
Migrating Controller Based Framework for Mutual Exclusion
in Distributed Systems

Satyendra Rana', Krishna Raman' and Vipin Chaudhary2
Wayne State University

Detroit, MI 48202

Abs t r ac t
A new framework for migrating controller based distributed
mutual exclusion algorithms is presented. A salient feature of
the proposed framework is the separation of two orthogonal
aspects of the problem, viz., migrating controller and the
granting of critical section entry. Two new algorithms are
presented to illustrate the derivation of specific algorithms
from the generalized framework.
Keywords : Mutual Exclusion, Distributed Systems, Gen-
eralized Frameworks, Derivation of algorithms

1 Introduction
The mutual exclusion problem has received a lot of atten-

tion for its significance both as an important synchronization
problem and as a paradigm for studying distributed decision-
making algorithms. The research efforts for the above prob-
lem can be broadly divided into two categories: 1) proposing
algorithms with some improved performance measure, and
2) devising generalized frameworks from which a spectrum
of algorithms can be generated. This paper belongs to the
second category.
In this paper, we present a new framework for migrat-
ing control ler based algorithms. Our framework subsumes
many existing algorithms and is comparatively simpler in
exposition. Furthermore, it opens up directions for deriving
new, efficient, and adaptive algorithms. A salient feature of
our framework is the separation of two orthogonal aspects of
the problem, viz., migration of controller and the granting of
criiical section entry. Because of this separation, controller
migration frequency can be reduced and thus, the overhead
is distributed among several critical section entries, thereby
reducing the average complexity.

2 Single Controller Based
Algorithms

We are given a set of n processes, Pi, 1 5 i 5 n, which com-
municate among themselves by message passing. The pro-
cesses do not share a global memory. The message passing

'Authors are with Parallel and Distributed Systems Laboratory, De-
partment of Computer Science.
'This author is with Parallel and Distributed Computing Laborb

tory, Department of Electrical and Computer Engineering. His research
was supported in part by NSF Grant MIP-9309489 and Wayne State
University Faculty Research Award.

0-7803-2492-7195 $4.00 0 1995 IEEE

is asynchronous and reliable with finite delay. Each process
has a critical section code. The distributed mutual exclusion
problem is to derive a protocol to be followed by processes
before entry and after exit of their critical section codes such
that at any instant a t most one process is in its critical sec-
tion code, and further any process trying to enter the critical
section must succeed in doing so in a finite time.
We consider a class of algorithms where a unique process

is designated as the controller and has the responsibility for
scheduling critical section requests. When the controller re-
sponsibility is dynamically delegated among processes, we
get migrating control ler based algorithms.

2.1 Architecture
We associate a unique process Mi to each process Pi and
refer to Mi as a mutual exclusion server (MUTEX server or
simply server) and Pi as the client of Mi. The term node
i refers to both Pi and Mi collectively. I t is the MUTEX
servers that interact with each other to implement a dis-
tributed mutual exclusion algorithm. The MUTEX servers
are assumed to be fully connected and have a peer to peer
relationship.
A message-based interface is provided between the client and

the corresponding MUTEX server. Message identifiers with
boldface refer to messages exchanged between a client and
MUTEX server, whereas message identifiers in slant refer to
those exchanged among MUTEX servers.
Each MUTEX server always performs a non-controller role

and also has the capability to be the controller. However,
at any instant, at most one MUTEX server is the controller.
Migration of the controller involves a server ceasing to be in
the controller role and another server assuming the controller
role.

2.2 A Generalized Framework
In the generalized framework, we employ two abstract dis-

tributed information types, referred as REQUESTS-INFO and
MIGRATION-INFO, and the corresponding operations defined
on these. Particular algorithms can be easily derived by im-
plementing REQUESTS-INFO and MIGRATION-INFO.

2.2.1 The a b s t r a c t t y p e REQUESTS-INFO

The REQUESTSJNFO type encapsulates all information nec-
essary for routing and scheduling requests for critical section

1

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 24, 2008 at 14:38 from IEEE Xplore. Restrictions apply.

entry. This information includes the collection of pending re-
quests and a csstatus. The cs-status is either free (no pend-
ing requests and no process is in critical section) or busy.
For now, we are merely concerned with the operations ex-
ported by REQUESTS-INFO. These operations are:

0 register-request(): This operation is invoked to insert
the request of a node for critical section entry in the
REQUESTS-INFO object. MUTEX servers invoke this op-
eration in the non-controller role. The register-request
operation requires the id of the requestor. Additional
arguments may be needed depending on the implemen-
tation of REQUESTSJNFO.
Correct implementation of register-req uest must ensure
the following properties:
- Property 1 Within a finite time after invocation

of register-request(i), i is inserted into the collec-
tion of pending requests.

- Property 2 If csstatus = free when i is inserted
in the collection, a message is sent to notify the
current controller.

0 select_request(): The operation selectxequest is invoked
only in the controller role. It returns the id of a process
which is to be granted the critical section entry next.
Correct implementation of selectrequest must ensure
the following property:

- Property 3 The operation select-request() com-
pletes within finite time. If there are no pending
requests, it sets csstatus free and returns null.
However t f there are pending requests in the collec-
tion, select-request() sets csstatus busy and re-
turns a request by choosing one from the collection
using a starvation free scheduling criterion. The
request is also removed from the queue.

update-controllerinfo(): The operation update-control-
lerinfo is also invoked in the controller role. It is invoked
when the current controller relinquishes the controller
role to another server. The correctness properties to be
ensured by this are:
- Property 4 The operation update-controller-

info() completes within finite time.

- Property 5 The concurrent execution of u p
da te-con trollerinfo() and regis ter-request () does
not violate properties lI 2 and 4 .

2.2.2 The abstract type MIGRATION-INFO

In an instance of type MIGRATIONJNFO, the information
needed for migration is maintained. The operations exported
by MIGRATION-INFO are:

The operat ion tes t-migr-
ation-condition() returns true if the migration must
take place at this instance otherwise i t returns false.
The correctness requirement is:
- Property 6 The operation test-migration-condi-

test -migra tion-condi tion () :

tion() completes within finite time.

select_next-controller(): The operation select-next-con-
troller() returns the identity of the MUTEX server se-
lected to assume the controller role next. The correct-
ness requirement is:
- Property 7 The operation select-next-controlle-

r() completes within finite time and retums the id
of a potential controller other than the caller.

2.2.3 Description of the Generalized Framework

The introduction of the two abstract types simplifies the pre-
sentation of framework and clearly separates the orthogonal
concerns of controller migration and the scheduling of critical
section entry requests. The algorithm at node i is described
by the algorithm for Pi and Mi; 1 5 i 5 n.

Algorithm for client process Pi: A client process com-
municates with its associated MUTEX server by using mes-
sages request-cs-entry, exit-cs, and requestgranted as
shown below.

begin

send request-cs-entry to Mi;
wait until requestgranted received from Mi;
execute critical section code
send exit-cs to Mi;

end

Algorithm for MUTEX server Mi: The algorithm for a
MUTEX server is described in terms of its three roles - re-
questor, auxiliary, and controller. These roles can be concur-
rently active in a server and communicate among each other
by message passing as well as by using shared variables.
The roles are described as a collection of event-action pairs.

The actions in event-action pairs are executed atomically.
Each server maintains a global variable current-controller,

which holds the identity of the current controller as known
to the server. Initially, the variable current-controller at all
nodes correctly refers to the id of the node whose controller
role is active. All other nodes except the current-controller
have their controller role deactivated. The objects RE-
QUESTSJNFO and MIGRATION-INFO are implemented by ad-
ditional global variables and by enhancing the roles by extra
event- action pairs.

Requestor Role: The request of a client is forwarded to
Mi by invoking the register-request operation. Also, the
requestor role interacts with the controller role, whether
local or remote by receiving request-granted message
and subsequently sending exit-cs message. The con-
troller migrates only in between critical section entries.
The algorithm for the requestor role is as follows:
/* Requestor role at Mi */

Upon receipt of request-cs-entry
regis ter-reques t (i) ;

2

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 24, 2008 at 14:38 from IEEE Xplore. Restrictions apply.

Upon receipt of request-granted(j)
current-controller := j;
send request4ranted to Pi;

send exit-cs to current-controller;
Upon receipt of exit-cs

0 Controller Role: The controller role has primarily two
responsibilities: scheduling critical section entry re-
quests and eventually relinquishing the controller role
to another MUTEX server. The algorithm for controller
role is as follows:

/* Controller Role at Mi */

Upon receipt of exit-cs
;f test_migration_condition() then

k := select-next-controller();
update_controllerinfo(k);
send become-controller to Mk;
current-controller := 1;
/* deactivate controller role */

j := selectsequest();
- if j#null _then send request-granted(i) to M j ;

Upon receipt of wake-up
j := select-request();
- if jfnull then send request-granted(i) to Mj;

0 Auxiliary Role: In Auxiliary role, a server participates
in the implementation of REQUESTSJNFO object and in
the migration of controller responsibility. The algorithm
for auxiliary role at this stage is as follows:

/* Auxiliary role at Mi */

Upon receipt of become-controller
current-controller := i;
/* activate controller role */
send wake-up message to Mi(itse1f);

2.3 Correctness

A mutual exclusion algorithm is correct if i t ensures that
each request for critical section entry is granted within finite
time and atmost one process is in the critical section at any
instant. Stronger fairness requirements may be imposed for
scheduling critical section requests. At the framework level,
we are concerned with only starvation and deadlock freedom
in scheduling entry requests. Assuming that properties 1-
7 are satisfied, we show the correctness of the generalized
framework in [8].

3 A Taxonomy of Migrating
Controller Based Algorithms

From the framework described in the previous section, a
spectrum of algorithms can be derived by various implemen-
tations of REQUESTS-INFO and MIGRATION-INFO objects.

3.1 Implementation of REQUESTSJNFO
The primary information encapsulated in REQUESTS-INFO
is the collection of pending requests. Depending on where
this coIlection is stored, registersequest0 may have to route
the request accordingly. This requires routing information
which too is part of REQUESTS-INFO. The operation up-
date-controllerinfo() is invoked when migration of the con-
troller takes place, for updating the routing information if
it depends on the location of controller. Several alternatives
for maintaining the pending requests collection are outlined
next.

3.1.1 Centralized Queue
In the centralized queue approach, the pending requests are
stored in a queue at the controller node. The routing infor-
mation is simply the identity of the current controller. The
registerrequest() operation involves sending the request to
controller node where the request is enqueued. The oper-
ation select-request() dequeues a request from the front of
the queue. The operation update-controllerinf) informs
all MUTEX servers about the new controller.
A server’s knowledge of the current controller may be out-

dated for two reasons:
0 Concurrent execution of register-request and up-

date-con trollerinfo.

0 Selective update by update-controllerinfo.
The implementation of register-request relies on the imple-
mentation of update-controllerinfo. There are three broad
choices for update-controllerinfo - inform none, inform all,
and selective inform.

0 The “inform none” refers to no action in up-
da te-con trollerinfo. The operat ion regis ter-reques t in
this case is implemented by either broadcasting the re-
quest to all servers or by propagation among servers
until the request reaches the controller.

0 In the “inform all” case, update-controllerinfo() opera-
tion broadcasts the identity of the new controller to all
servers. If a non-controller server (usually the last con-
troller) receives a request, it forwards the request to the
correct current controller.

0 In “selective inform” strategy, the identity of the new
controller is communicated to only a subset of servers.
Thus, some servers may not have the correct knowledge
of the current controller and their requests may require
several message exchanges to reach the controller.

3.1.2 Distributed Queue
In the distributed approach, the collection of pending re-
quests is implemented as a linked list of entries. Each en-
try in the list refers to the id of the server next in queue.
The selectsequest operation refers to the head of the queue,
whereas the operation register-request enqueues at the tail
of the queue. An entry corresponding to a request is stored
at the originating node itself. The tail information is stored
at the controller node. Thus, register-request will have to
communicate with the controller to get tail information and
subsequently update it. For update-controllerinfo, we have
the same choices available as in the centralized case. Alterna-
tive implementations of distributed queue are also possible.

3

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 24, 2008 at 14:38 from IEEE Xplore. Restrictions apply.

3.1.3 Partially Ordered Collection

In both approaches above, the pending requests are totally
ordered. There are alternatives where an explicit total order
on requests is not imposed until the scheduling time. The
partially ordered collection is not stored on a single node but
partitioned into sub-collections which are stored as queues on
distinct nodes. These sub-collections may be inter-related in
an hierarchical fashion to form a tree structure. The oper-
ation register-request routes the request to the appropriate
level in the hierarchy and the operation select-request picks
up request from the hierarchy in a manner so as to avoid
starvation. The hierarchy may be static or dynamic.

3.1.4 Ring Structure

The ring structured approach is a particular case of partially
ordered collection approach. The ordered sub-collections in
this case are arranged in the form of a ring rather than a
tree. The operation register-request inserts a request in a
sub-collection, which is a queue at a distinct node. The
select-request operation schedules requests by traversing the
ring.

3.1.5 Replicated Collection

Yet another approach is to have replicated copies of pend-
ing requests queue at multiple nodes. In this case, reg-
ister-request must insert the request in all copies and
select-request must remove the request from all copies.
Further, if the nodes maintaining copies dynamically
change (e.g. when the controller migrates) then up-
date-controllerinfo must update the routing information to
reflect the above change.

3.2 Implementation O f MIGRATIONJNFO

Controller migration is the delegation of controller role from
one MUTEX server to another and involves three issues:

0 When to migrate? The operation test-migration-
-condition() determines when to migrate.

0 Where to migrate? The operation select-next-
-controller() selects the next controller.

0 How to migrate? Implementation involves invoking
update-con trollerinfo and sending a become-con troller
message to new controller.

The first two issues are mutually independent of each other.
We now outline implementation alternatives for the two op-
erations on MIGRATIONJNFO. An implementation of MIGRA-
TION-INFO is derived by selecting an implementation for each
of the two operations from the available alternatives.

3.2.1 Operation test-migration-condition()

This operation affects the frequency of migration. First, we
consider two extreme cases: N o migration and Migration
with each exit from critical section.

0 In the case of “NO migration”, test-migrationxondition
is implemented to always evaluate to false. Alterna-
tively, the controller role can be modified to skip the
test for migration altogether.

0 If migration is as frequent as critical section entries then
test-migration-condition is implemented to always re-
turn true. Again, the same effect can be achieved by
skipping the test altogether.

The case where mlgration is less frequent than the
critical section entries requires maintaining some state
information which is updated with each invocation of
test-migration-condition(). We provide two simple choices
for controlling the frequency of migration:

0 In counter-based approach, MIGRATIONJNFO main-
tains a counter reqserved which is incremented each
time testaigration-condition() is invoked. When the
value of reqserved equals a threshold value maxreq,
test-migrationxondition() returns true, otherwise it re-
turns false. The new controller starts by initializing
reqserved to zero.

0 In timer-based approach, a timer is started with a pre-
determined value maxfime when a server assumes
controller role. MIGRATION-INFO maintains a boolean
variable migrate which is set to false when migra-
tion takes place. When the migration timer expires,
migrate is set to true. A subsequent invocation of
test-migration-condition then returns true.

3.3 Taxonomy
In the taxonomy shown in table 1, single controller based
algorithms for mutual exclusion are laid out in a two di-
mensional space. The two dimensions pertain to the imple-
mentation of REQUESTSJNFO and MIGRATION-INFO objects
respectively.
Each category in table 1 can be further sub-divided among

sub-categories to highlight the differences between algo-
rithms falling in the same category.
From table 1, it can be seen that most of the existing al-

gorithms appear in only few categories, whereas there are
no known algorithms in several other categories. In the next
section, we present two new algorithms CDC and DDC which
appear in categories as shown in table 1. It should also
be noted that not all categories will lead to attractive al-
gorithms, from performance point of view

Centra
-1ired

Distri
-buted
Queue I
Hierar I
-thy
Rang [41

1 RepIic 1 I I
-ated
Queue

Dynamic Routing
Counter

Exit Timer

4

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 24, 2008 at 14:38 from IEEE Xplore. Restrictions apply.

Table 1. Classification of Single Controller Based
Distributed Mutual Exclusion Algorithms

4 Derivation of Algorithms
We now present two new algorithms to demonstrate the

derivation of algorithms from the framework.

4.1 CDC
(Centralized queue, B n a m i c routing, Counter-based migra-
tion).
In this algorithm instead of migrating with each exit from
critical section, the migration frequency is less and is con-
trollable by setting the parameter maxreq.

4.1.1 Implementation Of REQUESTS _INFO

Data Structures:
At each MUTEX server
current-controller : id of current controller maintained

At controller node only
request-queue : queue of requests, initialized to empty;
cs-status: (free, busy), initialized to free;

in each MUTEX server;

Operations:
All actions shown below are for the server Mi.

selectsequest() /* invoked in controller role */
{
- if request-queue # 0 then

{

1

cs-status := busy;
return first entry dequeued from request-queue;

- else
css ta tus := free;
return null;

1

register-request involves executing procedure regis-
ter-request() in requestor role and subsequently per-
forming an action in controller role and also possibly
in the auxiliary role.

In requestor role
register-request(i) { send request-cs-entry(i) to current
-controller;}
In controller role
Upon receipt of request-cs-entry(k)

enqueue k in request-queue;
- if cs-status = free then send wake-up to Mi
(itself);

In auxiliary role
Upon receipt of request-cs-entry(IC)
/*Controller role not active */

send request -cs-en try(I C) to current -co nt rol le r;

0 update-controllerinfo requires actions in controller role
of controller and the auxiliary role of other servers.

In controller role
update-controllerinfo(k) {send new-controller(k) to all
servers except k ; }
In auxiliary role
Upon receipt of new-controller(k)

current-controller := k ;

4.1.2 Implementation Of MIGRATION-INFO

Data Structures:
Global parameters - at each MUTEX server
candidate-controllers: list of servers which can

maxreq: max number of consecutive requests to be

At controller node only
req-served : number of consecutive requests served by

assume controller role;

served by the controller.

the controller, initialized to zero.

Operations:

0 test-migration_condition()
{
reqserved := reqserved + 1;
- if (reqserved = maxreq) then

reqserved := 0;
return true;

return false;
J

0 selec t-n ext -con troller()
{
j := first entry in request-queue;
k := second entry in request-queue;
- if k = null or k # candidate-controllers then

k := any node other than i, j in candidate
-cant rolle rs;

return k;
1

4.1.3 Correctness of CDC

The correctness of CDC is shown by proving that the imple-
mentation of REQUESTS-INFO and MIGRATIONJNFO satisfy
the properties 1-7. The properties 2, 3, 4, 6 and 7 directly
follow from the pseudocode description. The operation reg-
isterrequest involves sending the message request-cs-entry
to the current-controller which receives the above message
within finite time and consequently enqueues the correspond-
ing request. In the event where controller is being migrated
while register-request message is in transit, this message will
be routed by old controller to the new controller. Thus, prop-
erty 1 is ensured. Further, property 5 is ensured since the

5

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 24, 2008 at 14:38 from IEEE Xplore. Restrictions apply.

only effect of concurrent execution of update-con trollerinfo
and register-request is the delay in receipt of request-cs-entry
by the controller because of re-routing.

4.1.4 Complexity

The message overhead per critical section entry is 3, not
counting 3 local messages from client to server and assum-
ing that controller does not migrate while the request is in
transit. Extra message will be required for re-routing the
request-cs-entry message in case if the controller migrates in
between. Further, n- 1 messages are required per migration.
The average message overhead per critical section entry (in-
cluding migration) is c + (n - l)/maxreq, where c is the
sum of 3 and the rerouting overhead. Thus, average message
overhead per critical section entry is reduced as maxreq
is increased. If maxreq is chosen to be 1, the controller
migrates with each critical section entry and the message
overhead is (n - 1) + c. On the other hand, if maxreq =
00, the algorithm reduces to the non-migrating centralized
controller and the message overhead is 3 per critical section
entry.

4.2 DDC

(Distributed queue, b n a m i c routing, Counter-based migra-
tion)
This algorithm differs from CDC algorithm in just one as-
pect. Here, instead of storing the requests at the con-
troller node, we store them in a distributed manner among
the requesting nodes. Each requesting node has a variable
nezt-in-q (initialized to null by register-request), which, if
not null, refers to the node whose request immediately fol-
lows the former node and is scheduled in that order. The
controller node keeps track of the node whose request is last,
in a variable last-in-q. Also, the controller maintains a vari-
able first-in-q, which, if defined, refers to the node whose
request is first in queue. Since the controller does not store
the complete queue, it must get the identity of the server
to be granted next from the exiting server. This is imple-
mented by piggybacking next-in-q to exit-cs message. The
last-in-q server is sent a message next-requestor by the con-
troller to allow the server to update it’s value of nezt-in-q
when another request arrives at the controller. Migration is
similar to CDC algorithm and thus, the migration frequency
is controllable by parameter maxreq.

4.2.1 Implementation of REQUESTS-INFO

Data Structures:
At each MUTEX server
current-controller: controller id as known
nezl-in-q: node identifier - if not null, refers to node

whose request immediately follows this
server’s request;

At controller node onlv

last-in-q: node identifier - refers to the node whose
request is last among the pending requests;
intialized to null;

first-in-q: node identifier - if not null, refers to the
node whose request was granted last; initialized to
undefined (null);
cs-status: (free, busy), intialized to free;

Operations:

0 select_request(next-in-q)
/* invoked in controller role - next-in-q is received with
exit-cs message*/

- if next-in-q # null then
- if next-in-q = last-in-q then last-in-q := null;
cs-status := busy;
return next-in-q;

- if first-in-q = undefined then
- else /*nexLin-q = null */

csstatus := free;
return null;

csstatus := busy;
next-in-q := first-in-q;
first-in-q := undefined;
return next-in-q;

- else

}

register-request involves performing actions in requestor
role, controller role and also possibly in the auxiliary
role.

In requestor role
regis ter-reques t (i)

{

1

next-in-q := null;
send reques t-cs-en try(i) to current-cont roller,

Upon receipt of nextrequestor(next)

In controller role
Upon receipt of request-cs-entry(k)

next-in-q := next;

- if last-in-q # null then
send next-requestor(k) to last-in-q;
last-in-q := k;

last-in-q := k;
- if csstatus = free then send wake-up
message to Mi (itself);

In auxiliary role
/* executed only when controller role is not active */
Upon receipt of request-cs-entry(k)

send reques t-cs-en try(k) to current -con2 rol le r;

6

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 24, 2008 at 14:38 from IEEE Xplore. Restrictions apply.

The implementation of operation update-controllerinfo
is same as in CDC algorithm.

concerns and provides a basis for taxonomical classification
of single controller based distributed mutual exclusion algo-
rithms.

References 4.2.2 Implementation Of MIGRATION-INFO

The implementation of MIGRATIONJNFO is identical to the
CDC algorithm except for a minor change in the operation
selec t-next-con troller.

0 selec t-next-con troller()
k := last-in-q;
- if (k = null or k 6 candidate-controllers) then

k := any node other than i in candidate
-controllers;

return k;
1

4.2.3 Correctness of DDC

From the description of register-request, it is clear that its
invocation by Mi results in setting last-in-q to i , at the con-
troller in finite time and if cs-status is free, wake-up mes-
sage is sent to the controller. Thus properties 1 and 2 are
ensured. In select-request the truth of conditions, next-in-q
= null and first-in-q = undefined implies that there are no
pending requests, in which case csstatus is set to free and
null is returned. In other cases, cs-status is set to busy and
the request at the top of the queue is returned. The requests
are served in the order in which they were received at the
controller. Thus property 3 is ensured. Other operations
are implemented as in CDC algorithm and their proofs are
obvious from their description.

4.2.4 Complexity

The message overhead per critical section entry is 3 to 5 de-
pending on whether controller migrates during submission of
request or whether the next request is submitted before or
after the server gets a grant. Further, as in CDC, n - 1 mes-
sages are required per migration. The total average message
overhead per critical section entry (including migration) is
c + (n - l)/max-req, where c is 3 or 5. Thus, message com-
plexity of algorithms DDC and CDC are identical. However
the algorithm DDC is more amenable to an extension to a
fault-tolerant version [l] than the CDC algorithm because of
a distributed queue implementation.

5 Conclusion

[l] R. K. Arora, S. P. Rana, and N. K. Jain. Achieving mu-
tual exclusion in a distributed computing environment.
Information Systems, 7(4):359-365, 82.

[2] J.-M. Helary, A. Mostefaoui, and M. Raynal. A general
scheme for token and tree based distributed mutual ex-
clusion algorithms. Technical report, IRISA Campus de
Beaulicu, France, 92.

A dis-
tributed algorithm for mutual exclusion in an arbitrary
network. The Computer Journal, 31(4):289-295,88.

[4] A. J. Mar in . Distributed mutual exclusion in a ring of
processes. Science of Computer Programming, 5:265-
276, 85.

[5] M. Mizuno, M. L. Neilsen, and R. Rao. A token based
distributed mutual exclusion algorithm based on quo-
rum agreements. In Proceedings of the 11th Interna-
tional Conference of Distributed Computing Systems,
pages 284-299,91.

[6] C. Mohan and A. Silberschatz. Distributed control - is
it always desirable? In Proceedings of the Symposium
on Reliability in Distributed Software and Database Sys-
tems, pages 102-106, 81.

[7] M. L. Neilsen and M. Mizuno. A dag based algorithm
for distributed mutual exclusion. In Proceedings of the
11th International Conference of Distributed Computing
Systems, pages 284-299, 91.

Migrating
controller based algorithms for mutual exclusion in dis-
tributed systems. Technical report, Parallel and Dis-
tributed Systems Laboratory, Department of Computer
Science, Wayne State University, Detroit, MI 48202,
1994.

[9] K. Raymond. A tree-based algorithm distributed mu-
tual exclusion. A C M Transactions on Computer Sys-
tems, 7(1):61-77, 89.

[lo] G . Ricart and A. K. Agrawala. An optimal algorithm
for mutual exclusion in computer networks. Communi-
cations of the A C M , 24(1):9-17, 81.

[ll] M. Singhal. On the application of ai in decentralized
control: An illustration by mutual exclusion. In I n Pro-
ceedings of 7th International Conference on Distributed
Computing Systems, pages 232-239, 87.

[12] I. Suzuki and T . Kasami. A distributed mutual exclu-
sion algorithm. ACM Transactions on Computer Sys-
tems, 3(4):344-349, 85.

[3] J.-M. Helary, N. Plouzeau, and M. Raynal.

[8] S. Rana, K. Raman, and V. Chaudhary.

A new framework for migrating controller based distributed
mutual exclusion algorithms is presented, which separates
the orthogonal concerns of migrating the controller and the
granting of critical section entry. An interesting aspect of
the framework is its layered approach using distributed ab-
stract types to encapsulate migration and request scheduling

7

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 24, 2008 at 14:38 from IEEE Xplore. Restrictions apply.

