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Abs t r ac t  
A new framework for migrating controller based distributed 
mutual exclusion algorithms is presented. A salient feature of 
the proposed framework is the separation of two orthogonal 
aspects of the problem, viz., migrating controller and the 
granting of critical section entry. Two new algorithms are 
presented to illustrate the derivation of specific algorithms 
from the generalized framework. 
Keywords  : Mutual Exclusion, Distributed Systems, Gen- 
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1 Introduction 
The mutual exclusion problem has received a lot of atten- 

tion for its significance both as an important synchronization 
problem and as a paradigm for studying distributed decision- 
making algorithms. The research efforts for the above prob- 
lem can be broadly divided into two categories: 1) proposing 
algorithms with some improved performance measure, and 
2) devising generalized frameworks from which a spectrum 
of algorithms can be generated. This paper belongs to the 
second category. 
In this paper, we present a new framework for migrat- 
ing control ler  based algorithms. Our framework subsumes 
many existing algorithms and is comparatively simpler in 
exposition. Furthermore, it opens up directions for deriving 
new, efficient, and adaptive algorithms. A salient feature of 
our framework is the separation of two orthogonal aspects of 
the problem, viz., migration of controller and the granting of 
criiical section entry. Because of this separation, controller 
migration frequency can be reduced and thus, the overhead 
is distributed among several critical section entries, thereby 
reducing the average complexity. 

2 Single Controller Based 
Algorithms 

We are given a set of n processes, Pi, 1 5 i 5 n, which com- 
municate among themselves by message passing. The pro- 
cesses do not share a global memory. The message passing 
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is asynchronous and reliable with finite delay. Each process 
has a critical section code. The distributed mutual exclusion 
problem is to  derive a protocol to be followed by processes 
before entry and after exit of their critical section codes such 
that at any instant a t  most one process is in its critical sec- 
tion code, and further any process trying to  enter the critical 
section must succeed in doing so in a finite time. 
We consider a class of algorithms where a unique process 

is designated as the controller and has the responsibility for 
scheduling critical section requests. When the controller re- 
sponsibility is dynamically delegated among processes, we 
get migrating control ler  based algorithms. 

2.1 Architecture 
We associate a unique process Mi to each process Pi and 
refer to Mi as a mutual exclusion server (MUTEX server or 
simply server) and Pi as the client of Mi. The term node 
i refers to both Pi and Mi collectively. I t  is the MUTEX 
servers that interact with each other to implement a dis- 
tributed mutual exclusion algorithm. The MUTEX servers 
are assumed to be fully connected and have a peer to peer 
relationship. 
A message-based interface is provided between the client and 

the corresponding MUTEX server. Message identifiers with 
boldface refer to messages exchanged between a client and 
MUTEX server, whereas message identifiers in slant refer to 
those exchanged among MUTEX servers. 
Each MUTEX server always performs a non-controller role 

and also has the capability to be the controller. However, 
at any instant, at most one MUTEX server is the controller. 
Migration of the controller involves a server ceasing to be in 
the controller role and another server assuming the controller 
role. 

2.2 A Generalized Framework 
In the generalized framework, we employ two abstract dis- 

tributed information types, referred as REQUESTS-INFO and 
MIGRATION-INFO, and the corresponding operations defined 
on these. Particular algorithms can be easily derived by im- 
plementing REQUESTS-INFO and MIGRATION-INFO. 

2.2.1 The a b s t r a c t  t y p e  REQUESTS-INFO 

The REQUESTSJNFO type encapsulates all information nec- 
essary for routing and scheduling requests for critical section 
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entry. This information includes the collection of pending re- 
quests and a csstatus. The cs-status is either free (no pend- 
ing requests and no process is in critical section) or busy. 
For now, we are merely concerned with the operations ex- 
ported by REQUESTS-INFO. These operations are: 

0 register-request(): This operation is invoked to insert 
the request of a node for critical section entry in the 
REQUESTS-INFO object. MUTEX servers invoke this op- 
eration in the non-controller role. The register-request 
operation requires the id of the requestor. Additional 
arguments may be needed depending on the implemen- 
tation of REQUESTSJNFO. 
Correct implementation of register-req uest must ensure 
the following properties: 
- Property 1 Within a finite time after invocation 

of register-request(i), i is inserted into the collec- 
tion of pending requests. 

- Property 2 If csstatus = free when i is inserted 
in the collection, a message is sent to notify the 
current controller. 

0 select_request(): The operation selectxequest is invoked 
only in the controller role. It returns the id of a process 
which is to be granted the critical section entry next. 
Correct implementation of selectrequest must ensure 
the following property: 

- Property 3 The operation select-request() com- 
pletes within finite time. If there are no pending 
requests, it sets csstatus free and returns null. 
However t f  there are pending requests in the collec- 
tion, select-request() sets csstatus busy and re- 
turns a request by choosing one from the collection 
using a starvation free scheduling criterion. The 
request is  also removed from the queue. 

update-controllerinfo(): The operation update-control- 
lerinfo is also invoked in the controller role. It is invoked 
when the current controller relinquishes the controller 
role to another server. The correctness properties to be 
ensured by this are: 
- Property 4 The operation update-controller- 

info() completes within finite time. 

- Property 5 The concurrent execution of u p  
da te-con trollerinfo() and regis ter-request () does 
not violate properties lI 2 and 4 .  

2.2.2 The abstract type MIGRATION-INFO 

In an instance of type MIGRATIONJNFO, the information 
needed for migration is maintained. The operations exported 
by MIGRATION-INFO are: 

The operat ion tes t-migr- 
ation-condition() returns true if the migration must 
take place at this instance otherwise i t  returns false. 
The correctness requirement is: 
- Property 6 The operation test-migration-condi- 

test -migra tion-condi tion () : 

tion() completes within finite time. 

select_next-controller(): The operation select-next-con- 
troller() returns the identity of the MUTEX server se- 
lected to assume the controller role next. The correct- 
ness requirement is: 
- Property 7 The operation select-next-controlle- 

r() completes within finite time and retums the id 
of a potential controller other than the caller. 

2.2.3 Description of the Generalized Framework 

The introduction of the two abstract types simplifies the pre- 
sentation of framework and clearly separates the orthogonal 
concerns of controller migration and the scheduling of critical 
section entry requests. The algorithm at node i is described 
by the algorithm for Pi and Mi;  1 5 i 5 n.  

Algorithm for client process Pi: A client process com- 
municates with its associated MUTEX server by using mes- 
sages request-cs-entry, exit-cs, and requestgranted as 
shown below. 

begin 

send request-cs-entry to Mi;  
wait until requestgranted received from Mi;  
execute critical section code 
send exit-cs to Mi; 

end 

Algorithm for MUTEX server Mi: The algorithm for a 
MUTEX server is described in terms of its three roles - re- 
questor, auxiliary, and controller. These roles can be concur- 
rently active in a server and communicate among each other 
by message passing as well as by using shared variables. 
The roles are described as a collection of event-action pairs. 

The actions in event-action pairs are executed atomically. 
Each server maintains a global variable current-controller, 

which holds the identity of the current controller as known 
to the server. Initially, the variable current-controller at all 
nodes correctly refers to the id of the node whose controller 
role is active. All other nodes except the current-controller 
have their controller role deactivated. The objects RE- 
QUESTSJNFO and MIGRATION-INFO are implemented by ad- 
ditional global variables and by enhancing the roles by extra 
event- action pairs. 

Requestor Role: The request of a client is forwarded to 
Mi by invoking the register-request operation. Also, the 
requestor role interacts with the controller role, whether 
local or remote by receiving request-granted message 
and subsequently sending exit-cs message. The con- 
troller migrates only in between critical section entries. 
The algorithm for the requestor role is as follows: 
/* Requestor role at Mi */ 

Upon receipt of request-cs-entry 
regis ter-reques t (i) ; 
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Upon receipt of request-granted(j) 
current-controller := j; 
send request4ranted to Pi; 

send exit-cs to current-controller; 
Upon receipt of exit-cs 

0 Controller Role: The controller role has primarily two 
responsibilities: scheduling critical section entry re- 
quests and eventually relinquishing the controller role 
to another MUTEX server. The algorithm for controller 
role is as follows: 

/* Controller Role at Mi */ 

Upon receipt of exit-cs 
;f test_migration_condition() then 

k := select-next-controller(); 
update_controllerinfo( k); 
send become-controller to Mk; 
current-controller := 1; 
/* deactivate controller role */ 

j := selectsequest(); 
- if j#null _then send request-granted(i) to M j ;  

Upon receipt of wake-up 
j := select-request(); 
- if jfnull then send request-granted(i) to  Mj; 

0 Auxiliary Role: In Auxiliary role, a server participates 
in the implementation of REQUESTSJNFO object and in 
the migration of controller responsibility. The algorithm 
for auxiliary role at this stage is as follows: 

/* Auxiliary role at Mi */ 

Upon receipt of become-controller 
current-controller := i; 
/* activate controller role */ 
send wake-up message to  Mi(itse1f); 

2.3 Correctness 

A mutual exclusion algorithm is correct if i t  ensures that 
each request for critical section entry is granted within finite 
time and atmost one process is in the critical section at any 
instant. Stronger fairness requirements may be imposed for 
scheduling critical section requests. At the framework level, 
we are concerned with only starvation and deadlock freedom 
in scheduling entry requests. Assuming that properties 1- 
7 are satisfied, we show the correctness of the generalized 
framework in [8]. 

3 A Taxonomy of Migrating 
Controller Based Algorithms 

From the framework described in the previous section, a 
spectrum of algorithms can be derived by various implemen- 
tations of REQUESTS-INFO and MIGRATION-INFO objects. 

3.1 Implementation of REQUESTSJNFO 
The primary information encapsulated in REQUESTS-INFO 
is the collection of pending requests. Depending on where 
this coIlection is stored, registersequest0 may have to route 
the request accordingly. This requires routing information 
which too is part of REQUESTS-INFO. The operation up- 
date-controllerinfo() is invoked when migration of the con- 
troller takes place, for updating the routing information if 
it depends on the location of controller. Several alternatives 
for maintaining the pending requests collection are outlined 
next. 

3.1.1 Centralized Queue 
In the centralized queue approach, the pending requests are 
stored in a queue at the controller node. The routing infor- 
mation is simply the identity of the current controller. The 
registerrequest() operation involves sending the request to 
controller node where the request is enqueued. The oper- 
ation select-request() dequeues a request from the front of 
the queue. The operation update-controllerinf) informs 
all MUTEX servers about the new controller. 
A server’s knowledge of the current controller may be out- 

dated for two reasons: 
0 Concurrent execution of register-request and up- 

date-con trollerinfo. 

0 Selective update by update-controllerinfo. 
The implementation of register-request relies on the imple- 
mentation of update-controllerinfo. There are three broad 
choices for update-controllerinfo - inform none, inform all, 
and selective inform. 

0 The “inform none” refers to no action in up- 
da  te-con trollerinfo. The operat ion regis ter-reques t in 
this case is implemented by either broadcasting the re- 
quest to  all servers or by propagation among servers 
until the request reaches the controller. 

0 In the “inform all” case, update-controllerinfo() opera- 
tion broadcasts the identity of the new controller to all 
servers. If a non-controller server (usually the last con- 
troller) receives a request, it forwards the request to the 
correct current controller. 

0 In “selective inform” strategy, the identity of the new 
controller is communicated to only a subset of servers. 
Thus, some servers may not have the correct knowledge 
of the current controller and their requests may require 
several message exchanges to reach the controller. 

3.1.2 Distributed Queue 
In the distributed approach, the collection of pending re- 
quests is implemented as a linked list of entries. Each en- 
try in the list refers to the id of the server next in queue. 
The selectsequest operation refers to the head of the queue, 
whereas the operation register-request enqueues at the tail 
of the queue. An entry corresponding to a request is stored 
at the originating node itself. The tail information is stored 
at the controller node. Thus, register-request will have to 
communicate with the controller to get tail information and 
subsequently update it. For update-controllerinfo, we have 
the same choices available as in the centralized case. Alterna- 
tive implementations of distributed queue are also possible. 
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3.1.3 Partially Ordered Collection 

In both approaches above, the pending requests are totally 
ordered. There are alternatives where an explicit total order 
on requests is not imposed until the scheduling time. The 
partially ordered collection is not stored on a single node but 
partitioned into sub-collections which are stored as queues on 
distinct nodes. These sub-collections may be inter-related in 
an hierarchical fashion to form a tree structure. The oper- 
ation register-request routes the request to the appropriate 
level in the hierarchy and the operation select-request picks 
up request from the hierarchy in a manner so as to avoid 
starvation. The hierarchy may be static or dynamic. 

3.1.4 Ring Structure 

The ring structured approach is a particular case of partially 
ordered collection approach. The ordered sub-collections in 
this case are arranged in the form of a ring rather than a 
tree. The operation register-request inserts a request in a 
sub-collection, which is a queue at a distinct node. The 
select-request operation schedules requests by traversing the 
ring. 

3.1.5 Replicated Collection 

Yet another approach is to have replicated copies of pend- 
ing requests queue at  multiple nodes. In this case, reg- 
ister-request must insert the request in all copies and 
select-request must remove the request from all copies. 
Further, if the nodes maintaining copies dynamically 
change (e.g. when the controller migrates) then up- 
date-controllerinfo must update the routing information to 
reflect the above change. 

3.2 Implementation O f  MIGRATIONJNFO 

Controller migration is the delegation of controller role from 
one MUTEX server to another and involves three issues: 

0 When to migrate? The operation test-migration- 
-condition() determines when to migrate. 

0 Where to migrate? The operation select-next- 
-controller() selects the next controller. 

0 How to migrate? Implementation involves invoking 
update-con trollerinfo and sending a become-con troller 
message to new controller. 

The first two issues are mutually independent of each other. 
We now outline implementation alternatives for the two op- 
erations on MIGRATIONJNFO. An implementation of MIGRA- 
TION-INFO is derived by selecting an implementation for each 
of the two operations from the available alternatives. 

3.2.1 Operation test-migration-condition() 

This operation affects the frequency of migration. First, we 
consider two extreme cases: N o  migration and Migration 
with each exit from critical section. 

0 In the case of “NO migration”, test-migrationxondition 
is implemented to always evaluate to false. Alterna- 
tively, the controller role can be modified to skip the 
test for migration altogether. 

0 If migration is as frequent as critical section entries then 
test-migration-condition is implemented to always re- 
turn true. Again, the same effect can be achieved by 
skipping the test altogether. 

The case where mlgration is less frequent than the 
critical section entries requires maintaining some state 
information which is updated with each invocation of 
test-migration-condition(). We provide two simple choices 
for controlling the frequency of migration: 

0 In counter-based approach, MIGRATIONJNFO main- 
tains a counter reqserved which is incremented each 
time testaigration-condition() is invoked. When the 
value of reqserved equals a threshold value maxreq, 
test-migrationxondition() returns true, otherwise it re- 
turns false. The new controller starts by initializing 
reqserved to  zero. 

0 In timer-based approach, a timer is started with a pre- 
determined value maxfime when a server assumes 
controller role. MIGRATION-INFO maintains a boolean 
variable migrate which is set to  false when migra- 
tion takes place. When the migration timer expires, 
migrate is set to true. A subsequent invocation of 
test-migration-condition then returns true. 

3.3 Taxonomy 
In the taxonomy shown in table 1, single controller based 
algorithms for mutual exclusion are laid out in a two di- 
mensional space. The two dimensions pertain to the imple- 
mentation of REQUESTSJNFO and MIGRATION-INFO objects 
respectively. 
Each category in table 1 can be further sub-divided among 

sub-categories to highlight the differences between algo- 
rithms falling in the same category. 
From table 1, it can be seen that most of the existing al- 

gorithms appear in only few categories, whereas there are 
no known algorithms in several other categories. In the next 
section, we present two new algorithms CDC and DDC which 
appear in categories as shown in table 1. It should also 
be noted that not all categories will lead to attractive al- 
gorithms, from performance point of view 
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Table 1. Classification of Single Controller Based 
Distributed Mutual Exclusion Algorithms 

4 Derivation of Algorithms 
We now present two new algorithms to demonstrate the 

derivation of algorithms from the framework. 

4.1 CDC 
(Centralized queue, B n a m i c  routing, Counter-based migra- 
tion). 
In this algorithm instead of migrating with each exit from 
critical section, the migration frequency is less and is con- 
trollable by setting the parameter maxreq. 

4.1.1 Implementation Of REQUESTS _INFO 

Data Structures: 
At each MUTEX server 
current-controller : id of current controller maintained 

At controller node only 
request-queue : queue of requests, initialized to empty; 
cs-status: (free, busy), initialized to free; 

in each MUTEX server; 

Operations: 
All actions shown below are for the server Mi. 

selectsequest()  /* invoked in controller role */ 
{ 
- if request-queue # 0 then 

{ 

1 

cs-status := busy; 
return first entry dequeued from request-queue; 

- else 
css ta tus  := free; 
return null; 

1 

register-request involves executing procedure regis- 
ter-request() in requestor role and subsequently per- 
forming an action in controller role and also possibly 
in the auxiliary role. 

In requestor role 
register-request(i) { send request-cs-entry(i) to current 
-controller;} 
In controller role 
Upon receipt of request-cs-entry(k) 

enqueue k in request-queue; 
- if cs-status = free then send wake-up to Mi 
(itself); 

In auxiliary role 
Upon receipt of request-cs-entry(IC) 
/*Controller role not active */ 

send request -cs-en try( I C )  to current -co nt rol le r; 

0 update-controllerinfo requires actions in controller role 
of controller and the auxiliary role of other servers. 

In controller role 
update-controllerinfo(k) {send new-controller(k) to all 
servers except k ; }  
In auxiliary role 
Upon receipt of new-controller(k) 

current-controller := k ;  

4.1.2 Implementation Of MIGRATION-INFO 

Data Structures: 
Global parameters - at each MUTEX server 
candidate-controllers: list of servers which can 

maxreq: max number of consecutive requests to be 

At controller node only 
req-served : number of consecutive requests served by 

assume controller role; 

served by the controller. 

the controller, initialized to zero. 

Operations: 

0 test-migration_condition() 
{ 
reqserved := reqserved + 1; 
- if (reqserved = maxreq) then 

reqserved := 0; 
return true; 

return false; 
J 

0 selec t-n ext -con troller() 
{ 
j := first entry in request-queue; 
k := second entry in request-queue; 
- if k = null or k # candidate-controllers then 

k := any node other than i, j in candidate 
-cant rolle rs; 

return k;  
1 

4.1.3 Correctness of CDC 

The correctness of CDC is shown by proving that the imple- 
mentation of REQUESTS-INFO and MIGRATIONJNFO satisfy 
the properties 1-7. The properties 2, 3, 4, 6 and 7 directly 
follow from the pseudocode description. The operation reg- 
isterrequest involves sending the message request-cs-entry 
to the current-controller which receives the above message 
within finite time and consequently enqueues the correspond- 
ing request. In the event where controller is being migrated 
while register-request message is in transit, this message will 
be routed by old controller to the new controller. Thus, prop- 
erty 1 is ensured. Further, property 5 is ensured since the 
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only effect of concurrent execution of update-con trollerinfo 
and register-request is the delay in receipt of request-cs-entry 
by the controller because of re-routing. 

4.1.4 Complexity 

The message overhead per critical section entry is 3, not 
counting 3 local messages from client to server and assum- 
ing that controller does not migrate while the request is in 
transit. Extra message will be required for re-routing the 
request-cs-entry message in case if the controller migrates in 
between. Further, n- 1 messages are required per migration. 
The average message overhead per critical section entry (in- 
cluding migration) is c + (n - l)/maxreq, where c is the 
sum of 3 and the rerouting overhead. Thus, average message 
overhead per critical section entry is reduced as maxreq 
is increased. If maxreq is chosen to be 1, the controller 
migrates with each critical section entry and the message 
overhead is (n - 1) + c. On the other hand, if maxreq = 
00, the algorithm reduces to the non-migrating centralized 
controller and the message overhead is 3 per critical section 
entry. 

4.2 DDC 

(Distributed queue, b n a m i c  routing, Counter-based migra- 
tion) 
This algorithm differs from CDC algorithm in just one as- 
pect. Here, instead of storing the requests at the con- 
troller node, we store them in a distributed manner among 
the requesting nodes. Each requesting node has a variable 
nezt-in-q (initialized to null by register-request), which, if 
not null, refers to the node whose request immediately fol- 
lows the former node and is scheduled in that order. The 
controller node keeps track of the node whose request is last, 
in a variable last-in-q. Also, the controller maintains a vari- 
able first-in-q, which, if defined, refers to the node whose 
request is first in queue. Since the controller does not store 
the complete queue, it must get the identity of the server 
to be granted next from the exiting server. This is imple- 
mented by piggybacking next-in-q to exit-cs message. The 
last-in-q server is sent a message next-requestor by the con- 
troller to allow the server to  update it’s value of nezt-in-q 
when another request arrives at the controller. Migration is 
similar to CDC algorithm and thus, the migration frequency 
is controllable by parameter maxreq. 

4.2.1 Implementation of REQUESTS-INFO 

Data Structures: 
At each MUTEX server 
current-controller: controller id as known 
nezl-in-q: node identifier - if not null, refers to node 

whose request immediately follows this 
server’s request; 

At controller node onlv 

last-in-q: node identifier - refers to the node whose 
request is last among the pending requests; 
intialized to null; 

first-in-q: node identifier - if not null, refers to the 
node whose request was granted last; initialized to 
undefined (null); 
cs-status: (free, busy), intialized to  free; 

Operations: 

0 select_request(next-in-q) 
/* invoked in controller role - next-in-q is received with 
exit-cs message*/ 

- if next-in-q # null then 
- if next-in-q = last-in-q then last-in-q := null; 
cs-status := busy; 
return next-in-q; 

- if first-in-q = undefined then 
- else /*nexLin-q = null */ 

csstatus := free; 
return null; 

csstatus := busy; 
next-in-q := first-in-q; 
first-in-q := undefined; 
return next-in-q; 

- else 

} 

register-request involves performing actions in requestor 
role, controller role and also possibly in the auxiliary 
role. 

In requestor role 
regis ter-reques t ( i )  

{ 

1 

next-in-q := null; 
send reques t-cs-en try( i) to current-cont roller, 

Upon receipt of nextrequestor(next) 

In controller role 
Upon receipt of request-cs-entry(k) 

next-in-q := next; 

- if last-in-q # null then 
send next-requestor(k) to last-in-q; 
last-in-q := k; 

last-in-q := k; 
- if csstatus = free then send wake-up 
message to  Mi (itself); 

In auxiliary role 
/* executed only when controller role is not active */ 
Upon receipt of request-cs-entry(k) 

send reques t-cs-en try( k)  to current -con2 rol le r; 
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The implementation of operation update-controllerinfo 
is same as in CDC algorithm. 

concerns and provides a basis for taxonomical classification 
of single controller based distributed mutual exclusion algo- 
rithms. 

References 4.2.2 Implementation Of MIGRATION-INFO 

The implementation of MIGRATIONJNFO is identical to the 
CDC algorithm except for a minor change in the operation 
selec t-next-con troller. 

0 selec t-next-con troller() 
k := last-in-q; 
- if (k = null or k 6 candidate-controllers) then 

k := any node other than i in candidate 
-controllers; 

return k; 
1 

4.2.3 Correctness of DDC 

From the description of register-request, it is clear that  its 
invocation by Mi results in setting last-in-q to i ,  at the con- 
troller in finite time and if cs-status is free, wake-up mes- 
sage is sent to  the controller. Thus properties 1 and 2 are 
ensured. In select-request the truth of conditions, next-in-q 
= null and first-in-q = undefined implies that  there are no 
pending requests, in which case csstatus is set to free and 
null is returned. In other cases, cs-status is set to busy and 
the request at the top of the queue is returned. The requests 
are served in the order in which they were received at the 
controller. Thus property 3 is ensured. Other operations 
are implemented as in CDC algorithm and their proofs are 
obvious from their description. 

4.2.4 Complexity 

The message overhead per critical section entry is 3 to 5 de- 
pending on whether controller migrates during submission of 
request or whether the next request is submitted before or 
after the server gets a grant. Further, as in CDC, n - 1 mes- 
sages are required per migration. The total average message 
overhead per critical section entry (including migration) is 
c +  (n - l)/max-req, where c is 3 or 5. Thus, message com- 
plexity of algorithms DDC and CDC are identical. However 
the algorithm DDC is more amenable to an extension to a 
fault-tolerant version [l] than the CDC algorithm because of 
a distributed queue implementation. 
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