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In this paper, we present two new run-time algorithms for the
parallelization of loops that have indirect access patterns.Figure 1: A general form of loops with indirect access pat-
The algorithms can handle any type of loop-carried depen!€rns
dencies. They follow theENSPECTOREXECUTOR scheme
and improve upon previous algorithms with the same gener- . . _ .
ality by allowing concurrent reads of the same location and_because its available parallelism cannot be determined stat-

by increasing the overlap of dependent iterations. The algo'—ca"y' For the parallelization of loops with indirect access

rithms are based on time-stamping rules and implementeaattems’ compile-time analysis must be complemented by

using multithreading tools. The experimental results on ar{un-tlme techniques capable of automatically exploiting par-

SMP server with four processors show that our schemes ar%"e“Sm at r.unftlr‘r?e. )
Loops with indirect access patterns appear frequently in

efficient and outperform their competitors consistently inall  -9°F ' ' ale "
test cases. The difference between the two proposed a|g§<_:|ent|flc and engineering applications. A recent emplrlcal
rithms is that one allows partially concurrent reads without StUdy by Shen, Li and Yew [12] on more than 1000 scien-
causing extra overhead in its inspector, while the other al-tific and engineering routines (100,000 code lines) showed
lows fully concurrent reads at a slight overhead in the de-that 47.44% of the one-dimensional array references and
pendence analysis. The algorithm allowing fully concurrent?4-91% of the two-dimensional array references were non-

reads obtains up to a80% improvement over its competi- linear functions with respect to the loop indices, and that
tor. 15.22% of nonlinear subscripts in one-dimensional arrays

and 2.76% nonlinear subscripts in two-dimensional arrays

are due to the presence of indirect access arrays. Exam-
1 Introduction ples include SPICE for circuit simulation, CHARMM and

DISCOVER for molecular dynamics simulation of organic
Automatic parallelization is a key enabling technique forsystems, and FIDAP for modeling complex fluid flows [2].
parallel computing. Of particular importance in this areais | the past, many run-time parallelization algorithms
loop parallelizationthat exploits inherent parallelism inher- pave been developed for different types of loops on both
entin aloop, partitions the loop code and data across procegnhared-memory and distributed-memory machines [4, 10,
sors and orchestrates the parallel execution of the loop [1}.3]_ Most of the algorithms follow a so-calledN$PEG
Current parallelizing compilers demonstrate their effective-ror/Executor approach. With this approach, a loop un-
ness for loops that have no cross-iteration dependences ggr consideration is transformed at compile-time intdran
have only uniform dependences. They have limitations ingpectorroutine and arexecutorroutine. At run-time, the
parallelization of loops that have complex or statically in-jnspector examines loop-carried dependencies between the
sufficiently defined access patterns. As an example, Figstatements in the loop body; the executor performs the ac-
ure 1 presents a loop exhibiting indirect access patterns fof, 3| joop operations in parallel based on the dependence in-
elements of a data array. In the case that its index ar- formation exploited by the inspector. The key to success
raysu andv are functions of the input data, the loop is wjith this approach is how to shorten the time spent on de-
unable to be parallelized by current parallelizing compilerspendence analyses without losing valuable parallelism and
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a speculative execution scheme that was recently proposérhcted to serve as a stand-alone routine between the inspec-
by Rauchwerger, Amato and Padua [9]. In the speculativéor and the executor. There are many run-time paralleliza-
execution scheme, the target loop is first handled as a doailon algorithms belonging to theNsPECTOREXECUTOR
regardless of its inherent parallelism degree. If a subsequestheme. They differ from each other mainly in their struc-
test at run-time finds that the loop was not fully parallel, thetures and strategies used in each routine, in addition to the
whole computation is then rolled back and executed sequerype of target loops considered.
tially. Although the speculative execution yields good results Pioneering work on using theNsPECTOREXECUTOR
when the loop is in fact executable as a doall, it fails in mostscheme for run-time parallelization is due to Saltz and his
applications that have partially parallel loops. colleagues [11]. They considered loops without output de-
Following the Inspector/Executor approach, this papempendenciesif. the indexing function used in the assign-
proposes two new parallel algorithms for the run-time par-ments of the loop body is an identity function), and proposed
allelization of loops that have indirect access patterns. Than effective DOALL NSPECTOREXECUTOR scheme. Its
algorithms are able to handle any type of loop-carried depeninspector partitions the set of iterations into a number of
dencies. They improve upon previous algorithms with thesubsets, called wavefronts, that maintain cross-iteration flow
same generality by allowing concurrent reads of the samelependencies. Iterations within the same wavefront can
array element in different iterations, and by increasing thebe executed concurrently, but those in different wavefronts
overlap of dependent iterations. The algorithms are basethust be processed in order. The executor of the DOALL
on time-stamping rules and implemented using multithreadscheme enforces anti-flow dependencies during the execu-
ing tools. The experimental results on a SUN SPARCservetion of iterations in the same wavefront. The DOALN-I
630MP show that both algorithms are efficient and outperspECTOREXECUTOR scheme has been shown to be effec-
form their competitors in all test cases. The differences betive in many real applications. It is applicable, however,
tween the two new algorithms are that one algorithm allowsonly to those loops without output dependencies. The ba-
partial concurrent reads without causing extra overhead isic scheme was recently generalized by Leung and Zahor-
its inspector, while the other allows fully concurrent reads atjan to allow general cross-iteration dependencies as shown
a slightly higher cost in the dependence analyses. Althougm Figure 1[7]. In their algorithm, the inspector generates
our algorithms are evaluated in centralized shared memorg wavefront-based schedule, maintains output and anti-flow
machines, they are applicable to distributed-shared-memoryependencies as well as flow dependencies; the executor

systems as well. simply performs the loop operations according to the wave-
The rest of the paper is organized as follows. Section Jronts of iterations.
provides an overview of theNlSPECTOREXECUTOR tech- Note that the inspector of the above scheme is sequen-

nique and a brief review of previous work. Section 3 presentsial. It requires time commensurate with that of a serial
an improved algorithm based on a recent work by Chen, Tortoop execution. Parallelization of the inspector loop was
rellas, and Yew. Section 4 develops the algorithm furtheralso investigated by Saltz, et al. [11] and Leung and Za-
into a new algorithm that allows fully concurrent reads. Sec-horjan [6]. Their technigues respect flow dependencies, and
tion 5 describes our implementation details and experimenignore anti-flow and output dependencies. Most recently,
tal results. Section 6 concludes the paper with remarks oRauchwerger, Amato and Padua presented a parallel inspec-
future work. tor algorithm for a general form of loops [9]. They extracted
the function of scheduling and explicitly presented an in-
spector/scheduler/executor scheme. Both their inspector and
2 INSPECTOREXECUTOR  Scheme  cneduler are paralel.
and Previous Wor k DOALL INSPECTOREXECUTOR schemes assume a
loop iteration as the basic scheduling unit in the inspec-
The basic idea of theNlsPECTOREXECUTOR scheme is for  tor and the basic synchronization object in the executor.
the compiler to generate an inspector and an executor for An alternative to the scheme is DOACROSSSPEG
loop to be parallelized at run-time. The inspector identifiesSTOR/EXECUTOR parallelization techniques which assume
cross-iteration dependencies and produces a parallel execa-memory reference of the loop body as the basic unit of
tion schedule. The executor uses this schedule to perform trecheduling and synchronization. Processors running the ex-
actual operations of the loop. ThedPECTOREXECUTOR  ecutor are assigned iterations in a wrapped manner and each
scheme provides a run-time parallelization framework, andpin-waits as needed for operations that are necessary for its
leaves strategies for dependence analysis and scheduling uexecution. An early study of DOACROSS run-time paral-
specified. The scheme can also be restructured to decougkization techniques was conducted by Zhu and Yew [13].
the scheduling function from the inspector and to merge ifThey proposed a scheme that integrates the functions of
with the executor. The scheduling function can even be exdependence analysis and scheduling into a single executor.



Later, the scheme was improved by Midkiff and Padua to al{S1) References at the beginning of dependence chains are
low concurrent reads of the same array element by severalit- assigned one.
erations [8]. Even though the integrated scheme allows con-

current analysis of cross-iteration dependencies, tight couS2) Fora referencé, j) in a dependence chain,

pling of the dependence analysis and the executor incurs  (S2.1) if the reference is a write operatiostamp|i][;]

high synchronization overhead in the executor. Most re- is set to the total number of accesses ahead in the
cently, Chen, Torrellas and Yew developed the DOACROSS chain plus one;

technique by decoupling the function of the dependence
analysis from the executor [4]. Separation of inspector and
executor not only reduces synchronization overhead in the
executor, but also provides possibility of reusing the depen- ) e o )
dence information developed in the inspector across multiple ~ (S2-3) if the referencei, j) is a read and its immediate

(S2.2) if the reference is a read operation and its im-
mediate predecessor (say(at, n)) is also a read
operationstamp(i][j] is set tostamp[m][n];

invocations of the same loop. Their inspector is parallel, but predecessdim, n) is a write,stampli][j] is setto
sacrifices concurrent reads of the same array element. One the total number of references ahead in the chain
of the contributions of this paper is to improve Chen, Torrel- plus one.
las and Yew’s algorithm to allow concurrentreads. Assume the indirect arrays are

DOACROSS NSPECTOREXECUTOR parallelization
techniques provide potential to exploiting fine-grained paral-« = [15,5,5,14,10,14,12,11, 3,12, 4,8, 3,10, 10, 3]
lelism across loops. Fine-grained parallelism does not necy, — [3,13,10,15,0,8,10,10, 1,10, 10, 15,3,15,11,0].
essarily lead to overall performance gains without an effi- ) )
cient implementation of the executor. Applying the above stamping rules to the target loop, we

obtain the stamped dependence chains labeled by array ele-
) ) ) ments as shown in Figure 2. All references to the same array
3 A TimeStamping Algorithm Al-  elementform a chain.
|OW|ng Par'“a”y Concurrent Reads 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1feration

Read| 3 i13i10: 15: 0: 8:10:10: 1 :10i/10:15: 3:15:11: 0 |y
. ) (1):(1)(2)(2): (1) (21)(3)(3) (1)(3) (3)(2): (3)2) (2)(1)
This section presents a parallel DOACROSSSPEG wite |15 5 5 1410 14 12 11 3 12 4 8 3 .10 10 3 |u

TOR/EXECUTOR algorithm (PCR, for short) along the lines (1) (1)i(2):(1) (2): (2)(1)i(1) (2) (2) (1) (21 (4) (7) (8) (5
of Chen-Torrellas-Yew’s work. The algorithm allows par-
tially concurrent reads without incurring any extra overhead

in the inspector. The next section presents a new algorithriigure 2: Sequentially constructed dependence chains la-

(FCR, for short) that allows fully concurrent reads. beled by array elements. The numbers in parentheses are
Consider the general form of loops in Figure 1. It definesthe stamps of references.

a two dimensional iteration-reference space. The inspector

of the algorithm examines the memory references in aloop From this figure, it can be seen that the stamp difference
and constructs a dependence chain for each data array elgatween any two directly connected references is one except
ment in the iteration-reference space. Each reference in gy pairs of write-after-read and read-after-read references.
dependence chain is assignestamp indicating its earliest | pairs of read-after-read, both reads have an equivalent

access time relative to the other references in the chain. Atamp. In pairs of write-after-read, their difference is always
reference can be activated if and only if the preceding refyhe sjze of the read group minus one.

erences are finished. The executor schedules references to ap, the executor, we define a logical clock for each depen-

chain through dogical clock At a certain time, only those  gence chain. We index dependence chains by the indices of
references whose stamps are equal to or larger than the timge data elements. Letme[k] represent the current clock
are allowed to proceed. Dependence chains are associatgghe of a chaink. We set up the following clocking rules in

with clocks ticking at different speeds. the executor corresponding to the inspector’s stamping rules.

Access

. C1) Initially, all clocks @ime[k tt :
3.1 Serial Inspector and Parallel Executor (C1) Initially, all clocks ime(k]) are set to one

&%2) A referenceg(i, j) in dependence chainis triggered if

We assume stamps of references as discrete integers. T stampli][j] < timelk].

stamps are stored in a two-dimensional arsaymp. Let
(4, ) indicate thej*" access of th¢/” iteration.stampli][j] ~ (C3) For a clock associated with chain time[k] is incre-
represents the stamp of referer{¢gj). The stamping rules mented by one if a reference in the dependence dhain
of the inspector algorithm are as follows. have been activated.



Itis easy to show that the abovedPECTOREXECUTOR  (S3) For a referencéi, ) in iteration regiorr,
algorithm respects all dependencies and allows concurrent ] ] o
reads. Look at the dependence chain 10. From the stamps (S3.1) if the reference is at the beginning of a local

of references, it is clear that the four read operations in it- chain,stampli][j] is set to—(n + 1), wheren is
erations 6, 7, 9 and 10 can proceed simultaneously once the the total number of accesses in the regions from 0
write in iteration 4 is done. The write operation in iteration throughr —1;

13 cannot be activated until all four reads are finished. (S3.2) if the head reference is a read, all subsequent

consecutive reads are set-tgn + 1).

3.2 Parallel Inspector and Parallel Executor Applying the above stamping rule, together with the rules of

The above algorithm builds the stamp table sequentiallyth€ Serial inspector, on local dependence chains, we obtain
Building dependence chains that reflect all types of deperPartially stamped dependence chains as presented in Fig-
dencies is a very time-consuming process. It requires an exr® 3._There are three partially stamped dep_end_ence chains
amination of all references at least once in the loop. A basi@Ssociated with array elements 3, 10, and 15 in Figure 3. The
parallel strategy is to partition the entire iteration space intg1€Pendence chains of other elements are omitted for clarity.

a number of regions. Each region, comprising a number of
consecutive iterations, is assigned to a different processor. o 1 2 s 4 s 5 7 8 9 10 11 12 13 14 1Sieration

Each processor establishes its local dependence chains Iryd| 3 10 15 10 10 10/ 10:15) 3 | 15 v

o . . (1) (1)) (10)/10)  (17) (17) (L7)-25)(-25)
examining the references in its local region. Processors thep,, |, 0 5 s 10010 5
exchange information about their local dependence chains 1) 9) (17) (26)(-28)(26) (27)
and finally connect them into complete chains.

Access

To apply the algorithm to the parallel construction of the

time table, one key issue is how to stamp the references in Bigure 3: A partially stamped dependence chain labeled by

dependence chain across regions, reflecting all dependenciglsray elements. Numbers in parentheses are stamps of refer-
and allowing independent references to be performed in pagspces.

allel. Since all processors (except the first) have no knowl-

edge about t_he references in regions ahead, _they_ are unabIeUSing the conservative approach, most of the stamp table
to stamp their local references in a local chain without theggn pe constructed in parallel. Upon completion of the local
assignment of its head. Suppose there are four processogga|ysis, processors communicate with each other to deter-

that are cooperatively building a stamp table like Figure 2,,ing the stamps of undecided references in the stamp table.
Each processor examines four consecutive iterations. Weygcessop setsstamp|s][1] to 2 after communicating with

label processors participating in the parallelization by theirprocessoﬂ (processor 1 marks no reference to the same lo-

region indices. Consider references in region 3 to MeMONy4iion). At the same time, processor 3 communicates with
location 3. Since processor 3 do_es not know whether therﬁrocessor 2, but gets an undecided stamp on the reference
are dependent references in regions from 0O through 2 an ,1), and hence assigns another conservative number, 16
what their stamps are, it is unable to stamp local referencel§|us 1, to referencél2, 0), assuming all accesses in regions
(12,0), (12,1) and(15, 1). . _ o 0 and 1 are in the same dependence chain. The extra one is
To allow processors to continue with the examination ofgye to the total number of dependent references in region 2.
other references in their local regions in parallel, Cle#n  Note that the communications from processor 3 to processor
al. [4] proposed aonservativapproach for an inspector 0 2 and from processor 2 to processor 1 are in parallel. Proces-

assign a conservative number to the second reference of a gy, 2 can provide processor 3 only the number of references
cal chain and leave the first one to be decided in a subsequegt the [ocal region till the end of the communication with

global analysis. By this conservative approach, processor ﬁrocessor 0.

temporarily assigns 24 plus 1 to the refereriee, 0), as- Generally, processors communicate with processors

suming all 24 accesses in regions from 0 to 2 are in theyneaq in the global analysis phase to determine their unde-
same dependence chain. The extra one is due to the refelijed references using the following rules.

ence(12,0). It results in a stamp of 26 in the subsequent

referencg15, 1), as shown in Figure 3. The negative sign of (G1) For an undecided write referen¢g j),

a stamp indicates the stamp is temporarily recorded for the . ] )

calculations of subsequent references’ stamps. (G1.1) if its predecessor, sayn, n) in regionr, has a
Borrowing the idea of conservative approach, we set up stampt (¢ > 0) stampli][j] is set tot;

one more stamping rule that assigns references in a local (G1.2) if its predecessofm,n) in regionr is UNDE-

read group the same stamp. CIDED, stamp]i][j] is set to the sum of the total



number of accesses in regions from @-te 1 and  concurrent read$9,0) and10,0) in region 2. One of the
the total number of references in the same chairreads in region 2 will setime[10] to 18, and the other in-
in the regionr plus one. crementgime[10] to 19. The writg(13, 1) is then triggered.

. The last is the writé14, 1).
(G2) For an undecided read referenégy), ) ) )
Note that this parallel inspector algorithm only allows

(G2.1) if its predecessor, safn,n) in regionr is a  consecutive reads in the same region to be performed in par-
write, stamp[i][j] is set in a way similar to rule allel. Read operations in different regions have to be per-

(GL); formed sequentially even though they are consecutive in the
(G2.2) if its predecessofm, n) is a read, final dependence chains. In the dependence chain on ele-
. o ment 10 in Figure 4, for example, the reg€és0) and(10, 0)
(G2.2.1) ifthe referencém, n) isin the same re-  gre activated after reads, 0) and(7, 0). We are able to as-
gion, stampli[j] is set tostamp[m|[n]; sign readg9, 0) and (10, 0) the same stamp as reas 0)
(G2.2.2) if the referencgm, n) is in a different  and(7,0), and assign the referen¢e3, 1) a stamp of 14.
regionr, This dependence chain, however, will destroy the anti-flow

(G2.2.2.1) stampli][j] is set to the sum of dependencies fror(6,0) and(7,0) to (14,0) in the execu-
the total number of accesses in regionstor if referenceg(9, 0) or (10, 0) starts earlier than one of the
from O tor — 1 and the total number of reads in region 1.
relevant references in the regienplus
one;

(G2.2.2.2) stampli][j] is set to

stamp[m][n] plus the number of . . .
reads in the read group of reference4 A T|me'Stamp|ng A|90F|thm Al-

(m, n). lowing Fully Concurrent Reads
Figure 4 shows the complete dependence chains associated
with array elements 3, 10 and 15. This section presents a new algorithm that allows fully con-

© 1 2 3 4 5 6 7 5 9 10 M2 1 W1 Wewen  oyrrent reads. The basic idea is to use real numbers to rep-

Read | 3 10 15 10 10 10; 10 15| 3 | 15 v i K K R .
(1), (1(2) @0y @o)|  (@2)(12) (3)|25) (25) resent clock time in the synchronization of references in a
wiite | 15 10 3 3,10 10 3|u dependence chain. Write operations and read groups can
(1) (2) (2) 26),(19) (26)(27) ;
each be regarded as a macro-reference. For a write refer-
Access ence or the first read operation in a read group in a depen-

dence chain, the inspector stamps the reference with the total
Figure 4: A fully stamped dependence chain labeled by arrapumber of macro-references ahead. Other accesses in a read
elements. Numbers in parentheses are stamps of referencegoup are assigned the same stamp as the first read. Corre-
spondingly, in the executor, the clock of a dependence chain
Accordingly, the third clocking rule of the executor in is incremented by one time unit on a write reference and by

Section 3.1 is modified as follows. afraction of a time unit on a read operation. The magnitude
) ) ) of an increment on a read operation is the reciprocal of its
(C3) For a clock associated with a dependence chain read group size.

(C3.1) timelk] is incremented by one if a reference  Figure 5 presents sequentially stamped dependence
(,7) in regionr and belonging to chaih is acti-  chains. In addition to the stamp, each read reference is also
vated, andstampli][j] < n, wheren is the total  associated with an extra data item recording its read group
number of accesses from region O to region 1; size. In an implementation, the variable for read group size

can be combined with the variable for stamp. For simplicity

of presentation, however, they are declared as two separate
integers. Look at the dependence chain on element 10. The
For example, consider references in the dependence chaiaferenceg4, 1) triggers four subsequentreads; 0), (7, 0),

on element 10 in Figure 4. The referer(@e0) first triggers (9, 0) and(10, 0) simultaneously. Activation of each of these

the referencd4, 1). Activation of referenceg4, 1) will set  reads increments the clock time by4. After all of them are

time[10] to 10 becausetamyp[4][1] = 2, which is less than finished, the clock time reaches 4, which in turn activates

8, the total number of accesses in the first region. There arthe referencg13, 1). Due to space limitations, readers are

two concurrent readés, 0) and (7,0) in region 1 and two referred to [14] for the details of the algorithm.

(C3.2) time[k] is set ton + 2 if an activated reference
(1, 7) satisfiesstampli][7] > n.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Iteration
Read| 3 {13i10i 15 0} 8i10i10{ 1 {10:10:15: 3 {15/ 11 0 | v

new time to threads that are blocked on the element. If more

LD A1 A12,3)(12) 1L,1EA 34 (L) (ABHRIBY @I (12) than two threads are blocked on the element at the time, they
Write | 15 5: 5 14:10: 14 12 11: 3 | 12: 4 8:3:10:10: 3 u i i i H
(L) (L) (LY (2) (Z3(LT (L) (25(29 (1) (2DCAI(AN(5) (5 will compete again for the mutual exclusion lock after their
release.
Access
5.2 Results

Figure 5: Sequentially constructed dependence chains la-
beled by array elements. Numbers in parentheses are stampsrformance of a run-time parallelization algorithm is de-
of references. pendent on a number of factors. One is the structure of
the target loops. This experiment considered two kinds
; of loop structures: Single-Read-Single-Write (SRSW) and
5 Performance Evaluation Multiple-Reads-Single-Write (MRSW), as shown in Fig-

This section presents our experimental results obtained on¥® 6- The SRSW structure refers to a loop which comprises
SUN SPARCserver 630MP, using Solaris thread tools. Thé& Séquence of interleaved reads and writes in its loop body.

system is a 4-Sparc-40MHz shared memory multiprocessof. "€ MRSW structure refers to a loop that begins with a se-
All programs were written in C and the Solaris thread li- dUénce of reads and ends with a write operation in its loop

braries, and compiled byccwith the O2 optimization op- ~ POdY-

tion. SRSW structure:
. for(G=0;i < N;i++){
5.1 Implementation forG =0, <A;j++)

if (odd(j))  dummy = X[u[i][jll;

Three algorithms were implemented in this experiment: the else X[u[i][il] = dummy:

PCR algorithm allowing partially concurrent reads, the FCR )
algorithms allowmg_ fully concurrent reads and the_ Chen-MRMW structure:

Torrellas-Yew algorithm (CTY, for short). All algorithms for(i = 0.4 < Nii++){

were implemented as three routines: a lacapector, a for (j': 0: j < A1+ 4)
globalinspector, and an executor. They are separated by dumn'wy: X[u[i][j,]]'
barrier synchronization operations. X[U[i[[A-1]] = dummy: ’

All algorithms were programmed in the Single-Program- '
Multiple-Data (SPMD) paradigm. At the beginning, threads
were created in a bound mode so that each thread is bounded
into a different CPU and runs to completion. In the local andFigure 6:  Single-Read-Single-Write (SRSW) versus
global inspectors, each thread is assigned a block of convultiple-Read-Single-Write (MRSW) loop structures.
secutive iterations. Threads share a global tablermp.

Threads in the local inspector work on non-overlapped frag- Another major factor affecting the overall performance is
ments of the table and hence run in parallel. Threads in thenemory access patterns defined by the index asféy;].
global inspector can also proceed without synchronizationTwo memory access patterns were considered: uniform
even though they require communication with each otheand non-uniform access patterns. A uniform access pattern
to determine undecided element stamps. In the implemerfUNIFORM, for short) was generated by assuming all array
tation, each thread in the local inspector records the firselements have the same probability of being accessed by a
and the last references of each local dependence chain imemory reference. A non-uniform access pattern (NUNI-
two auxiliary arrays:headandtail. In the global inspector, FORM, for short) was generated by assuming 9% of
threads update the stamp table through communicating theieferences are t®0% of array elements. Non-uniform ac-
read-only head and tail arrays. Since no table elements aess patterns reflect hot spots in memory accesses and result
updated by more than two threads, all threads can also ruim long dependence chains.

in parallel. Figure 7 presents the overall time of the PCR, FCR and

In the executor, iterations are assigned to threads in &TW algorithms spent on the parallel execution of loops
cyclic way. Threads are synchronized by mutual exclusiorranging from 64 to 4096 iterations in a loop. Assume each
locks. For accessing an element at locatioin the execu- iteration has 4 memory accesses £ 4), and each access
tion of a referencdi, j), a thread first needs to acquire a incurs a loop of dummy operations (abdiftus computa-
mutual exclusion lock. After obtaining the lock, it checks tional workload). The delay due to the dummy loop inside
whether the reference is ready for execution. After accessa program could be greatly reduced by cache systems dur-
ing the data, it updates the clock time and broadcasts thieg the sequential execution of the program. For fairness in

—



comparison, we set the sequential execution time of the praddy the parallelization overheads. From these figures, it can
gram to be the multiplication of the total number of accessede seen that each parallelization algorithm has a break-even
by 50us. point in the axis of iteration number, from which parallel
execution starts to defeat serial code. The smaller the break-
even point, the smaller the parallelization overheads. In all
test cases, the plots of the algorithms indicate that the FCR
algorithm has the smallest break-even point. The break-even
1 point is as small as 128 for loops with uniform access pat-
terns. For loops with non-uniform access patterns, the turn-
ing point of the FCR algorithm increases to 256, because of
== the hot spot in memory accesses.
The overhead of a parallelization algorithm is mainly due
(a) (b) to the dependence analysis in the local and global inspec-
tors and synchronization of references in the executor. Ta-
ble 1 presents overhead profiles of the three algorithms for
the parallelization of different sizes of loops. Compared to
the CTY algorithm, itis clear that the FCR algorithm reduces
the time spent on the executor significantly at slightly more
overheads in its local and global inspectors. The FCR algo-
rithm lends itself well to the parallelization of loops that are
contained inside sequential loops. If the dependence analy-
" sis can be reused across multiple loop invocations, the FCR
algorithm can achieve up to a 3.7 times speedup over serial
codes for loops with uniform access patterns, and up to 3.4
times speedup for loops with non-uniform access patterns.
Figure 7: Parallelization of loops (a) with the non-uniform
access pattern and the SRSW structure; (b) with the non-
uniform access pattern and the MRSW structure; (c) with Conclusions
the uniform access pattern and the SRSW structure; (d) with
the uniform access pattern and the MRSW structure In this paper, we present two new run-time techniques for
the parallelization of loops that have indirect access pat-
Overall, these four figures show that run-time paralleliza-terns. Our schemes can handle any type of loop-carried
tion is a viable approach to accelerating the execution oflependencies. They follow the DOACROSS8SPEG
loops that are large and can not be handled by compilefOR/EXECUTORapproach and improve upon previous algo-
time parallelization. All three algorithms we considered in rithms with the same generality by allowing concurrent reads
this experiments all show improvements over serial code foof the same location and by increasing the overlap of depen-
large loops. The larger a loop is, the greater their improvedent iterations. The algorithms are implemented based on
ment. Of the three algorithms, the FCR algorithm performsstamping rules and using multithreading tools. The experi-
bestin all test cases. It gains up to&¥% improvementover mental results on an SMP server with four processors show
the CTY algorithm for loops with uniform and non-uniform that our schemes are efficient and outperform their competi-
access patterns. The PCR algorithm outperforms the CTYors consistently in all test cases. The difference between
algorithm for loops with non-uniform access patterns only.the two proposed algorithms is that one allows partially con-
For loops with uniform access patterns, they have similar reeurrent reads without causing extra overhead in its inspector,
sults. These figures also show that the FCR and the PCRhile the other allows fully concurrent reads at a slight over-
algorithms gain few benefits from the MRSW loop structurehead in the dependence analysis. The algorithm allowing
even though the MRSW structure has many more reads thdnlly concurrent reads obtains up to &% improvement
the SRSW structure. It is because serial execution of thever the Chen-Torrellas-Yew algorithm. Even for loops with
memory accesses in an iteration prevents the FCR and tHeng cross-iteration dependent chains, it achieves speedups
PCR algorithms from exploiting more cross-iteration paral-over the serial code of up to 3 times with the full overhead
lelism. of run-time analysis, and of 3.7 times if part of the analysis
As expected, run-time parallelization techniques do nois reused across multiple loop invocations.
necessarily speed up the execution of loops. Benefits from Future work includes evaluation of these algorithms for
the parallel execution of small loops could be outweighedhe parallelization of real application codes on large-scale

() (d)



UNIFM-SRSW UNIFM-MRSW NUNIFM-SRSW NUNIFM-MRSW
LA GA EX LA GA EX LA GA EX LA GA EX

128 | PCR| 2.11| 2.87| 30.00| 2.19| 2.26| 29.45| 2.21| 1.54| 5554| 210| 2.37| 58.29

FCR| 242| 351| 11.97| 2.52| 4.90 8.55| 2.80| 2.31| 34.11| 3.13| 3.58| 32.93

CTYy | 217| 2.83| 3450| 2.21| 2.07| 3253| 240| 3.15| 90.00| 1.55| 1.44| 77.13

512 | PCR| 7.30| 4.08| 62.53| 5.07| 254| 68.09| 4.82| 1.21| 94.14| 4.76| 156| 85.34

FCR| 5.85| 6.01| 26.90| 5.67| 10.45| 26.81| 10.15| 3.22| 48.00| 7.47| 6.68| 37.68

CTY | 447| 2.83| 80.28| 4.01| 3.04| 80.08| 3.86| 3.12| 136.32| 3.88| 2.29| 128.27

2048 | PCR| 12.79| 7.81| 256.40| 13.60| 10.25| 188.60| 12.10| 3.98| 229.91| 12.96| 5.76 | 204.80

FCR | 18.53| 26.14| 103.89| 19.37| 47.81| 102.58| 2.03| 13.96| 120.50| 28.08| 26.53| 112.71

CTY | 11.66| 6.77| 167.90| 14.73| 8.27| 210.80| 10.77| 3.63| 273.10| 11.01| 4.00| 286.27

Table 1: Times spent on the local inspector(LA), the global inspecforé@dd the executor (EX)
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