To appear in the Journal of Parallel Algorithms and Architecture

Compile Time Partitioning of Nested L oop Iteration Spaceswith
Non-uniform Dependences*

Swamy Punyamurtulal Vipin Chaudhary} Jidin Ju and Sumit Roy
Parallel and Distributed Computing Laboratory
Dept. of Electrical and Computer Engineering
Wayne State University
Detroit, M| 48202

Abstract

In this paper we address the problem of partitioning nested loops with non-uniform (irregular) depen-
dence vectors. Parallelizing and partitioning of nested loops requires efficient inter-iteration depen-
dence analysis. Although many methods exist for nested loop partitioning, most of these perform poorly
when parallelizing nested loops with irregular dependences. Unlike the case of nested loops with uni-
form dependences these will have a complicated dependence pattern which forms a non-uniform depen-
dence vector set. We apply the results of classical convex theory and principles of linear programming
to iteration spaces and show the correspondence between minimum dependence distance computation
and iteration space tiling. Cross-iteration dependences are analyzed by forming an Integer Depen-
dence Convex Hull (IDCH). Every integer point in this IDCH corresponds to a dependence vector in
the iteration space of the nested loops. A simple way to compute minimum dependence distances from
the dependence distance vectors of the extreme points of the IDCH is presented. Using these minimum
dependence distances the iteration space can be tiled. Iterations within a tile can be executed in par-
allel and the different tiles can then be executed with proper synchronization. We demonstrate that our
technique gives much better speedup and extracts more parallelism than the existing techniques.

1 Introduction

In the past few years there has been a significant progress in the field of Parallelizing Compilers. Many
new methodologies and techniques to parallelize sequential code have been developed and tested. Of
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particular importance in this area is compile time partitioning of program and data for parallel exe-
cution. Partitioning of programs requires efficient and exact Data Dependence analysis. A precise
dependence analysis helps in identifying dependent/independent partitions of a program. In general,
nested loop program segments have a lot of scope for parallelization, since independent iterations of
these loops can be distributed among the processing elements. So, it is important that appropriate de-
pendence analysis be applied to extract maximum parallelism from these recurrent computations.

Although many dependence analysis methods exist for identifying cross-iteration dependences in
nested loops, most of these fail in detecting the dependence in nested loops with coupled subscripts.
These techniques are based on numerical methods which solve a set of Diophantine Equations. Even
though these methods are generally efficient and detect dependences in many practical cases, in nested
loops with coupled subscripts these techniques become computationally expensive. According to an
empirical study reported by Shen et. al. [1], coupled subscripts appear quite frequently in real pro-
grams. They observed that nearly 45% of two-dimensional array references are coupled. Coupled
array subscripts in nested loops generate non-uniform dependence vectors. Example 1(a) and Example
1(b) show nested loop program segments with uniform dependences and non-uniform dependences re-
spectively. Example 1(a) has a uniform set of dependences {(1,0),(0,1)} and its iteration space is shown
in Fig.1(a). Array A in Example 1(b) has coupled subscripts and has a non-uniform dependence vector
set. Figure 1(b) shows its iteration space and the irregularity of its dependences.

Example 1(a): Example 1(b):
for1=1,10 for1=1,10
forJ=1, 10 forJ=1, 10
A(l) = ... A(2*J+3,1+1) = ......
...... = A(I-1,J) + A(1, J-1) e TARFIHIHL14I+3)
endfor endfor
endfor endfor

When the array subscripts are linear functions of loop indices (i.e., subscripts are coupled), some
of the dependences among the iterations could be very complex and irregular. This irregularity in the
dependence pattern is what makes the dependence analysis very difficult for these loops. A number of
methods based on integer and linear programming techniques have been presented in the literature[2].
A serious disadvantage with these techniques is their high time complexity (N P - complete for integer
programming methods). To analyze the cross-iteration dependences for these loops, we apply results
from classical convex theory and present simple schemes to compute the dependence information.

Once the dependence analysis is carried out, the task now is to analyze and characterize the coupled
dependences. These dependences can be characterized by Dependence Direction Vectors and Depen-
dence Distance Vectors [3]. Computing these dependence vectors for loops with uniform dependences
is simple and straight forward [4, 5]. But for nested loops with non-uniform dependences the de-
pendence vector computation is an interesting problem. In such cases, it is very difficult to extract
parallelism from the loops. Many approaches based on vector decomposition techniques have been
presented in the literature [6, 7, 8]. These techniques represent the dependence vector set using a set
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Figure 1: Kinds of Iteration spaces

of basic dependence vectors. With the help of these basic dependence vectors, the iteration space can
be partitioned for parallel execution. Normally iterations are aggregated into groups or tiles or su-
pernodes. These aggregations are then executed with proper synchronization primitives to enforce the
dependences. Most of these vector decomposition techniques consider nested loops with uniform de-
pendences and they perform poorly in parallelizing nested loops with irregular dependences. Zaafrani
and Ito [9] divide the iteration space of the loop into parallel and serial regions. All the iterations in the
parallel region can be fully executed in parallel. Loop uniformization can then be applied to the serial
region to find and exploit additional parallelism. In this paper we present partitioning schemes which
extract maximum parallelism from nested loops.

Our approach to this problem is based on the theory of convex spaces. A set of Diophantine equa-
tions is formed from the array subscripts of the nested loops. These Diophantine equations are solved
for integer solutions [4]. The loop bounds are applied to these solutions to obtain a set of inequali-
ties. These inequalities are then used to form a dependence convex hull as an intersection of a set of
half-spaces. We use an extended version of the algorithm presented by Tzen and Ni [8] to construct
an integer dependence convex hull. An empty convex hull indicates absence of any cross-iteration de-
pendence among the multi-dimensional array references of the nested loops considered. Every integer
point in the convex hull corresponds to a dependence vector of the iteration space. The corner points of
this convex hull form the set of extreme points for the convex solution space. These extreme points have
the property that any point in the convex space can be represented as a convex combination of these
extreme points [10]. The dependence vectors of these extreme points form a set of extreme vectors for
the dependence vector set [11]. We compute the minimum dependence distances from these extreme
vectors. Using these minimum dependence distances we tile the iteration space. For parallel execution
of these tiles, parallel code with appropriate synchronization primitives is given. Our technique extracts
maximum parallelism from the nested loops and can be easily extended to multiple dimensions.

The rest of the paper is organized as follows. In section two, we introduce the program model
considered and review the related work previously done on tiling. Dependence analysis for tiling is
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also presented. Section three discusses dependence convex hull computation. Algorithms to compute
the minimum dependence distances and our minimum dependence distance tiling schemes are given
in section four. In section five a comparative performance analysis with Zafraani and Ito’s techniques
is presented to demonstrate the effectiveness of our scheme. Finally, we conclude in section six by
summarizing our results and suggesting directions for future research.

2 Program Model and Background

We consider nested loop program segments of the form shown in Figure 2. For simplicity of notation
and technique presentation we consider only doubly nested loops. However our method applies to
multi-dimensional nested loops also. We consider tightly coupled nested loops only. The dimension of
the nested loop segment is equal to the number of nested loops in it. For loop 1(J), L;(L;) and U;(U;)
indicate the lower and upper bounds respectively. We also assume that the program statements inside
these nested loops are simple assignment statements of arrays. The dimensionality of these arrays is
assumed to be equal to the nested loop depth. To characterize the coupled array subscripts, we assume
the array subscripts to be linear functions of the loop index variables.

forl = L, U
forJ = L;, Uy
Sd: A(fl(l!‘])lf2(|!‘])) =
Su: = A(f3(|!‘])lf4(|l‘]))
endfor
endfor

Figure 2: Program Model

In our program model statement S; defines elements of array A and statement S, uses them. De-
pendence exists between S, and S,, whenever both refer to the same element of array A. If the element
defined by Sy is used by S, in a subsequent iteration, then a flow dependence exists between Sy and
S, and is denoted by S;6/S,. On the other hand if the element used in S, is defined by S, at a later
iteration, this dependence is called anti dependence denoted by S4;6%S,. Other types of dependences
like output dependence and input dependence can also exist but these can be eliminated or converted to
flow or anti dependences.

An iteration vector 7' represents a set of statements that are executed for a specific value of (1,J) =
(i, ). It forms an iteration space I defined as:

el = {(i,j) | Li<i<U,L;<j<Uysije€Z}

where Z denotes the set of integers. For any given iteration vector 7' if there exists a dependence
between Sy and S, it is called intra-iteration dependence. These dependences can be taken care of by
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considering an iteration vector as the unit of work allotted to a processor. The dependence between
Sy and S, for two different iteration vectors 7; and 75 is defined as cross-iteration dependence and is
represented by the dependence distance vector d = 7, — 7. These dependences have to be honored
while partitioning the iteration space for parallel execution. A dependence vector set D is a collection
of all such distinct dependence vectors in the iteration space and can be defined as

If all the iteration vectors in the iteration space are associated with the same set of constant depen-
dence vectors, then such a dependence vector set is called a uniform dependence vector set and the
nested loops are called shift-invariant nested loops. Otherwise, the dependence vector set is called a
non-uniform dependence vector set and the loops are called shift-variant nested loops. Normally, cou-
pled array subscripts in nested loops generate such non-uniform dependence vector sets and irregular
dependences. The dependence pattern shown in Figure 1(b) is an example of such patterns. Because of
the irregularity of these dependences, it is extremely difficult to characterize this dependence vector set.
By characterizing the dependence vector set we mean representing or approximating it by a set of basic
dependence vector set. The advantage with such characterization is that this dependence information
can be used to tile the iteration space. In the following subsection, we review the work previously
done to compute these basic dependence vectors and tiling. We also point out the deficiencies and
disadvantages of those methods.

2.1 Related Work on Extreme Vector Computation and Tiling

Irogoin and Triolet [7] presented a partitioning scheme for hierarchical shared memory systems. They
characterize dependences by convex polyhedron and form dependence cones. Based on the generating
systems theory [12], they compute extreme rays for dependence cones and use a hyperplane technique
[13] to partition the iteration space into supernodes. The supernodes are then executed with proper
synchronization primitives. However the extreme rays provide only a dependence direction and not a
distance. Also, their paper does not discuss any automatic procedure to form the rays and choose the
supernodes. Our approach presents algorithms to form the extreme vectors which also give information
about the dependence distance.

Ramanujam and Sadayappan [14, 6] proposed a technique which finds extreme vectors for tightly
coupled nested loops. Using these extreme vectors they tile the iteration spaces. They derive expres-
sions for optimum tile size which minimizes inter-tile communications. While their technique applies
to distributed memory multiprocessors, it works only for nested loops with uniform dependence vec-
tors. For parallel execution both tiles and supernodes need barrier synchronization which degrades the
performance due to hotspot conditions [8].

Tzen and Ni [8] proposed the dependence uniformization technique. This technique computes a set
of basic dependence vectors using the dependence slope theory and adds them to every iteration in the
iteration space. This uniformization helps in applying existing partitioning and scheduling techniques,
but it imposes too many dependences to the iteration space which otherwise has only a few of them.
We provide algorithms to compute more precise dependence information and use better partitioning
schemes to extract more parallelism from the nested loops.
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Ding-Kai Chen and Pen-Chung Yew [15] presented a scheme which computes Basic Dependence
Vector Set and schedules the iterations using Static Strip Scheduling. They extend the dependence
uniformization work of Tzen and Ni and give algorithms to compute better basic dependence vector
sets which extract more parallelism from the nested loops. While this technique is definitely an im-
provement over [8], it also imposes too many dependences on the iteration space, thereby reducing the
extractable parallelism. Moreover this uniformization needs lot of synchronization. We present better
parallelizing techniques to extract the available parallelism.

The three region execution of loops with a single dependence model by Zaafrani and Ito [9] divides
the iteration space into three regions of execution. The first area consists of parts of the iterations space
where the destination iteration comes lexically before the source ie. the direction vector satisfies (>, *)
or (=, >) using conventional direction vector definition [4]. The next area represents the part of the
iteration space where the destination iteration comes lexically after the source iteration and the source
iteration is in the first area. Thus, iterations in these two areas can be executed in parallel as long
as the two areas execute one after the other. The third area consists of the rest of the iteration space
which should be executed serially or dependence uniformization techniques can be applied. However,
as already pointed out, this method would introduce too many dependences. Moreover, as we will show
our technique uses a better partitioning technique.

2.2 Dependence Analysisfor Tiling

For the nested loop segment shown in Figure 2, a dependence exists between statements S, and S, if
they both refer to the same element of array A. This happens when the subscripts in each dimension
are equal. In other words, if fi (i1, j1) = f3(i2, j2) and f2(i1, j1) = fa(i2, j2) then a cross iteration de-
pendence exists between Sy and S,,. We can restate the above condition as “cross-iteration dependence
exists between Sy and S,, iff there is a set of integer solutions (i1, j1, 72, j2) to the system of Diophantine
equations (1) and the system of linear inequalities (2)”.

fi(ix, 51) = fa(i2, ja)

o o 1
f2(21,.71) = f4(@2a32) @
Ly <4 < U
L; <j <U;
. 2)
L; <i, < Uy
L; <jo<U;

We use algorithms given by Banerjee [4] to compute the general solution to these Diophantine equa-
tions. This general solution can be expressed in terms of two integer variables z and y, except when
f1(i1, 51) = f3(ia, jo) is parallel to f2(is, jo) = fa(i4, ja), in Which case the solution is in terms of three
integer variables [8]. Here, we consider only those cases for which we can express the general solution
in terms of two integer variables. We have (i1, j1, 42, j2) as functions of two variables z, y, which can



be written as

(ilvjla i27j2) = (81(33, y)a 32('77) y)7 33('7:7 y)a 84('77) y))
Here s; are functions with integer coefficients. We can define a solution set S which contains all the
ordered integer sets (i1, j1, i2, j2) Satisfying (1) ie.

S = {(i1, J1,92,42) |f1(i1, 1) = fa(ia, Jo) N falir, J1) = faliz, o) }

For every valid element (i1, j1, 42, j2) there exists a dependence between the statements S, and S,
for iterations (4y, j;) and (s, jo). The dependence distance vector dis given as d= (ig — i1,72 — J1)
with dependence distances d; = i» — %; and d; = j» — 71 in the < and j dimensions, respectively. So,
from the general solution the dependence vector function D(x,y) can be written as

D(z,y) = {(s3(2,y) — s1(2,9)), (s4(2, 9) — 52(2,9))}

The dependence distance functions in ¢, 5 dimensions can be given as d;(z,y) = s3(z,y) — s1(z,y)
and d;(z,y) = sa(z,y) — s2(z,y). The dependence distance vector set d is the set of vectors d =
{(di(z,y),d;(z,y))}. The two integer variables z,y span a solution space I" given by

F:{(.’I?,y) | Si(xay) Satisfies (1)}

Any integer point (z,y) in this solution space causes a dependence between statements Sy and S,,,
provided the system of inequalities given by (2) are satisfied. In terms of the general solution, the
system of inequalities can be written as
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These inequalities bound the solution space and form a convex polyhedron, which can also be termed
as Dependence Convex Hull (DCH) [8]. In the following section we give a brief introduction to convex
set theory and explain how we apply well known results of convex spaces to iteration spaces.

3 Dependence Convex Hull

To extract useful information from the solution space T', the inequalities in (3) have to be applied. This
bounded space gives information on the cross-iteration dependences. Tzen and Ni [8] proposed an
elegant method to analyze these cross-iteration dependences. They formed a DCH from the solution
space I' and the set of inequalities (3). We extend their algorithm to compute more precise dependence
information by forming an Integer Dependence Convex Hull as explained in the following paragraphs.
In this section, we first present a review of basics from convex set theory. Our algorithm to form the
integer dependence convex hull is given in later subsections.
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3.1 Preéiminaries

Definition 1 The set of points specified by means of a linear inequality is called a half space or solu-
tion space of the inequality.

For example L; < s;(z,y) is one such inequality and a set s = {(xz, y)|s1(z,y) > L;} is its half space.
The inequalities given by (2) are weak inequalities, so the half spaces defined by them are closed sets.
From (3) we have eight half spaces. The intersection of these half spaces forms a convex set.

Definition 2 A convex set X can be defined as a set of points X; which satisfy the convexity constraint
that for any two points X; and X, AX; + (1 — A) X, € X, where A € [0, 1].

Geometrically, a set is convex if, given any two points in the set, the straight line segment joining the
points lies entirely within the set. The corner points of this convex set are called extreme points.

Definition 3 A point in a convex set which does not lie on a line segment joining two other points in
the set is called an extreme point.

Every point in the convex set can be represented as a convex combination of its extreme points. Clearly
any convex set can be generated from its extreme points.

Definition 4 A convex hull of any set X is defined as the set of all convex combinations of the points of
X.

The convex hull formed by the intersection of the half spaces defined by the inequalities (3) is called
a Dependence Convex Hull. This DCH can be mathematically represented as

D = {(z,y)|L; < si(z,y) <Us}
N {(z,y)|Ls < so(w,y) < Us} @
N A{(z,y)|Lr < s3(z,y) < Ur}
N A{(z,y)|Ls < s4(z,y) < Us}

This DCH is a convex polyhedron and is a subspace of the solution space I'. If the DCH is empty then
there are no integer solutions (41, j1, %2, j2) Satisfying (2). That means there is no dependence between
statements S; and S,, in the program model. Otherwise, every integer point in this DCH represents a
dependence vector in the iteration space. So, constructing this DCH serves two purposes viz., it gives
precise information on the dependences and it also verifies whether there are any points in S within the
region bounded by (2).



3.2 Computation of Integer Dependence Convex Hull

We use the algorithm given by Tzen and Ni [8] to form the DCH. Their algorithm forms the convex hull
as a ring connecting the extreme points (nodes of the convex hull). The algorithm starts with a large
solution space and applies each half space from the set defined by (3). The nodes are tested to find
whether they lie inside this half space. It is done by assigning a zoom value to each node. If zoom =1
then the node is outside the half space. Otherwise, if zoom = 0 then it is within the half space. If for any
node the zoom value is different from its previous node then an intersection point is computed and is
inserted into the ring between the previous node and the current node. When all the nodes in the DCH
ring are tested, those nodes with zoom = 1 are removed from the ring. This procedure is repeated for
every half space and the final ring contains the extreme points of the DCH. The extreme points of this
convex hull can have real coordinates, because these points are just intersections of a set of hyperplanes.
We extend this algorithm to convert these extreme points with real coordinates to extreme points with
integer coordinates. The main reason for doing this is that we use the dependence vectors of these
extreme points to compute the minimum and maximum dependence distances. Also, it can be easily
proved that the dependence vectors of these extreme points form extreme vectors for the dependence
vector set [11]. This information is otherwise not available for non-uniform dependence vector sets.
We will explain how we obtain this dependence distance information in the following sections. We
refer to the convex hull with all integer extreme points as Integer Dependence Convex Hull (IDCH).

The IDCH contains more accurate dependence information as explained later. So, constructing such
an IDCH for a given DCH is perfectly valid as long as no useful dependence information is lost [11]. Af-
ter constructing the initial DCH, our algorithm checks if there are any real extreme points for the DCH.
If there are none, then IDCH is itself the DCH. Otherwise we construct an IDCH by computing integer
extreme points. For every real extreme point, this algorithm computes two closest integer points on
either side of the real extreme point. As the DCH is formed as a ring, for every node (real_node) there
IS a previous node (prev_node) and a next node (next_node). Two lines, prev_line joining prev_node
and real_node, next_line joining real_node and next_node are formed. Now, we are looking for integer
points on or around these two lines closest to the real_node but within the DCH. Figure 3 schematically
explains the method. We have a simple algorithm to find these integer points [11]. The worst case
complexity of this algorithm is bounded by O(A) where A is the area of the DCH. It should be em-
phasized here that considering the nature of the DCH, in most of the cases the integer extreme points
are computed without much computation. The kind of speedup we get with our partitioning techniques
based on this conversion, makes it affordable.

We demonstrate the construction of the DCH and IDCH with an example. Consider example 1(b)
whose iteration space is shown in Figure 1(b). Two Diophantine equations can be formed from the
subscripts of Array A.

2%x7+3 = 2%xi+j+1 5)
i+1 = i+j+3

By applying the algorithm given by Banerjee [4], we can solve these equations. We can obtain the
general solution (s1(z,y), s2(, y), ss3(z,y), sa(z,y)) to be (z,y, —x + 2y + 4,2z — 2y — 6). So the
dependence vector function can be given as D(z,y) = (—2z + 2y + 4,2z — 3y — 6). The solution
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prev_int_node  pr & line p
prev_node

Figure 3: Computation of integer intersection points

space S is the set of points (z, y) satisfying the solution given above. Now, the set of inequalities can
be given as

1< T <10
1< y <10
(6)
1< —z+2y+4 <10
1< 2x—-2y—6 <10

Figure 4(a) shows the dependence convex hull DCH constructed from (6). This DCH is bounded by
four nodes r;=(10,6.5), r»=(10,3.5), r3=(5,1), r4=(4.5,1). Because there are three real extreme points
(rq,r2,14), OUr Algorithm IDCH converts these real extreme points to integer extreme points. The
DCH is scanned to find if there are any real extreme points. For a real extreme point, as explained
previously, it forms two lines prev_line and next_line. For example, consider the node r,=(10,3.5). The
node ry is ry’s prev_node and rg is its next_node. So, a prev_line joining r, and ry, and a next line
joining r, and rg are formed. As shown in Figure 4(a) the integer points closest to r, and lying on the
prev_line and next_line are p, and n,. So, these two nodes are inserted into the ring. Similarly for the
other real nodes ry and r4 also, the integer nodes are computed as py, n; and p4, ng, respectively. So,
the new DCH, i.e., the IDCH is formed by the nodes n,, p2, n2, p4 (here p4 and rs coincide), ny and
p1. But, to represent the convex hull its extreme points (corner points) are enough. So, n4 and py can
be removed from the ring. The resulting IDCH with four extreme points (e, ez, €3, €4) is shown in
Figure 4(b). While joining these extreme points our algorithm takes care to preserve the convex shape
of the IDCH.

As can be seen from Figure 4(b) the IDCH is a subspace of DCH. So it gives more precise dependence
information. We are interested only in the integer points inside the DCH. No useful information is lost
while changing the DCH to IDCH [11]. In the following section we demonstrate how these extreme
points are helpful in obtaining the minimum dependence distance information.
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Figure 4: IDCH technique for Example 1(b)

3.3 Extreme Vectorsand Extreme Rays

Every integer point in the Integer Dependence Convex Hull corresponds to a dependence vector in the
dependence vector set D. As per Definition 3 the corner points of a convex hull are called extreme
points and any point in the convex hull can be represented as a convex combination of these extreme
points. Using this we formulate a theorem which help us determine the extreme vector set for the
dependence vector set D.

Definition 5 A set of vectors E C D, is called an extreme vector set for the dependence vector set D
if every vector in D can be represented as a convex combination of the vectors in the set E.

Theorem 1 The dependence vectors of extreme points of the IDCH form extreme vectors of the depen-
dence vector set.

Proof: Let us consider an IDCH with a set of extreme points ey, e,, ...e,,. Also let D be the depen-
dence vector set of the dependence space defined by the IDCH. From the property of extreme points of
a convex space we know that any point x; in the IDCH can be represented as a convex combination of
the extreme points, e;. Therefore, we have

x1:)\1*61—|—)\2*e2+..+)\1~*e,~ Z)\,:]_ (7)

Now, suppose dy, is the dependence vector associated with the point x; and d., be the dependence
vector of the extreme point e;. We know that the dependence vector function d(z, y) is a linear function
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of the form Ax + c. Hence, we can write dy, = Ax; + c. Similarly, we have d., = Ae; + c. Now, from
(7) we can write
dy, =AM xe; + daxes+ ..+ X\ xe]+c

which can be rewritten as
dxl = )\1[1461 + C] + )\Q[Aez + C] T )\1[1461 + C]

So, we have
dy, = A ¥ de; + Ao % de, + ... + A * dg,

By denoting the dependence vectors of the extreme points d., as €; we can write
dxl:)\1*61—{—)\2*62—{—....—{—)\1'*61' (8)

Hence the result. O

Ramanujam and Sadayappan [6] formulated an approach to find extreme vectors for uniform depen-
dence vector sets. Their extreme vectors need not be a subset of the dependence vector set, whereas
our extreme vector set & is a subset of the dependence vector set D. This gives a more precise charac-
terization of the dependence vector set.

Definition 6 A Convex Cone C is defined as a convex set in which Az € C for each z € C and for each
A>0.

So, this convex cone C consists entirely of rays emanating from origin. The dependence vector set
D spans a similar convex cone called Dependence Cone C. Since, the extreme vector set E represents
the set D, we can form C from E itself. Therefore we can write

n
C=)> 7€;; 7j>0andé; € F 9)
Jj=1
Definition 7 An extreme direction of a convex set is a direction of the set that cannot be represented
as a positive combination of two distinct directions of the set.

Definition 8 Any ray that is contained in the convex set and whose direction is an extreme direction is
called an extreme ray.

Each one of the extreme vectors €; spanning the dependence cone is a ray of this dependence cone.
Hence the dependence cone can be characterized by its rays. From Definition 7 the non-extreme direc-
tions can be represented as a positive combination of the extreme directions. So, the extreme directions
or extreme rays are enough to characterize the cone C. Therefore the dependence cone C can be com-
pletely characterized by a set of extreme rays .

C= Zajrj 7 >0 (10)

j=1

Irigoin and Triolet [7] also formed a set of extreme rays based on the generating systems theory. But,
the distinct feature of our extreme rays is that these provide dependence distance information also. As
shown in the later sections, this dependence distance information is used to partition the iteration space.
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Theorem 2 The set of extreme rays R of the dependence cone C is a subset of the extreme vector set
E.

Proof: From Theorem 1 we know that any dependence vector in the set D can be represented as a
convex combination of the extreme vectors €;. Now, from definition the extreme rays of the cone are
those vectors which cannot be represented as a positive combination of two distinct vectors. So, if R is
not a subset of E then Theorem 1 is false. So, it implies R C D. O

Characterizing the dependence vector set with the extreme rays has an advantage in that the actual
dependence cone size can be computed. Zhigang Chen and Weijia Shang [16] defined the dependence
cone size as the length of the intersection curve z? + x2 = 1 with the dependence cone.

Cire= [ o (11)

zEC,zf—l—z%:l

Since, the set of extreme rays is a subset of the dependence vector set we can easily see that the
dependence cone size spanned by the rays R gives the actual dependence cone size. This dependence
cone size gives us a measure of the amount of parallelism.

As shown in Figure 4(b) the IDCH of Example 1(b) has four extreme points, e; = (12,8), e, = (12,5),
e; = (11,4) and e, = (5,1). Correspondingly the dependence vector set has four extreme vectors €;
= (-4,-6), €5 = (-10,3), €3 = (-10,4) and €, = (-4,1). These extreme vectors span a dependence cone
shown in Figure 5. This dependence cone has two extreme rays r; = (-10,4) and 15 = (-4,-6). The unit
radius circle at the origin intersects the dependence cone and the length of the intersection curve is the
dependence cone size. The larger the dependence cone the wider is the range of dependence slope.
So, it is important that to estimate the available parallelism the actual size of the dependence cone is
measured. We show in the later sections that most of the existing techniques fail to detect the available
parallelism completely.

(=10,4)

-(10,3) 3

41

dx 10 -9 -8 -7 -6 -5 -4 -3 -2 -3/

(-4,-6) -6
Figure 5: Dependence cone of Example 1(b)

In the following section we demonstrate how the extreme points and extreme vectors are helpful in
obtaining the minimum dependence distance information.
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4 Tiling with Minimum Dependence Distance

4.1 Minimum Dependence Distance Computation

The dependence distance vector function D(z, y) gives the dependence distances d; and d; in dimen-
sions ¢ and 7, respectively. For uniform dependence vector sets these distances are constant. But for the
non-uniform dependence sets, these distances are linear functions of the loop indices. So we can write
these dependence distance functions in a general form as

di(z,y) =ax + by +c;  di(z,y) = ax + by + o

where a;, b;, and ¢; are integers and x, y are integer variables of the Diophantine solution space. These
distance functions generate non-uniform dependence distances. Because there are unknown number of
dependences at compile time, it is very difficult to know exactly what are the minimum and maximum
dependence distances. For this we have to study the behavior of the dependence distance functions.
The dependence convex hull contains integer points which correspond to dependence vectors of the
iteration space. We can compute these minimum and maximum dependence distances by observing
the behavior of these distance functions in the dependence convex hull. In this subsection, we present
conditions and theorems through which we can find the minimum and maximum dependence distances.

We use a theorem from linear programming that states “For any linear function which is valid over
a bounded and closed convex space, its maximum and minimum values occur at the extreme points of
the convex space” [10, 17]. Theorem 1 is based on the above principle. Since both d;(z,y) and d;(z, y)
are linear functions and are valid over the IDCH, we use this theorem to compute the minimum and
maximum dependence distances in both ¢ and j dimensions.

Theorem 3 : The minimum and maximum values of the dependence distance function d(z, y) occur at
the extreme points of the IDCH.

Proof: The extreme points of the IDCH are nothing but it’s corner points. The general expression
for dependence distance function can be given as d(z, y) = az + by + c. If this function is valid over
the IDCH, then the line axz + by + ¢ = k is a line passing through it. Now, suppose the minimum
and maximum values of d(z, y) are dp, and dp,., respectively. The lines az + by + ¢ = dpsn and
az + by + ¢ = dpna, are parallel to the line az + by + ¢ = k. Since the function d(z, y) is linear, it
is monotonic over the IDCH. Therefore, we have d,;, < k < dnqe for any value of k, the function
d(z,y) assumes in the IDCH. Thus, the lines az + by + ¢ = d i, and ax + by + ¢ = d g, are tangential
to the IDCH and hence pass through the extreme points as shown in Figure 6. So, the function d(z, y)
assumes its maximum and minimum values at the extreme points. O

Hence, we can find the minimum dependence distance from the extreme vector list (dependence
distance vectors of the extreme points). But as these minimum distances can be negative (for anti
dependences) we have to find the absolute minimum dependence distance. For this we use Theorem
2 which states that if the distance functions d;(z, y) and d;(z, y) are such that the lines d;(z, ¥)=0 and
d;(z,y)=0 do not pass through the IDCH, then the absolute minimum and absolute maximum values
of these functions can be obtained from the extreme vectors. With the help of these theorems we can
compute the minimum dependence distance.
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Figure 6: Minimum and maximum values of d(z, y)

Theorem 4 : If d(z, y) = 0 does not pass through the IDCH then the absolute minimum and absolute
maximum values of d(z, y) appear on the extreme points.

Proof: If d(z,y) = 0 does not pass through the IDCH, then the IDCH is either in the d(z,y) > 0
or d(z,y) < 0 side. Let us consider the case where IDCH lies on the d(z,y) > 0 side as shown in
Figure 7(a). By Theorem 1, the minimum and maximum values of d(z, y) occur at the extreme points.
The lines d(z, y) = dpin and d(z, y) = dpa, are tangential to the IDCH. Since both d.,;, and d.. are
positive, the absolute minimum and absolute maximum values are the minimum and maximum values
of d(z,y). For the case where IDCH lies on the d(z,y) < 0 side (Figure 7(b)), the minimum and
maximum values of d(z, y) are negative. So, the absolute minimum and absolute maximum values are
the maximum and minimum values, respectively. O

\) -0

e NP
o )
d(x.y)< d(x.y)>
d A //6((\‘3* ) //6 N\
(x.y)>0 @ &,\ﬂ\ d(x,y)<0 @ o o
(@ IDCH € d(z,y) > 0 (b) IDCH € d(z,y) < 0

Figure 7: Computation of abs(min) and abs(max) values of d(z, y)

For cases which do not satisfy theorem 2, we assume an absolute minimum dependence distance of
1. Using the minimum dependence distances computed above, we can tile the iteration space. In the
following subsection, we present algorithms for tiling and show that our partitioning techniques give
better speed up than the existing parallelizing techniques [8, 9].
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4.2 Tilingand Tile Synchronization

In this subsection, we present algorithms to identify partitions (tiles) of the iteration space which can
be executed in parallel. We also present synchronization schemes to order the execution of these tiles
satisfying the inter-tile dependences.

The tiles are rectangular shaped, uniform partitions. Each tile consists of a set of iterations which can
be executed in parallel. The minimum dependence distances d;pi, and d;ni, Can be used to determine
the tile size. We first determine whether d;(z,y)=0 passes through the IDCH. If it does not, then
d;min Can be obtained by selecting the minimum dependence distance in dimension ¢ of the set of
extreme vectors. Otherwise, if d;(z, y)=0 does not pass through the IDCH we can determine d ,;,,. We
consider these cases separately and propose suitable partitioning algorithms. With the help of examples
we demonstrate the tiling and synchronization schemes.

Case I:  d;(x,y)=0 does not pass through the IDCH

In this case, as the d;(z, y)=0 does not pass through the IDCH, the IDCH is either on the d;(z,y) > 0
side or d;(z,y) < 0 side. From theorem 2, the absolute minimum of d; occurs at one of the extreme
points. Suppose this minimum value of d;(z, y) is given by d;:,. Then, we can group the iterations
along the dimension i into tiles of width d;,,;,. All the iterations in this tile can be executed in parallel
as there are no dependences between these iterations (no dependence vector exists with d; < d;nin)-
The height of these tiles can be as large as N where N = U; — L; + 1. Inter-iteration dependences can
be preserved by executing these tiles sequentially. No other synchronization is necessary here. If the
tiles are too large, they can be divided into sub-tiles without loss of any parallelism.

We can now apply this method to the nested loop program segment given in example 1(b). Its IDCH
is shown in Fig. 4(b). Here d;(z, y)=0 does not pass through the convex hull. So from theorem 2, the
absolute value of the minimum dependence distance can be found to be d;,,:;,=abs(-4)=4. This occurs
at the extreme points (5,1) and (10,6). So, we can tile the iteration space of size M * N with d ;=4
as shown in Fig. 8. The number of tiles in the iteration space can be givenas T, = [ 7=~ N 1 except near
the boundaries of the iteration space, where the tiles are of uniform size M * d;pir. Barallel code for
example 1(b) can be given as in Figure 9. This parallel code applies to any nested loop segment that
satisfies case 1 and of the formas givenin2with L; =1, U; = N, L;=1,U; = M.

Theoretical speedup for this case can be computed as follows. Ignoring the synchronization and
scheduling overheads, each tile can be executed in one time step. So, the total time of execution equals
the number of tiles T;,. Speedup can be calculated as the ratio of total sequential execution time to the

parallel execution time.

Mx N
Speedup = *

n

Minimum speedup with our technique for this case is M, when T,, = N (i.e., dimin=1).
Case Il:  d;(z,y) = 0 does not pass through the IDCH

Here, since d;(z, y)=0 does not pass through the IDCH, we have d ., at one of the extreme points.
As d;(z,y)=0 goes through the IDCH, we take the absolute value of d;n:, to be 1. So, we tile the
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Figure 8: Tiling with minimum dependence distance d;

Tilenum T,, = [ 7]
DOserial K=1, T,
DOparallel I = (K-1)*d;nint1, min(K*d;in, N)
DOparallel J=1, M
A(2*J+3,1+1) = ...... ;
...... = A(2*1+J+1,1+J+3);
ENDDOparallel
ENDDOparallel
ENDDOserial

Figure 9: Parallel code for scheme 1
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iteration space into tiles with width=1 and height=d ;. This means, the iteration space of size M * N
can be divided into NV groups with T}, = [dj%} tiles in each group. Iterations in a tile can be executed
in parallel. Tiles in a group can be executed in sequence and the dependence slope information of Tzen
and Ni [8] can be used to synchronize the execution of inter-group tiles.

Tzen and Ni [8] presented a number of lemmas and theorems to find the maximum and minimum
values of the Dependence Slope Function defined as DSF = %. This DSF is non-monotonic when
d;(x,y)=0 passes through the IDCH. Under this condition we have three different cases :

o Ifd;(z,y) isparallel to d;(z, y), i.e., if d;(x, y) is of the form a*d;(z, y) +b, then the slope range
IS (a—b,00) ifb>0and (a+b,a—0b)ifb<0.

o If d;(z, y)=constant b, then the dependence slope range is (—b, o) if b > 0 and (b, —b) if b < 0.

e d;j(z,y) is not parallel to d;(z, y), the range of the dependence slope is (—min(M — 1, P), o)
where P is the maximal absolute value of d;(z,y) on the extreme points and can be obtained
from the extreme vectors.

These minimum or maximum dependence slopes are then used to enforce the dependence constraints
among the iterations. Thus the execution of the inter-group tiles can be ordered by applying a basic
dependence vector with min(max) slope. Consider the nested loop given in Example 2. Figure 10
shows its IDCH. Note that d;(z, y)=0 passes through the IDCH while d;(z, y)=0 does not pass through
the IDCH. The d;n:» can be computed to be 4 and the iteration space can be tiled as shown in Figure
11(a).

Example 2:
forl=1,10
forJ=1, 10
AQ*143,J+1) = ......
...... = A(2*J+1+1,1+J+3)
endfor
endfor

We can apply the dependence slope theory explained above and find the minimum dependence slope
as —min(M — 1, P), where P=10 and M =11. Therefore, DS F,,;,=-10. Applying this to the iteration
space, we find that an iteration 4 of any group (except the first one) can be executed as soon as the pre-
vious group finishes the (i + 10)% iteration. As we tile these iterations, we can compute the inter-group
tile dependence slope as T, = (%]. So, we can synchronize the tile execution with a inter-group
tile dependence vector (1,7;). If T, is negative, then this dependence vector forces a tile ; of % group
to be executed after the tile ¢ + || of group 7 — 1. Otherwise, if T is positive then a tile ¢ of group j
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Figure 10: IDCH of Example 2

can be executed as soon as (i — T, )™ tile in group j — 1 is executed. Figure 11(b) shows the tile space
graph for this example. In this figure G; denotes a group and T;; denotes j*h tile of group i. Parallel
code for this example is given in Figure 12. This parallel code also applies to any nested loop segment
of the form in Figure 2.
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(8) Iteration Space (b) Tile Synchro-
nization

Figure 11: Tiling with minimum dependence distance d;

Speedup for this case can be computed as follows. The total serial execution time is M x N. The

19



parallel execution time is T,, + (N — 1) = T,. Hence, the speedup is given as

Mx N
T, + (N — 1)T;

Speedup =

For the case where both d;(x, y)=0 and d;(z, y)=0 pass through the IDCH, we assume both d;,;, and
d;min t0 be 1. So, each tile corresponds to a single iteration. The synchronization scheme given in
Figure 12 is also valid for this case. In the next section, we compare the performance of our technique

with existing techniqmmﬁ@g?%wprovement in speedup.
Tile slope T, = [%1
DOacross 1 =1, N
Shared integer J[N]
DOserial J[I] =1, T,
if (I > 1) then
while (J(I-1) < (J(1)+T5))
wait;
DOparallel K = (J[1]-1)*djmin*1, IN]*djmin
A(2143, K+1) = ...... ;
...... = A(I+2K+1,1+K+3);
ENDDOparallel
ENDDOserial
ENDDOacross

Figure 12: Parallel code for scheme 2

5 Performance Analysis

5.1 Comparison with Uniformization Techniques

The dependence uniformization method presented by Tzen and Ni [8] computes dependence slope
ranges in the DCH and forms a Basic Dependence Vector (BDV) set which is applied to every iteration
in the iteration space. The iteration space is divided into groups of one column each. Index synchro-
nization is then applied to order the execution of the iterations in different groups. Our argument is
that this method imposes too many dependences on the iteration space, thereby limiting the amount of
extractable parallelism. Consider example 1(b). If we apply the dependence uniformization technique,
a BDV set can be formed as {(0,1), (1,-1)}. The uniformized iteration space is shown in Figure 13.
As we can see from this figure the uniformization imposes too many dependences. If index synchro-
nization is applied, the maximum speedup that can be achieved by this technique is Speedup ynis = %,
where ¢ = 1-tis the delay and t = | DS F,,.;,, | OF [ DSFp,0 |- This speedup is significantly affected by
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the range of dependence slopes. If the dependence slopes vary over a wide range, in the worst case
this method would result in serial execution. For the example under consideration (Example 1(b)) the
speedup with uniformization technique is 5. Ding-Kai Chen and Pen-Chung Yew [15] proposed a sim-
ilar but improved uniformization technique. Using their technique, the basic dependence vector set can
be formed as {(1,0), (1,1), (2,-1)}. The iteration space is uniformized and static strip scheduling is used
to schedule the iterations which gives a speedup of 12. The disadvantage with the above uniformization
techniques is that by applying these BDVs at every iteration increases the synchronization overhead.
Figure 8 shows the tiled iteration space obtained by applying our minimum dependence distance tiling
method. From the analysis given in the previous section the speedup with our method is M*N , Which
is more than 30. So, our method gives a significant speedup compared to other technlques Even for
the case d;n:»=1 our technique gives a speedup of 10 (M) which is better than Tzen and Ni’s technique
and same as Chen and Yew’s. An important feature of our method is that the speedup does not depend
on the range of dependence slopes.
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Figure 13: Uniformized Iteration space of Example 1(b)

For Example 2, d;(z, y) = 0 passes through its IDCH and d;(z,y) = 0 does not. So, we follow our
second approach to tile its iteration space. For this example, the dependence uniformization technique
forms the BDV set as {(0,1), (1,-10)} and the speedup can be calculated as ¥ = % ~ 1. Our method
gives a speedup of % ~ 3. So, we have a significant speedup |mprovement in this case too.
For the case where d;m:, = d;min=1 Our speedup is as good as the speedup with their technique.

Example 3:
for1=1,10
forJ=1,10
A(J+2,2*1+4) = ......
...... = A(I-J+1,2*1-J+2)
endfor
endfor
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We can show that with IDCH we get more precise dependence information. Consider Example 3.
The dependence vector functions can be computed as d;(z, y) = (z—y+1) and d;(z, y) = (2%x—3*y).
So, the dependence slope function DSF is % The DCH and IDCH for this example are shown
in Figure 14. The extreme points of DCH are r;=(1.5,1), r2=(5,1) and r3=(8.5,8). After converting
these real extreme points to integer extreme points, the IDCH has e;=(2,1), e2=(5,1) and e3=(8,7).
Since d;(z,y)=0 does not pass through the IDCH, the maximum and minimum values of the DSF
occur at the extreme points of DCH and IDCH. For DCH, the DSF,,,,=1.4 and DSF,,;,=-4 which
occur at ro and rg, respectively. Similarly for IDCH, DSF,,.,=1.4 is at es and DSF,,;,=-2.5 is at
es. Clearly, the IDCH gives more accurate values. Since the speedup depends on the delay ¢ and
as ¢=1-t where t=| DS F s, | Of [ DS Fpq. |, the speedup reduces when we use inaccurate dependence
slope information. For this example, with DCH the delay ¢=5. If we use IDCH then the delay reduces
to ¢ = 1 — | —2.5]=4. Hence the accurate dependence slope information obtained with IDCH helps us
to extract more parallelism from the nested loops.

Y
-------------------- Real Dependence Convex Hull

10
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Figure 14: IDCH of Example 3

5.2 Experimental Comparison with the Three Region Approach

We ran our experiments on a Cray J916 with 8 processors and used the Autotasking Expert System
(Atexpert) to analyze the performance. Atexpert is a tool developed by Cray Research Inc. (CRI) for
accurately measuring and graphically displaying tasking performance from a job run on an arbitrarily
loaded CRI system. The graphs shown indicate the speed-up expected by Amdahl’s law, ignoring all
multitasking overhead as well as the expected speedup on a dedicated system using the given program.
A linear speed-up reference line is also plotted.

We used User-directed tasking directives to construct our fully parallelizable area in the iteration
space. The format is as below.

#pragma _CRI parallel defaults
#pragma _CRI taskloop

loop
#pragma _CRI endparallel
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The first nested loop is as follows:

Experiment 1:
doi=1,N
doj=1N
A+ j+50,3%i)=---
= A(Za])
enddo
enddo

This loop has coupled subscripts in the array definition and the minimum distance is 50. Figure 15
shows the speedup of our technique versus Zaafrani and Ito’s technique. For this loop, our technique
got a better performance, since the minimum distance for this loop is large compared to the number of
processors. Moreover our partitioning is more regular than theirs.

8 8
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Figure 15: Speedups for Experiment 1

For the second experiment the array reference has coupled subscripts and the minimum distance is
9. The second experiment is:

Experiment 2:
doi=1,N
doj=1N
A2 xd,5)="--
o= AGE—-9,i—j+1)
enddo
enddo

The performance of our technique and Zaafrani’s technique for this loop is shown on Figure 16.
We can see that for our technique the speedup stayed almost the same for 4, 5 and 6 processors. The
reason for this is that there is a load imbalance since the minimum distance does not fit the number of
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Figure 16: Speedups for Experiment 2

processors quite well for these cases. In practice, once we know the exact number of processors we
want to use for some specific system and the minimum distance, we can adjust the partitioning distance
number to match the system.

For the last experimental loop the coupling of the subscripts is relatively complicated. The minimum
distance is 24.

Experiment 3:
doi=1,N
doj=1N
ARxi+j—1,1—2%xj+4)="---
()
enddo
enddo

As before our performance is better than that of Zaafrani’s as shown on Figure 17. For some of
the experiments, we observe that our speedups are not increasing as evenly as they do with Zaafrani’s
technique due to load imbalance. This can be taken care of by choosing an appropriate distance which is
less than the minimum distance. Moreover the Amdahl’s law curves for our technique are consistently
better than that for Zaafrani and Ito’s method. This shows that the IDCH method tends to minimize
sequential code in the transformed loop.

6 Conclusion

In this paper we have presented simple and computationally efficient partitioning and tiling techniques
to extract maximum parallelism from nested loops with irregular dependences. The cross-iteration
dependences of nested loops with non-uniform dependences are analyzed by forming an Integer De-
pendence Convex Hull. Minimum dependence distances are computed from the dependence vectors
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Figure 17: Speedups for Experiment 3

of the IDCH extreme points. These minimum dependence distances are used to partition the iteration
space into tiles of uniform size and shape. Dependence slope information is used to enforce the inter-
iteration dependences. We have shown, both theoretically and experimentally that our method gives
much better speedup than existing techniques and exploits the inherent parallelism in the nested loops
with non-uniform dependences.

Since the convex hull encloses all the dependence iteration vectors but not all the iteration vectors
in the convex hull are dependences it is possible that some of the extreme points may not have a
dependence. Our minimum distances are evaluated using these extreme points and thus we might
underestimate the minimum distance. Our future research work is to eliminate such cases. We also
plan to test this method for higher dimensional nested loops.
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