
Time-Stamping Algorithms For Parallelization of Loops at
Run-Time �

Chengzhong Xu and Vipin Chaudhary
Department of Electrical and Computer Engineering

Wayne State University, MI 48202
Email: fczxu, vchaudg@ece.eng.wayne.edu

Abstract

In this paper, we present two new run-time algorithms for the
parallelization of loops that have indirect access patterns.
The algorithms can handle any type of loop-carried depen-
dencies. They follow theINSPECTOR/EXECUTOR scheme
and improve upon previous algorithms with the same gener-
ality by allowing concurrent reads of the same location and
by increasing the overlap of dependent iterations. The algo-
rithms are based on time-stamping rules and implemented
using multithreading tools. The experimental results on an
SMP server with four processors show that our schemes are
efficient and outperform their competitors consistently in all
test cases. The difference between the two proposed algo-
rithms is that one allows partially concurrent reads without
causing extra overhead in its inspector, while the other al-
lows fully concurrent reads at a slight overhead in the de-
pendence analysis. The algorithm allowing fully concurrent
reads obtains up to an80% improvement over its competi-
tor.

1 Introduction

Automatic parallelization is a key enabling technique for
parallel computing. Of particular importance in this area is
loop parallelizationthat exploits inherent parallelism inher-
ent in a loop, partitions the loop code and data across proces-
sors and orchestrates the parallel execution of the loop [1].
Current parallelizing compilers demonstrate their effective-
ness for loops that have no cross-iteration dependences or
have only uniform dependences. They have limitations in
parallelization of loops that have complex or statically in-
sufficiently defined access patterns. As an example, Fig-
ure 1 presents a loop exhibiting indirect access patterns for
elements of a data arrayX . In the case that its index ar-
rays u and v are functions of the input data, the loop is
unable to be parallelized by current parallelizing compilers�This work was sponsored in part by NSF MIP-9309489, US Army Con-
tract DAEA-32-93-D-004, and Ford Motor Company Grant #0000952185

for (i = 0; i < N ; i = i+ 1)X [u[i]] = F(X [v[i]]; : : :)
Figure 1: A general form of loops with indirect access pat-
terns

because its available parallelism cannot be determined stat-
ically. For the parallelization of loops with indirect access
patterns, compile-time analysis must be complemented by
run-time techniques capable of automatically exploiting par-
allelism at run-time.

Loops with indirect access patterns appear frequently in
scientific and engineering applications. A recent empirical
study by Shen, Li and Yew [12] on more than 1000 scien-
tific and engineering routines (100,000 code lines) showed
that 47.44% of the one-dimensional array references and
44.91% of the two-dimensional array references were non-
linear functions with respect to the loop indices, and that
15.22% of nonlinear subscripts in one-dimensional arrays
and 2.76% nonlinear subscripts in two-dimensional arrays
are due to the presence of indirect access arrays. Exam-
ples include SPICE for circuit simulation, CHARMM and
DISCOVER for molecular dynamics simulation of organic
systems, and FIDAP for modeling complex fluid flows [2].

In the past, many run-time parallelization algorithms
have been developed for different types of loops on both
shared-memory and distributed-memory machines [4, 10,
6]. Most of the algorithms follow a so-called INSPEC-
TOR/EXECUTOR approach. With this approach, a loop un-
der consideration is transformed at compile-time into anin-
spectorroutine and anexecutorroutine. At run-time, the
inspector examines loop-carried dependencies between the
statements in the loop body; the executor performs the ac-
tual loop operations in parallel based on the dependence in-
formation exploited by the inspector. The key to success
with this approach is how to shorten the time spent on de-
pendence analyses without losing valuable parallelism and
how to reduce the synchronization overhead in the executor.
An alternative to the INSPECTOR/EXECUTOR approach is



a speculative execution scheme that was recently proposed
by Rauchwerger, Amato and Padua [9]. In the speculative
execution scheme, the target loop is first handled as a doall
regardless of its inherent parallelism degree. If a subsequent
test at run-time finds that the loop was not fully parallel, the
whole computation is then rolled back and executed sequen-
tially. Although the speculative execution yields good results
when the loop is in fact executable as a doall, it fails in most
applications that have partially parallel loops.

Following the Inspector/Executor approach, this paper
proposes two new parallel algorithms for the run-time par-
allelization of loops that have indirect access patterns. The
algorithms are able to handle any type of loop-carried depen-
dencies. They improve upon previous algorithms with the
same generality by allowing concurrent reads of the same
array element in different iterations, and by increasing the
overlap of dependent iterations. The algorithms are based
on time-stamping rules and implemented using multithread-
ing tools. The experimental results on a SUN SPARCserver
630MP show that both algorithms are efficient and outper-
form their competitors in all test cases. The differences be-
tween the two new algorithms are that one algorithm allows
partial concurrent reads without causing extra overhead in
its inspector, while the other allows fully concurrent reads at
a slightly higher cost in the dependence analyses. Although
our algorithms are evaluated in centralized shared memory
machines, they are applicable to distributed-shared-memory
systems as well.

The rest of the paper is organized as follows. Section 2
provides an overview of the INSPECTOR/EXECUTOR tech-
nique and a brief review of previous work. Section 3 presents
an improved algorithm based on a recent work by Chen, Tor-
rellas, and Yew. Section 4 develops the algorithm further
into a new algorithm that allows fully concurrent reads. Sec-
tion 5 describes our implementation details and experimen-
tal results. Section 6 concludes the paper with remarks on
future work.

2 INSPECTOR/EXECUTOR Scheme
and Previous Work

The basic idea of the INSPECTOR/EXECUTORscheme is for
the compiler to generate an inspector and an executor for a
loop to be parallelized at run-time. The inspector identifies
cross-iteration dependencies and produces a parallel execu-
tion schedule. The executor uses this schedule to perform the
actual operations of the loop. The INSPECTOR/EXECUTOR

scheme provides a run-time parallelization framework, and
leaves strategies for dependence analysis and scheduling un-
specified. The scheme can also be restructured to decouple
the scheduling function from the inspector and to merge it
with the executor. The scheduling function can even be ex-

tracted to serve as a stand-alone routine between the inspec-
tor and the executor. There are many run-time paralleliza-
tion algorithms belonging to the INSPECTOR/EXECUTOR

scheme. They differ from each other mainly in their struc-
tures and strategies used in each routine, in addition to the
type of target loops considered.

Pioneering work on using the INSPECTOR/EXECUTOR

scheme for run-time parallelization is due to Saltz and his
colleagues [11]. They considered loops without output de-
pendencies (i.e. the indexing function used in the assign-
ments of the loop body is an identity function), and proposed
an effective DOALL INSPECTOR/EXECUTOR scheme. Its
inspector partitions the set of iterations into a number of
subsets, called wavefronts, that maintain cross-iteration flow
dependencies. Iterations within the same wavefront can
be executed concurrently, but those in different wavefronts
must be processed in order. The executor of the DOALL
scheme enforces anti-flow dependencies during the execu-
tion of iterations in the same wavefront. The DOALL IN-
SPECTOR/EXECUTOR scheme has been shown to be effec-
tive in many real applications. It is applicable, however,
only to those loops without output dependencies. The ba-
sic scheme was recently generalized by Leung and Zahor-
jan to allow general cross-iteration dependencies as shown
in Figure 1[7]. In their algorithm, the inspector generates
a wavefront-based schedule, maintains output and anti-flow
dependencies as well as flow dependencies; the executor
simply performs the loop operations according to the wave-
fronts of iterations.

Note that the inspector of the above scheme is sequen-
tial. It requires time commensurate with that of a serial
loop execution. Parallelization of the inspector loop was
also investigated by Saltz, et al. [11] and Leung and Za-
horjan [6]. Their techniques respect flow dependencies, and
ignore anti-flow and output dependencies. Most recently,
Rauchwerger, Amato and Padua presented a parallel inspec-
tor algorithm for a general form of loops [9]. They extracted
the function of scheduling and explicitly presented an in-
spector/scheduler/executorscheme. Both their inspector and
scheduler are parallel.

DOALL I NSPECTOR/EXECUTOR schemes assume a
loop iteration as the basic scheduling unit in the inspec-
tor and the basic synchronization object in the executor.
An alternative to the scheme is DOACROSS INSPEC-
TOR/EXECUTOR parallelization techniques which assume
a memory reference of the loop body as the basic unit of
scheduling and synchronization. Processors running the ex-
ecutor are assigned iterations in a wrapped manner and each
spin-waits as needed for operations that are necessary for its
execution. An early study of DOACROSS run-time paral-
lelization techniques was conducted by Zhu and Yew [13].
They proposed a scheme that integrates the functions of
dependence analysis and scheduling into a single executor.



Later, the scheme was improved by Midkiff and Padua to al-
low concurrent reads of the same array element by several it-
erations [8]. Even though the integrated scheme allows con-
current analysis of cross-iteration dependencies, tight cou-
pling of the dependence analysis and the executor incurs
high synchronization overhead in the executor. Most re-
cently, Chen, Torrellas and Yew developed the DOACROSS
technique by decoupling the function of the dependence
analysis from the executor [4]. Separation of inspector and
executor not only reduces synchronization overhead in the
executor, but also provides possibility of reusing the depen-
dence information developed in the inspector across multiple
invocations of the same loop. Their inspector is parallel, but
sacrifices concurrent reads of the same array element. One
of the contributions of this paper is to improve Chen, Torrel-
las and Yew’s algorithm to allow concurrent reads.

DOACROSS INSPECTOR/EXECUTOR parallelization
techniques provide potential to exploiting fine-grained paral-
lelism across loops. Fine-grained parallelism does not nec-
essarily lead to overall performance gains without an effi-
cient implementation of the executor.

3 A Time-Stamping Algorithm Al-
lowing Partially Concurrent Reads

This section presents a parallel DOACROSS INSPEC-
TOR/EXECUTOR algorithm (PCR, for short) along the lines
of Chen-Torrellas-Yew’s work. The algorithm allows par-
tially concurrent reads without incurring any extra overhead
in the inspector. The next section presents a new algorithm
(FCR, for short) that allows fully concurrent reads.

Consider the general form of loops in Figure 1. It defines
a two dimensional iteration-reference space. The inspector
of the algorithm examines the memory references in a loop
and constructs a dependence chain for each data array ele-
ment in the iteration-reference space. Each reference in a
dependence chain is assigned astamp, indicating its earliest
access time relative to the other references in the chain. A
reference can be activated if and only if the preceding ref-
erences are finished. The executor schedules references to a
chain through alogical clock. At a certain time, only those
references whose stamps are equal to or larger than the time
are allowed to proceed. Dependence chains are associated
with clocks ticking at different speeds.

3.1 Serial Inspector and Parallel Executor

We assume stamps of references as discrete integers. The
stamps are stored in a two-dimensional arraystamp. Let(i; j) indicate thejth access of theith iteration.stamp[i][j]
represents the stamp of reference(i; j). The stamping rules
of the inspector algorithm are as follows.

(S1) References at the beginning of dependence chains are
assigned one.

(S2) For a reference(i; j) in a dependence chain,

(S2.1) if the reference is a write operation,stamp[i][j]
is set to the total number of accesses ahead in the
chain plus one;

(S2.2) if the reference is a read operation and its im-
mediate predecessor (say at(m;n)) is also a read
operation,stamp[i][j] is set tostamp[m][n];

(S2.3) if the reference(i; j) is a read and its immediate
predecessor(m;n) is a write,stamp[i][j] is set to
the total number of references ahead in the chain
plus one.

Assume the indirect arrays areu = [15; 5; 5; 14; 10; 14; 12; 11; 3; 12; 4; 8; 3; 10; 10; 3]v = [3; 13; 10; 15; 0; 8; 10; 10; 1; 10; 10; 15; 3; 15; 11; 0]:
Applying the above stamping rules to the target loop, we
obtain the stamped dependence chains labeled by array ele-
ments as shown in Figure 2. All references to the same array
element form a chain.
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Figure 2: Sequentially constructed dependence chains la-
beled by array elements. The numbers in parentheses are
the stamps of references.

From this figure, it can be seen that the stamp difference
between any two directly connected references is one except
for pairs of write-after-read and read-after-read references.
In pairs of read-after-read, both reads have an equivalent
stamp. In pairs of write-after-read, their difference is always
the size of the read group minus one.

In the executor, we define a logical clock for each depen-
dence chain. We index dependence chains by the indices of
the data elements. Lettime[k] represent the current clock
time of a chaink. We set up the following clocking rules in
the executor corresponding to the inspector’s stamping rules.

(C1) Initially, all clocks (time[k]) are set to one.

(C2) A reference(i; j) in dependence chaink is triggered ifstamp[i][j] � time[k].
(C3) For a clock associated with chaink, time[k] is incre-

mented by one if a reference in the dependence chaink
have been activated.



It is easy to show that the above INSPECTOR/EXECUTOR

algorithm respects all dependencies and allows concurrent
reads. Look at the dependence chain 10. From the stamps
of references, it is clear that the four read operations in it-
erations 6, 7, 9 and 10 can proceed simultaneously once the
write in iteration 4 is done. The write operation in iteration
13 cannot be activated until all four reads are finished.

3.2 Parallel Inspector and Parallel Executor

The above algorithm builds the stamp table sequentially.
Building dependence chains that reflect all types of depen-
dencies is a very time-consuming process. It requires an ex-
amination of all references at least once in the loop. A basic
parallel strategy is to partition the entire iteration space into
a number of regions. Each region, comprising a number of
consecutive iterations, is assigned to a different processor.
Each processor establishes its local dependence chains by
examining the references in its local region. Processors then
exchange information about their local dependence chains
and finally connect them into complete chains.

To apply the algorithm to the parallel construction of the
time table, one key issue is how to stamp the references in a
dependence chain across regions, reflecting all dependencies
and allowing independent references to be performed in par-
allel. Since all processors (except the first) have no knowl-
edge about the references in regions ahead, they are unable
to stamp their local references in a local chain without the
assignment of its head. Suppose there are four processors
that are cooperatively building a stamp table like Figure 2.
Each processor examines four consecutive iterations. We
label processors participating in the parallelization by their
region indices. Consider references in region 3 to memory
location 3. Since processor 3 does not know whether there
are dependent references in regions from 0 through 2 and
what their stamps are, it is unable to stamp local references(12; 0), (12; 1) and(15; 1).

To allow processors to continue with the examination of
other references in their local regions in parallel, Chenet
al. [4] proposed aconservativeapproach for an inspector to
assign a conservative number to the second reference of a lo-
cal chain and leave the first one to be decided in a subsequent
global analysis. By this conservative approach, processor 3
temporarily assigns 24 plus 1 to the reference(12; 0), as-
suming all 24 accesses in regions from 0 to 2 are in the
same dependence chain. The extra one is due to the refer-
ence(12; 0). It results in a stamp of 26 in the subsequent
reference(15; 1), as shown in Figure 3. The negative sign of
a stamp indicates the stamp is temporarily recorded for the
calculations of subsequent references’ stamps.

Borrowing the idea of conservative approach, we set up
one more stamping rule that assigns references in a local
read group the same stamp.

(S3) For a reference(i; j) in iteration regionr,
(S3.1) if the reference is at the beginning of a local

chain,stamp[i][j] is set to�(n + 1), wheren is
the total number of accesses in the regions from 0
throughr � 1;

(S3.2) if the head reference is a read, all subsequent
consecutive reads are set to�(n+ 1).

Applying the above stamping rule, together with the rules of
the serial inspector, on local dependence chains, we obtain
partially stamped dependence chains as presented in Fig-
ure 3. There are three partially stamped dependence chains
associated with array elements 3, 10, and 15 in Figure 3. The
dependence chains of other elements are omitted for clarity.
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Figure 3: A partially stamped dependence chain labeled by
array elements. Numbers in parentheses are stamps of refer-
ences.

Using the conservative approach, most of the stamp table
can be constructed in parallel. Upon completion of the local
analysis, processors communicate with each other to deter-
mine the stamps of undecided references in the stamp table.
Processor2 setsstamp[8][1] to 2 after communicating with
processor0 (processor 1 marks no reference to the same lo-
cation). At the same time, processor 3 communicates with
processor 2, but gets an undecided stamp on the reference(8; 1), and hence assigns another conservative number, 16
plus 1, to reference(12; 0), assuming all accesses in regions
0 and 1 are in the same dependence chain. The extra one is
due to the total number of dependent references in region 2.
Note that the communications from processor 3 to processor
2 and from processor 2 to processor 1 are in parallel. Proces-
sor 2 can provide processor 3 only the number of references
in the local region till the end of the communication with
processor 0.

Generally, processors communicate with processors
ahead in the global analysis phase to determine their unde-
cided references using the following rules.

(G1) For an undecided write reference(i; j),
(G1.1) if its predecessor, say(m;n) in regionr, has a

stampt (t > 0) stamp[i][j] is set tot;
(G1.2) if its predecessor(m;n) in regionr is UNDE-

CIDED, stamp[i][j] is set to the sum of the total



number of accesses in regions from 0 tor� 1 and
the total number of references in the same chain
in the regionr plus one.

(G2) For an undecided read reference(i; j),
(G2.1) if its predecessor, say(m;n) in regionr is a

write, stamp[i][j] is set in a way similar to rule
(G1);

(G2.2) if its predecessor(m;n) is a read,

(G2.2.1) if the reference(m;n) is in the same re-
gion,stamp[i][j] is set tostamp[m][n];

(G2.2.2) if the reference(m;n) is in a different
regionr,
(G2.2.2.1) stamp[i][j] is set to the sum of

the total number of accesses in regions
from 0 to r � 1 and the total number of
relevant references in the regionr plus
one;

(G2.2.2.2) stamp[i][j] is set tostamp[m][n] plus the number of
reads in the read group of reference(m;n).

Figure 4 shows the complete dependence chains associated
with array elements 3, 10 and 15.
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Figure 4: A fully stamped dependence chain labeled by array
elements. Numbers in parentheses are stamps of references.

Accordingly, the third clocking rule of the executor in
Section 3.1 is modified as follows.

(C3) For a clock associated with a dependence chaink,

(C3.1) time[k] is incremented by one if a reference(i; j) in regionr and belonging to chaink is acti-
vated, andstamp[i][j] � n, wheren is the total
number of accesses from region 0 to regionr� 1;

(C3.2) time[k] is set ton+ 2 if an activated reference(i; j) satisfiesstamp[i][j] > n.

For example, consider references in the dependence chain
on element 10 in Figure 4. The reference(2; 0) first triggers
the reference(4; 1). Activation of reference(4; 1) will settime[10] to 10 becausestamp[4][1] = 2, which is less than
8, the total number of accesses in the first region. There are
two concurrent reads(6; 0) and (7; 0) in region 1 and two

concurrent reads(9; 0) and(10; 0) in region 2. One of the
reads in region 2 will settime[10] to 18, and the other in-
crementstime[10] to 19. The write(13; 1) is then triggered.
The last is the write(14; 1).

Note that this parallel inspector algorithm only allows
consecutive reads in the same region to be performed in par-
allel. Read operations in different regions have to be per-
formed sequentially even though they are consecutive in the
final dependence chains. In the dependence chain on ele-
ment 10 in Figure 4, for example, the reads(9; 0) and(10; 0)
are activated after reads(6; 0) and(7; 0). We are able to as-
sign reads(9; 0) and(10; 0) the same stamp as reads(6; 0)
and (7; 0), and assign the reference(13; 1) a stamp of 14.
This dependence chain, however, will destroy the anti-flow
dependencies from(6; 0) and(7; 0) to (14; 0) in the execu-
tor if reference(9; 0) or (10; 0) starts earlier than one of the
reads in region 1.

4 A Time-Stamping Algorithm Al-
lowing Fully Concurrent Reads

This section presents a new algorithm that allows fully con-
current reads. The basic idea is to use real numbers to rep-
resent clock time in the synchronization of references in a
dependence chain. Write operations and read groups can
each be regarded as a macro-reference. For a write refer-
ence or the first read operation in a read group in a depen-
dence chain, the inspector stamps the reference with the total
number of macro-references ahead. Other accesses in a read
group are assigned the same stamp as the first read. Corre-
spondingly, in the executor, the clock of a dependence chain
is incremented by one time unit on a write reference and by
a fractionof a time unit on a read operation. The magnitude
of an increment on a read operation is the reciprocal of its
read group size.

Figure 5 presents sequentially stamped dependence
chains. In addition to the stamp, each read reference is also
associated with an extra data item recording its read group
size. In an implementation, the variable for read group size
can be combined with the variable for stamp. For simplicity
of presentation, however, they are declared as two separate
integers. Look at the dependence chain on element 10. The
reference(4; 1) triggers four subsequent reads:(6; 0), (7; 0),(9; 0) and(10; 0) simultaneously. Activation of each of these
reads increments the clock time by1=4. After all of them are
finished, the clock time reaches 4, which in turn activates
the reference(13; 1). Due to space limitations, readers are
referred to [14] for the details of the algorithm.



150 1 2 3 4 5 6 7 8 9 10 11 12 13 14

13 15 0 8

3

15 15

15

011

5 14 12 45 14 12 811

1

( 1 ) ( 1 )( 1 )( 1 ) ( 2 ) ( 2 ) ( 2 ) ( 2 )( 2 ) ( 2 ) ( 4 ) ( 5 )( 1 ) ( 1 ) 

Access

Read

Write

(2,3) (1,2) (3,4) (3,1) (2,1)(1,1) (1,1) (1,1) (1,1) (3,4) (1,1) (3,4)(3,4) (2,3) (2,3) (1,2)

( 4 )

1010 10 10 10

10 1010
( 5 )

Iteration

v

u

3

3

3

3

Figure 5: Sequentially constructed dependence chains la-
beled by array elements. Numbers in parentheses are stamps
of references.

5 Performance Evaluation

This section presents our experimental results obtained on a
SUN SPARCserver 630MP, using Solaris thread tools. The
system is a 4-Sparc-40MHz shared memory multiprocessor.
All programs were written in C and the Solaris thread li-
braries, and compiled bygccwith theO2 optimization op-
tion.

5.1 Implementation

Three algorithms were implemented in this experiment: the
PCR algorithm allowing partially concurrent reads, the FCR
algorithms allowing fully concurrent reads and the Chen-
Torrellas-Yew algorithm (CTY, for short). All algorithms
were implemented as three routines: a localinspector, a
global inspector, and an executor. They are separated by
barrier synchronization operations.

All algorithms were programmed in the Single-Program-
Multiple-Data (SPMD) paradigm. At the beginning, threads
were created in a bound mode so that each thread is bounded
into a different CPU and runs to completion. In the local and
global inspectors, each thread is assigned a block of con-
secutive iterations. Threads share a global table:stamp.
Threads in the local inspector work on non-overlapped frag-
ments of the table and hence run in parallel. Threads in the
global inspector can also proceed without synchronization,
even though they require communication with each other
to determine undecided element stamps. In the implemen-
tation, each thread in the local inspector records the first
and the last references of each local dependence chain in
two auxiliary arrays:headandtail. In the global inspector,
threads update the stamp table through communicating their
read-only head and tail arrays. Since no table elements are
updated by more than two threads, all threads can also run
in parallel.

In the executor, iterations are assigned to threads in a
cyclic way. Threads are synchronized by mutual exclusion
locks. For accessing an element at locationk in the execu-
tion of a reference(i; j), a thread first needs to acquire a
mutual exclusion lock. After obtaining the lock, it checks
whether the reference is ready for execution. After access-
ing the data, it updates the clock time and broadcasts the

new time to threads that are blocked on the element. If more
than two threads are blocked on the element at the time, they
will compete again for the mutual exclusion lock after their
release.

5.2 Results

Performance of a run-time parallelization algorithm is de-
pendent on a number of factors. One is the structure of
the target loops. This experiment considered two kinds
of loop structures: Single-Read-Single-Write (SRSW) and
Multiple-Reads-Single-Write (MRSW), as shown in Fig-
ure 6. The SRSW structure refers to a loop which comprises
a sequence of interleaved reads and writes in its loop body.
The MRSW structure refers to a loop that begins with a se-
quence of reads and ends with a write operation in its loop
body.

SRSW structure:
for (i = 0; i < N ; i++) f

for(j = 0; j < A; j ++)
if (odd(j)) dummy = X[u[i][j]];
else X[u[i][j]] = dummy;g

MRMW structure:
for (i = 0; i < N ; i++) f

for (j = 0; j < A� 1; j ++)
dummy = X[u[i][j]];

X[u[i][A-1]] = dummy;g
Figure 6: Single-Read-Single-Write (SRSW) versus
Multiple-Read-Single-Write (MRSW) loop structures.

Another major factor affecting the overall performance is
memory access patterns defined by the index arrayu[i][j].
Two memory access patterns were considered: uniform
and non-uniform access patterns. A uniform access pattern
(UNIFORM, for short) was generated by assuming all array
elements have the same probability of being accessed by a
memory reference. A non-uniform access pattern (NUNI-
FORM, for short) was generated by assuming that90% of
references are to10% of array elements. Non-uniform ac-
cess patterns reflect hot spots in memory accesses and result
in long dependence chains.

Figure 7 presents the overall time of the PCR, FCR and
CTW algorithms spent on the parallel execution of loops
ranging from 64 to 4096 iterations in a loop. Assume each
iteration has 4 memory accesses (A = 4), and each access
incurs a loop of dummy operations (about50�s computa-
tional workload). The delay due to the dummy loop inside
a program could be greatly reduced by cache systems dur-
ing the sequential execution of the program. For fairness in



comparison, we set the sequential execution time of the pro-
gram to be the multiplication of the total number of accesses
by 50�s.
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Figure 7: Parallelization of loops (a) with the non-uniform
access pattern and the SRSW structure; (b) with the non-
uniform access pattern and the MRSW structure; (c) with
the uniform access pattern and the SRSW structure; (d) with
the uniform access pattern and the MRSW structure

Overall, these four figures show that run-time paralleliza-
tion is a viable approach to accelerating the execution of
loops that are large and can not be handled by compile-
time parallelization. All three algorithms we considered in
this experiments all show improvements over serial code for
large loops. The larger a loop is, the greater their improve-
ment. Of the three algorithms, the FCR algorithm performs
best in all test cases. It gains up to an80% improvement over
the CTY algorithm for loops with uniform and non-uniform
access patterns. The PCR algorithm outperforms the CTY
algorithm for loops with non-uniform access patterns only.
For loops with uniform access patterns, they have similar re-
sults. These figures also show that the FCR and the PCR
algorithms gain few benefits from the MRSW loop structure
even though the MRSW structure has many more reads than
the SRSW structure. It is because serial execution of the
memory accesses in an iteration prevents the FCR and the
PCR algorithms from exploiting more cross-iteration paral-
lelism.

As expected, run-time parallelization techniques do not
necessarily speed up the execution of loops. Benefits from
the parallel execution of small loops could be outweighed

by the parallelization overheads. From these figures, it can
be seen that each parallelization algorithm has a break-even
point in the axis of iteration number, from which parallel
execution starts to defeat serial code. The smaller the break-
even point, the smaller the parallelization overheads. In all
test cases, the plots of the algorithms indicate that the FCR
algorithm has the smallest break-even point. The break-even
point is as small as 128 for loops with uniform access pat-
terns. For loops with non-uniform access patterns, the turn-
ing point of the FCR algorithm increases to 256, because of
the hot spot in memory accesses.

The overhead of a parallelization algorithm is mainly due
to the dependence analysis in the local and global inspec-
tors and synchronization of references in the executor. Ta-
ble 1 presents overhead profiles of the three algorithms for
the parallelization of different sizes of loops. Compared to
the CTY algorithm, it is clear that the FCR algorithm reduces
the time spent on the executor significantly at slightly more
overheads in its local and global inspectors. The FCR algo-
rithm lends itself well to the parallelization of loops that are
contained inside sequential loops. If the dependence analy-
sis can be reused across multiple loop invocations, the FCR
algorithm can achieve up to a 3.7 times speedup over serial
codes for loops with uniform access patterns, and up to 3.4
times speedup for loops with non-uniform access patterns.

6 Conclusions

In this paper, we present two new run-time techniques for
the parallelization of loops that have indirect access pat-
terns. Our schemes can handle any type of loop-carried
dependencies. They follow the DOACROSS INSPEC-
TOR/EXECUTORapproach and improve upon previous algo-
rithms with the same generality by allowing concurrent reads
of the same location and by increasing the overlap of depen-
dent iterations. The algorithms are implemented based on
stamping rules and using multithreading tools. The experi-
mental results on an SMP server with four processors show
that our schemes are efficient and outperform their competi-
tors consistently in all test cases. The difference between
the two proposed algorithms is that one allows partially con-
current reads without causing extra overhead in its inspector,
while the other allows fully concurrent reads at a slight over-
head in the dependence analysis. The algorithm allowing
fully concurrent reads obtains up to an80% improvement
over the Chen-Torrellas-Yew algorithm. Even for loops with
long cross-iteration dependent chains, it achieves speedups
over the serial code of up to 3 times with the full overhead
of run-time analysis, and of 3.7 times if part of the analysis
is reused across multiple loop invocations.

Future work includes evaluation of these algorithms for
the parallelization of real application codes on large-scale



UNIFM-SRSW UNIFM-MRSW NUNIFM-SRSW NUNIFM-MRSW
LA GA EX LA GA EX LA GA EX LA GA EX

FCR 2.42 3.51 11.97 2.52 4.90 8.55 2.80 2.31 34.11 3.13 3.58 32.93
128 PCR 2.11 2.87 30.00 2.19 2.26 29.45 2.21 1.54 55.54 2.10 2.37 58.29

CTY 2.17 2.83 34.50 2.21 2.07 32.53 2.40 3.15 90.00 1.55 1.44 77.13
FCR 5.85 6.01 26.90 5.67 10.45 26.81 10.15 3.22 48.00 7.47 6.68 37.68

512 PCR 7.30 4.08 62.53 5.07 2.54 68.09 4.82 1.21 94.14 4.76 1.56 85.34
CTY 4.47 2.83 80.28 4.01 3.04 80.08 3.86 3.12 136.32 3.88 2.29 128.27
FCR 18.53 26.14 103.89 19.37 47.81 102.58 2.03 13.96 120.50 28.08 26.53 112.71

2048 PCR 12.79 7.81 256.40 13.60 10.25 188.60 12.10 3.98 229.91 12.96 5.76 204.80
CTY 11.66 6.77 167.90 14.73 8.27 210.80 10.77 3.63 273.10 11.01 4.00 286.27

Table 1: Times spent on the local inspector(LA), the global inspector(GA) and the executor (EX)

systems, and comparison of DOACROSS and DOALL
techniques for run-time parallelization using multithreading.
Implementation of the algorithms on a Cray J916 with 16
processors is already under way. In addition, we are also in-
vestigating issues to parallelize loops that have non-uniform
cross-iteration dependences and to integrate both compile-
time and run-time techniques into the Stanford SUIF paral-
lelizing compilers [3, 5].
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