
Design and Evaluation of an Environment APE for
Automatic Parallelization of Programs *

Vipin Chaudhary, Chengzhong Xu, Sumit Roy, Jialin Ju, Vikas Sinha, and Laiwu Luo
Parallel and Distributed Computing Laboratory

Department of Electrical and Computer Engineering
Wayne State University, MI 48202

Abstract

In this paper, we have presented the design and evalu-
ation of a compiler system, called APE, f o r automatic
parallelization of scientific and engineering applications
o n distributed m e m o r y computers. APE i s built o n top
of S U I F compiler. It extends S U I F with capabilities
in parallelizing loops with non-uniform cross-iteration
dependencies, and in handling loops that have indirect
access patterns. W e have evaluated the effectiveness
of S U I F with several CFD test codes, and found that
S U I F handles uni form loops over dense and regular data
structures very well. For non-uniform loops, an innova-
tive and efficient parallelization approach based o n con-
vex theory have been proposed and i s being implemented.
W e have also presented a class of scalable algorithms f o r
parallel distribution and redistribution of unstructured
data structures during parallelizing irregular loops.

1 Introduction
Parallel computers offer the promise of a quantum leap
in computing power. To take full advantage of their po-
tential, however, programmers are often forced to man-
ually distribute code and data onto memory systems in
addition to specifying how parallel processors cooperate
over the execution course. Such hand-coding is time-
consuming and error-prone. What is worse, the parallel
codes generated in such a way are rarely portable across
different machines. A grand challenging approach to
relieving programmers from artful parallel program-
ming is automatic program parallelization. Program-
mers write sequential portable programs in conventional
languages, leaving the machine-specific parallelization
work to compilers.

Compiler techniques for the automatic detection of

*This work was sponsored in part by NSF MIP-9309489, US
Army Contract DAEA-32-93-D-004, and Ford Motor Company
Grant #0000952185

parallelism have been studied extensively over the last
two decades, and achieved significant progresses in re-
cent years. Current parallelizing compilers, however,
are mostly directed towards optimizing control flows
over regular data structures on parallel machines with
shared global address space. They have limitations in
parallelization of loops with non-uniform cross-iteration
dependencies and loops with indirect access patterns.
Automatic parallelization of programs on distributed
memory machines is far beyond the capability of to-
day’s compilers because of their weakness in orches-
trating data. In order to make parallel computing to-
tally transparent to programmers, parallelizing compil-
ers need breakthroughs in exploiting parallelism and or-
chestrating data across distributed memory machines.

This paper presents our recent efforts along these
two directions. We design and evaluate an environ-
ment, named APE, for automatic parallelization of sci-
entific and engineering applications on parallel comput-
ers. The APE system is built on top of SUIF compiler.
SUIF is a compiler infrastructure that embodies a broad
set of program analyses and optimization techniques [7].
It offers a standard intermediate format that facilitates
experimentation and development of new compiler tech-
niques. We first evaluate the SUIF system on shared
memory multiprocessors and find it is effective in han-
dling loops with uniform data dependences. For nested
loops with non-uniform dependences and loops having
indirect memory access patterns, SUIF becomes some-
what impotent. Non-uniform and irregular loops ap-
pear frequently in applications like computational fluid
dynamics (CFD) and molecular dynamics (MD). We
first extend SUIF with an efficient tool based on con-
vex theory and linear programming for handling non-
uniform loops. The enhanced SUIF is further integrated
with run-time libraries in the APE, including a scal-
able data redistribution strategy, for parallelizing irreg-
ular loops on distributed memory machines. The APE
targets both message-passing and shared-memory pro-
gramming models on distributed memory platforms.

77
1087-4089/96 $5.00 0 1996 IEEE

Related work A P E bears a resemblance to
Paradigm of Illinois in design philosophy, but Paradigm
is built on top of Parafrase-2 and targets solely message-
passing models on distributed memory multicomput-
ers [l]. Compilers for Fortran extensions like HPF and
Fortran D are assisted by programmer-provided direc-
tives, which specify how to distribute data and whether
a DO-loop is parallelizable. They relieve the program-
mers of architecture-dependent parallelization tasks to
a limited extent because their effectiveness relies heavily
on the user-provided directives.

In the rest of this paper, Section 2 discusses funda-
mental issues for automatic parallelization of scientific
and engineering applications. Section 3 presents the
structure of the APE, which integrates our strategies
for the fundamental issues. In Section 4, we summarize
our preliminary results in parallelization of loops with
uniform and non-uniform data dependencies, and re-
distribution of irregular data sets. Section 5 concludes
with discussions about the future work.

2 Issues in Automatic Paral-
lelization

For automatic parallelization of scientific and engineer-
ing applications on parallel machines, many issues need
to be addressed. Below we identify three crucial issues
for achieving high performance: parallelism exploita-
t ion, data distribution, and communication scheduling.

2.1 Parallelism exploitation
A major task of parallelizing compilers is to discover
maximum parallelism in loops. In the literature, there
are a large number of parallelizing techniques for cross-
iteration independent loops, and for loops with uni-
form and static cross-iteration dependences. For non-

Loop 1(a): Loop with non-uni form dependences
DO I = 1, 10

DO J = 1, 10
A(2*J+3,1+1) =
...... = A(2*1+J+l,I+J+3)

ENDDQ
ENDDQ

DO I=l, 10
Loop 1 (b): Loop with indirect access patterns

A(u(1)) = . . .
. . . = A((v(1)) + . . .

ENDDQ

uniform nested loops, like Loop l(a), with non-constant

cross iteration dependencies, however, few efficient ex-
ploitation techniques are available. Non-uniform loops
appear quite frequently in real applications. In an em-
pirical study, Shen et al. observed that nearly 45%
of two dimensional array references are coupled [6].
Coupled references tend to lead to non-uniform depen-
dences.

In scientific and engineering applications, another im-
portant class of potentially parallelizable loops are ir-
regular loops that have indirect access patterns. Under
the edge-oriented representation of an unstructured and
sparse finite element graph, a sequential CFD code has
a typical irregular loop like Loop l (b) , where indirect
arrays U and U store pairs of nodes of edges. The index
array may also be changing over time. In MD codes,
for example, an index array through which the physi-
cal values associated with atoms are assessed stores the
non-bonded lists of all atoms within a certain cutoff
range. The spatial positions of the atoms change af-
ter each simulation step, consequently the same set of
atoms may not be included in subsequent time steps.
Hence, a new non-bonded list must be generated. In
order to realize the full potential of parallel comput-
ing, evidently, compile time analysis must be comple-
mented by new methods capable of automatically ex-
ploiting parallelism at run-time.

2.2 Data distribution
In addition to parallelism exploitation, one more key
decision that a parallelizing compiler has to make on
distributed memory machines is how to distribute data
across processors. Data distribution affects parallel effi-
ciency to a great extent. In the case that loops are par-
titioned by the owner-compute rule (i.e., iterations of a
loop are assigned to the processor that owns the desti-
nation of operations), data distribution determines the
computational workload of processors and the inherent
interprocessor communication volume. Data distribu-
tion is also crucial on DSM machines due to the big
difference between local and remote memory accesses.

Regular data distributions like block and cyclic distri-
butions are appropriate for parallelization of the loops
operating on dense and structured data structures in
terms of the communication to computation ratio. They
also simplify the management of parallelism. However ,
it may not be the case for loops over sparse and un-
structured data structures. In CFD codes on an un-
structured mesh, blocked partition of the mesh nodes
and index arrays may produce extremely high interpro-
cessor communication volumes because the labeling of
the mesh nodes does not necessarily reflect the connec-
tivity of the mesh. Distribution of irregular data struc-
tures thus needs special attentions in the parallelization

78

of scientific and engineering applications.

Parallelization of a program consisting a sequence of
loops requires to consider the issue of data distribu-
tion for multiple loops at a time. Consecutive loops
might have different requirements for load distribution.
An approach to resolving their conflicting constraints is
to develop a complex distribution strategy across loops
so as to compromise their requirements. The compro-
mising approach is intractable when more than two
loops in a program segment are counted on. An al-
ternative is data redistribution at run-time. Each par-
allelizable loop in a program adopts its favorite data
distribution. When consecutive loops impose conflict-
ing requirements on their data distributions, run-time
support systems are used to adjust distribution across
loops. Data redistribution incurs non-negligible over-
head, even though interprocessor bulk data movement
is commonly supported by most machines. When and
how to redistribute data become challenging in the de-
sign of parallelizing compilers.

2.3 Communication scheduling
A major difference between compilation for shared-
memory and message-passing models is that shared-
memory model provides a global name space, so that
any particular data items can be referenced by any pro-
cessor using the same names as in the sequential code,
even though the data may be physically distributed
across processors. Shared memory model simplifies
the design of parallelizing compilers. On DSM sys-
tems, however, shared memory synchronization prim-
itives such as lock and barrier cause excessive amounts
of communication due to the distributed nature of the
memory system. Optimization performed by existing
shared memory compilers are not sufficient for DSM
systems.

On message-passing machines, in contrast, data set
are distributed across processors, each of which has its
own private address space. As a result, any reference,
issued by a processor, to elements beyond its local par-
tition is realized by explicit interprocessor communica-
tion. A simple-minded approach is to generate a mes-
sage for each off-processor data item referenced. It usu-
ally produces extremely high communication overhead
due to the startup cost per message transmission. Thus,
there is a great need for compilers to include scheduling
techniques for communication optimization. One of the
main techniques is message coalescing. It tends to or-
ganize the communication of many data items destined
for the same processor into a single message so as to
reduce the number of message startups.

The communication optimization techniques dis-

cussed above are based on the assumption that the com-
munication patterns are known a priori. Irregular loops
with indirect access patterns, however, hide the data
dependence among processors at compile-time. Paral-
lelization of irregular loops, therefore, requires commu-
nication scheduling at run-time. The inspector/executor
mechanism schedules interprocessor communication in
the absence of compile-time knowledge [2].

3 Architecture of APE
Our implementation assumes a base architecture, as il-
lustrated in Figure l. It comprises a number of pro-
cessing nodes connected by a scalable network, Each
node is composed of one or more commodity proces-
sors with caches, memory, and a module of network
interface (NI). Examples of the base architecture in-

.._.._.....__.._,

. . .

(53 Scalable Nehvork

Figure 1: Targeted Base Machine of APE

clude cluster of workstations and distributed memory
parallel machines, such as CM-5, Intel Paragon, IBM
SP2, Cray T3D and Convex Exemplar. Centralized
shared memory machines, like SGI POWERChallenge
and SUN SPARCcenter, can serve as a processing node
in the base architecture.

APE takes as input a sequential program and pro-
duces an output program targeting either shared-
memory or message-passing programming models.
Shared memory programming on distributed memory
platforms are coming into practice. In addition, tar-
geting message passing libraries PVM and MPI, the de
facto standard libraries, APE ensures the portability of
the resulting parallel codes. APE integrates compile-
time analyses and parallelizing techniques and run-time
scheduling support. Compile-time techniques for paral-
lelization of non-uniform loops are encapsulated in an
enhanced SUIF compiler, and run-time scheduling sys-
tem is provided for parallelization of irregular loops,
management of data redistribution, and communica-
tion optimization. In addition, a mechanism for on-line
visualization of scientific and engineering data is also
integrated for the purpose of practical use. APE com-
prises of six modules: xSUIF, SPMD-converter, data

79

distribution data redistribution, monitor, communica-
tion scheduling, which are organized as in Figure 2.

1DB:lntermPdiate Data Buffer
P D Partitioning Descriptor Communication

Initial data distribution

IPD Initid PD - m a R O W

- -9 Conlro1 now

Scheduling
1

DSM IMP Environments

Figure 2: Architecture of APE

xSUIF, an enhanced SUIF analyzer, takes as input
a sequential program in Fortran or C and produces an
output program in the intermediate format of SUIF tar-
geting the centralized shared memory model. In addi-
tion to the analyses and parallelization techniques em-
bodied in SUIF, the xSUIF expands capabilities in han-
dling loops with non-uniform memory access patterns
and irregular loops that have input-data dependent
memory access patterns. xSUIF compiler generates par-
allel codes in the master-slave paradigm. The execution
of the program is controlled by a master thread. On ar-
riving at a parallel loop, the master thread creates or
activates a number of slave threads for cooperation. All
slave threads join the master at the end of the loop.

SPMD Converter converts the master-slave par-
allel codes from xSUIF into SPMD (single-program
and multiple-data) parallel codes targeting distributed
memory machines. SPMD paradigm not only facilitates
data locality exploitation, but also helps in reducing
synchronization overhead. Furthermore, we distinguish
shared memory and message passing models in the con-
version, and construct two converters correspondingly.
DSM-converter generates multithreaded parallel codes
on DSM systems, and MP-converter generates PVM-
based codes.

Initial data distribution is dedicated to irregular
partition of sparse and unstructured data structures.
Dense and structured arrays are regularly partitioned
by xSUIF. Irregular partition takes as inputs the prob-
lem domain descriptor and topological information of

the underlying machine, and generates an initial parti-
tion descriptor (IPD) for each processor. We separate
the distribution policy and the mechanism and leave the
policy open to external libraries.

Data redistribution redistributes the domain data
set across processors at run-time for balancing proces-
sors’ workloads and reducing interprocessor communi-
cation cost. The original data distribution can be reg-
ular or irregular. Redistribution of regular structures
are implemented through dynamic programming ap-
proaches. Redistribution of irregular data structures
takes its local partition descriptor (PD) (or IPD, ini-
tially) as input, and generates a new PD by communi-
cating with other processors. Nearest neighbor iterative
strategies will be implemented for ensuring the scalabil-
ity of the system in MPP systems.

Monitor keeps track of the whole computation at
run-time, and decides whether to invoke a redistribu-
tion operation according to the run-time execution in-
formation. Its decision can also be interactively steered
by end-users.

Communication scheduling provides communica-
tion optimization techniques for both shared-memory
and message-passing models. In the case that in-
terprocessor communication patterns are unknown at
compile-time, an inspector/executor mechanism is used
in SPMD converter for determination of the communi-
cation pattern at run-time. This module is built on top
of DSM systems and PVM environments, which sub-
sumes the architecture details from system designers.

4 Preliminary results
4.1 Experiences on SUIF for regular

SUIF takes as input sequential program in Fortran 77
or C. The Fortran code is first converted to C, taking
care to annotate the code so as not to loose informa-
tion. The C code is then translated to an intermediate
format. The intermediate format allows various passes
to annotate the code further, to do dependence analyses
and code transformation. The output of one pass can
be given as the input of the next pass. The final pass
converts the intermediate format back to C with calls to
a runtime library. The library is machine specific, and
the SUIF source provides support for parallel machines
including Stanford DASH, SGI Challenge, and KSR.

Our initial evaluation of SUIF on regular data struc-
tures was conducted on a SUN symmetric multiproces-
sor SPARCserver 630MP running Solaris 2.4. We first
ported the SUIF runtime library onto the machine tar-

computations

80

geting Solaris threads, so that parallel executables could
be created.

We tested the effectiveness of SUIF in parallelizing
matrix multiplications. Figure 3 plots the execution of
the parallel code generated by SUIF for various matrix
sizes on 4 processors. For comparison, the execution
time of the codes generated by vendor-provided For-
tran and C compilers and the hand-coded programs are
also included. It can be seen that SUIF produces codes
that are as efficient as manually-tuned codes. SUIF out-
performs the F77 and C compilers because the codes by
F77 and C are unable to take advantage of parallel com-
puting.

Figure 4: Performances of an automatic parallelized
CFD Test Code using SUIF

Icw

,'

Figure 3: Execution times of the matrix multiplica-
tion codes generated by SUIF, Fortran and C compilers,
manually

Using SUIF, we also parallelized several CFD test
codes. The test codes have a parameter of matrix size
reflecting the problem scale. Figure 4 plots the speedup
of the first test code generated by SUIF using various
number of threads. It can be seen that SUIF is able to
exploit sufficient parallelism in the program of interest
and provides good results with its run-time library for
small scale problems. The degradation of performance
for large scale problems is partly due to inappropriate
data distribution across processors. Detailed analyses of
the causes of the performance loss are presented in [3].

4.2 Analysis of non-uniform data de-
pendences

In the literature, there are a number of methods based
on integer and linear programming techniques for anal-
ysis of non-uniform data dependences. A serious disad-
vantage with these techniques is their high time com-
plexity. To analyze the cross-iteration dependencies for
these loops, we apply results from classical convex the-
ory and present simple schemes to compute the depen-
dence information.

A set of diophantine equations is first formed from

the array subscripts of the nested loops. These dio-
phantine equations are solved for integer solutions. The
loop bounds are applied to these solutions to obtain a
set of inequalities. These inequalities are then used to
form a dependence convex hull (DCH) as an intersec-
tion of a set of halfspaces. Since the extreme points of
a DCH are formed by intersections of a set of hyper-
planes, they might have real coordinates. They need
not be valid iterations. We developed an algorithm to
convert these extreme points with real coordinates to
extreme points with integer coordinates without losing
useful dependence information [5]. We refer to the con-
vex hull with all integer extreme points as Integer De-
pendence Convex Hull (IDCH). Figure 5(a) shows the
DCH and IDCH for the nested loops in Loop l(b). As
can be seen from Figure 5(a) the IDCH is a subspace of
DCH. So it gives more precise dependence information.
We are interested only in the integer points inside the
DCH.

J 71 T1 T3
-. - - ... -. -,

iT ~~;/. . . . 0 .!!. . . *;I. .
0 . . .!!. . . ./I.i/. . . ./j. .

1 * 1 , 1 ' 1 . 3 %

Figure 5: (a) DCH and IDCH (b) minimum dependence
distance tiling for Loop l(a)

Every integer point in the convex hull corresponds to

81

a dependence vector in the iteration space. The depen-
dence vectors of the extreme points form a set of ex-
treme vectors for the dependence vector set. The mini-
mum and maximum values of the dependence distance
can be found from these extreme vectors. In [5] we pro-
posed a number of theorems and schemes to compute
the minimum dependence distance. Using the minimum
dependence distances, we can tile the iteration space.
The tiles are rectangular shaped, uniform partitions.
Each tile consists of a set of iterations which can be ex-
ecuted in parallel. The minimum dependence distances
can be used to determine the tile size. The minimum de-
pendence distance of the program segment in Loop l (a)
dmin is equivalent to 4. So, we can tile the iteration
space of size M * N with dmin=4 as shown in Fig. 5(b).
The number of tiles in the iteration space can be given
as T, = except near the boundaries of the itera-
tion space, where the tiles are of uniform size M * dmi,.
Ignoring the synchronization and scheduling overheads,
the speedup can be given as Speedup = y. Parallel
code to synchronize the execution of the tiles is given
in Loop 2.

Loop 2: Parallel loop f r o m Loop 1 (b)
Tile num T, =
DOserial K = 1, T,

DOparallel I = (K-l)*dimin+l, min(K*di,i,, N)
DOparallel J = 1, M

A(2*J+3,1+1) = ;
...... = A(2*I+J+l,I+J+3);

ENDDOparallel
EN D DO para I le1

EN DDOserial

Most of the existing techniques cannot parallelize
nested loops with non-uniform dependencies. Though
some advances have been made to solve this prob-
lem, the amount of parallelism that the existing tech-
niques extract is very low compared to the avail-
able parallelism. Our minimum dependence distance
tiling extracts maximum parallelism and gives signifi-
cant speedup compared to the existing techniques. For
Loop l(a), our method gives a speedup of 40 whereas
the dependence uniformization method presented by
Tzen and Ni [8] gives a speedup of 5. A detailed com-
parative analysis is presented in [5] .

4.3 Scalable algorithms for irregular

Parallelization of scientific and engineering applications
first requires to distribute the problem domain across

data redistribution

processors. Figure 6 is a distribution of a sample data
set across 64 processors. Generally, discovering an ap-

Figure 6:
around air-foil across 64 processors

A distribution of an unstructured mesh

propriate distribution for large unstructured meshes is
time-consuming. It is a serial bottleneck in the overall
course of a parallel computation. The bottleneck be-
comes severe with the increase of the scale of parallel
computers. Being able to perform domain partitioning
in parallel is essential not only for reducing the prepro-
cessing time, but also for handling load imbalance at
run time.

We proposed a nearest neighbor iterative strategy,
called Generalized Dimension Exchange (GDE), for
both domain mapping and re-mapping in parallel [9].
Our strategy starts from a simple domain distribu-
tion, and then iteratively refines the domain partition
through local balancing at each processor within its im-
mediate neighbors with respect to both the computa-
tional workload and interprocessor communication cost.
For domain re-mapping, the nearest neighbor iterative
refinement works directly on the original domain dis-
tribution. Figure 7 presents an illustration of redistri-
bution of workloads along each border of a subdomain.
Since the strategy is fully distributed, it can be easily

Figure 7: Illustration of remapping along each edge of
a computational graph

scaled to operate in massively parallel computers of any
size, and would tend to preserve the communication lo-
cality. More importantly, its overhead is proportional
to the degree of imbalance of the original distribution.

82

Since the workload distribution mostly changes in an in-
cremental fashion in the adaptive data parallel applica-
tions, our strategy is especially suitable for incremental
re-mapping.

We experimented on the GDE-based algorithm in
parallel distribution of unstructured meshes. The
meshes in consideration are first partitioned using a
recursive orthogonal bisection approach. The subdo-
mains are next assigned onto processors using a sim-
ple Bohkari’s algorithm. We then do mapping refine-
ment according to the geometric information of vertices
with respect to the cut size (the number of cut edges)
and the shape of subdomains. The mapping quality
and efficiency of our parallel domain mapping mech-
anism, together with those from other well-known se-
quential algorithms, are presented in Figure 8. The se-
quential algorithms include the KL method, the Inertial
method(IN), the Spectral bisection(SB) , and the Mul-
tilevel(ML), which are available in Chaco library [4].
All sequential measurement were taken on Sun Sparc
10/50 with 96 MB memory. The parallel algorithm runs
on a network of T805 Transputers. The computational
power of a Transputer is about 17 times slower than the
Sparc machine. The computed timing performances in
the figure are scaled to take this into account. From the
figure, it can be seen that the GDE-based mapping out-
performs other geometric decomposition strategies (KL
and Inertial methods) in quality. It generates slightly
worse distributions than sequential spectral-based algo-
rithms, but at very low cost.

5 Concluding Remarks
In this paper, we have presented the design and eval-
uation of a compiler system, called APE, for auto-
matic parallelization of scientific and engineering ap-
plications on distributed memory computers. A P E in-
tegrates compile-time and run-time parallelization tech-
niques focusing on non-uniform loops with coupled sub-
scripts and irregular loops with indirect memory ac-
cess patterns. A P E is built on top of SUIF. It extends
SUIF with capabilities in parallelizing non-uniform, and
in handling irregular loops together with a run-time
scheduling library. We have evaluated the effectiveness
of SUIF with several CFD test codes, and found that
SUIF handles well uniform loops over dense and reg-
ular data structures. We have proposed an effective
approach for parallelizing loops with non-uniform de-
pendences. We have also presented a class of scalable
algorithms for parallel distribution and redistribution of
unstructured data structures during parallelizing irreg-
ular loops.

This is an on-going project. Future work include in-

tegration of the non-uniform dependence analyses tech-
niques into SUIF, extension of the SUIF run-time sup-
port with functions for irregular data redistribution and
communication scheduling, and comprehensive evalua-
tion of the A P E based on the enhanced SUIF on par-
allelizing full scale CFD and MD codes.

Figure 8: Comparison of various algorithms in terms
of cut size and running time (in brackets) for mapping
various unstructured meshes onto 16 processors.

References
P.Banerjee, J. A. Chandy, et al., “The Paradigm
compiler for distributed-memory multicomputers” ,
IEEE Computer, Oct. 1995, page 37-47.
H. Berryman, J . Saltz, and JJ . Scroggs, ”Execu-
tion time support for adaptive scientific algorithms
on distributed memory machines”, Concurrency:
Practice and Experience, 3(3):159-178, June 1991.
V. Chaudhary, et al, “Evaluation of SUIF for
CFD on Shared-Memory Multiprocessors”, First
S UIF CO mp iler Workshop , St anfor d University,
Jan. 1996.
B. Hendrickson and R. Leland. The chaco user’s
guide. Technical Report Tech. Rep. SAND 93-2339,
Sandia National Lab., USA, 1993.
S. Punyamurtula and V. Chaudhary, “Minimum
dependence distance tiling of nested loops with
non-uniform dependences,” in Proceedings of the
Sixth IEEE Symposium on Parallel and Distributed
Processing, (Dallas, Texas), IEEE Computer Soci-
ety Press, October 1994.
Z. Shen, Z. Li, and P.-C. Yew, “An empirical
study on array subscripts and data dependencies,”
in Proceedings of the International Conference on
Parallel Processing, pp. 11-145 to 11-152, 1989.
B. Silson, et al., An Overview of the SUIF Compiler
System. available on http://suif. stanford. edu/suif
T. H. Tzen and L. M. Ni, “Dependence uniformiza-
tion: A loop parallelization technique,” IEEE
Transactions on Parallel and Distributed Systems,
vol. 4, pp. 547 to 558, May 1993.
C. Xu, B. Monien, et al, “Nearest neighbor algo-
rithms for load balancing on parallel computers”,
Concurrency: Practice and Experience, Oct. 1995.

83

http://suif

