and the probability of a lowerdimension link being free is higher than that of the higher dimensional links, the link utilizationis slightly high for the lower dimensions. Almost uniform message distribution can be achieved byrandomly selecting the probing order. For Dn, Faber, Moore, and Chen [4] note that a very simplerouting scheme called natural routing can be used. Since the average distance of Dn is close to14



the diameter, the natural routing chooses any path between any two vertices that is of length lessthan the diameter of Dn. However, in Sn, the average distance is close to (n�1). Therefore, if thediameter is used as a bound, similar to Dn the average distancer and hence the average latencywill increase. Since the node disjoint parallel paths in these graphs are known, and the containerlength of these graphs is greater than the shortest distance by only a small constant, comparisonof non-optimal routing would also be interesting to analyze.B. BroadcastingAn optimal algorithm for broadcasting in any network with N nodes must take at least 
(log2N)steps. Since Gn has n! vertices, optimal broadcasting in Gn should take O(n log2 n) steps. Mendiaand Sarkar [16] proposed an optimal broadcasting algorithm for Sn. They develop an O(n2)algorithm for broadcasting in Sn and improve that algorithm to O(n log2 n) by improving someintermediate steps. In can be observed from the structure of Dn that one-to-all broadcastingcan be done in O(n2) trivially. Consider the vertex 12 : : : n in Rn which has the message to bebroadcast. In phase I the message is sent to all the other (n � 2) nodes which have the symbols2; 3; and (n� 2) at the �rst position. This phase takes exactly (n� 1) steps i.e.12 : : : n gn) 23 : : : n1 gn) : : : : : : gn) (n� 1)n : : : (n� 3)(n� 2)At the end of �rst phase, in the second phase one additional step is required to broadcast themessage to at least one node in all the R(n�1) in the network. This process can be repeatedrecursively and the problem can be reduced to a broadcast in R2. This scheme requires n(n +1)=2 steps which is O(n2). Optimal algorithm for broadcasting in Dn is not known. The sameimprovements made in the O(n2) algorithm for Sn cannot be made in the O(n2) algorithm forDn. The interconnection structure of Sn allows to broadcast a message from a node of Sn to atleast one node in every other Sn�1 in dlog2 ne steps. The generators in Dn only allow a messageto broadcast from one node to at least one node in every other Dn�1 in O(n) steps. Therefore, anentirely di�erent broadcasting technique is necessary to broadcast optimally in Dn.C. EmbeddingEmbedding other interconnection structures in Sn have been studied by many authors [23, 24, 25].It has been shown [23, 25] that multidimensional meshes can be embedded in Sn with dilationthree and expansion one. It is also conjectured [23] that a dilation two embeddings of mesheson star exist. Nigam and Krishnamurthy [24] present dilation two (expansion (2d + 1)!=2d), anddilation three (expansion d!=2d) embedding of hypercubes in star graphs. Due to the directednature of Dn the optimal dilation of the embedding of an undirected mesh in Dn is shown to havea lower bound of dn=2e [13]. Both the sets of graphs Sn and Dn have multiple Hamiltonian circuits[24, 23, 13].However, dilation of the embedding alone cannot be considered as a measure of good embed-ding. Since the dilation of embedding of mesh in star graph is three, there is a possibility that15



some nodes in Sn are used as intermediate nodes for many di�erent pairs of adjacent nodes inthe mesh [26]. This leads to congestion as the number of messages routed through this node inmesh increases. Therefore, the communication cost of the embedding is also important in realworld applications. Qiu, Meijer, and Akl [26] note that, the node 123 : : : n is used by n� 2 pairsof adjacent nodes in the mesh, using the embedding algorithm in [23]. This results in a commu-nication cost of at least 
(n) . They present a (n � 1)-dilation, (n � 1)-expansion embedding ofmeshes in star graphs and show that the communication cost is comparable to that of dilationthree, expansion one embedding. Since the diameter of Dn is (n� 1), any arbitrary embedding ofmeshes on Dn with dilation (n� 1) and expansion one would have low communication cost on theaverage. However, better embeddings can be found for meshes of restricted dimensions with lowaverage dilation [13]. Table IIIComparison of Sn and DnDescription Sn DnNodes n! n!Diameter b3(n�1)2 c n - 1Average Distance n+ 2n +Pni=1 1i � 4 n+ 1� e+P1i=n�1 1i!Links Undirected DirectedSymmetry Vertex and Edge Symmetric Vertex SymmetricHierarchical Strongly Hierarchical HierarchicalOptimal Paths Multiple UniqueNumber of G(n�p) n�1Cp n!(n�p)! n!(n�p)!Number of Gn�p fFg n�1Cp � n!�F�(n�p)!(n�p)! n!�F�(n�p)!(n�p)!Incomplete Network Not Hamiltonian HamiltonianContainer Length b3(n�1)2 c + 2 (n+ 1)Dfn b3(n�1)2 c + 1 � (n + 1)Message Distribution Almost Uniform Non-uniformVI. Summary and ConclusionA summary of the properties in which the two sets of graphs Sn and Dn di�er is given in TableIII. The parameters f(n; p) and minimum bisection width are shown to be the same for both Snand Dn. Considering unidirectional physical connections, the number of unidirectional links usedis also same for both the sets of graphs for the same value of n. Directed interconnection networkshave some advantages like ease of construction, simple link level protocol, etc. Therefore, Dn is anattractive alternative if directed interconnections are preferred. Apart from its low diameter andaverage distance, the number of nodes at any distance in Dn is easy to calculate compared to Sn.The distribution of nodes at various distances also di�er in Dn from Sn. The average distance ofDn is close to its diameter (n� 1). Though the average diameter of Sn is higher than that of Dn,it is also close to (n� 1), i.e., compared to its diameter (3(n�1)2 ), Sn has a better average dilationthan Dn. Recent advances in optical interconnection technology indicates that multiple channels16
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valid solution. And, when d = 2, x2 = jC2j+2 = n, and y2 = (n�1), which violates the conditionthat y = n, when x = n. Therefore, the value of d ranges from 3 to n, as there is no valid solutionsfor d = 1 and 2.The upper bounds for x and y can be calculated from condition (iii) and the lower bounds xminand ymin. It can be observed from the equations that, all (x; y) of the form (xmin+2m; ymin+m),where i � 0 are valid solutions. Substituting these for (iii) gives 2(xmin+2m) � bn+(ymin+m)c) m � bn+ymin�2xmin3 c, xmax = 2m, and ymax = m.
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