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ABSTRACT 

Recently a number of scalable interconnection net- 
works for connecting multiple processors have been 
proposed. Though these networks differ in their prop- 
erties such as bisection bandwidth, node degree, net- 
work diameter, and average diameter, there is one 
common problem that must be addressed by their de- 
signers. It should be possible to subdivide the set of 
processors such that the subset forms a smaller ver- 
sion of the underlying topology. This task is termed 
as Processor Allocation in general and Subcube allo- 
cation for Hypercubes. Various techniques appear in 
literature, including tree collapsing, free-list based ap- 
proaches and others. A common metric for evaluat- 
ing a scheme is the extent to which it can recognize 
all the possible sub-graphs in a particular network. 
In this paper we show that recognizability alone is 
a poor yardstick for predicting the performance of a 
processor allocation scheme. We introduce the ideas 
of Search Space and Impact Sets and propose a new, 
more pragmatic metric to measure the efficiencies of 
an allocation scheme. We evaluate this metric for a 
simple buddy strategy and a hypothetical exhaustive 
scheme for two popular interconnection networks, the 
Star Graph and the k-ury-n-cube. We support our re- 
sults by simulation experiments and conclude that a 
scheme with higher recognizability is unlikely to jus- 
tify the associated increase in complexity and storage 
requirements. 

I. INTRODUCTION 

In recent years, multiprocessor systems have be- 
come very popular for solving large scale, computa- 
tionally intensive problems. A fundamental aspect 
of these machines is the underlying interconnection 
network that links the individual processing elements. 
A group theoretic model has been proposed recently 
which can be used to model and analyze a certain 
class of symmetric interconnection networks, known 
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as CuyIey Graphs [I, 21. Important members of this 
class include the Hypercube, the Rotator Graph, and 
the Star Graph. The Hypercube in particular has 
been used in many commercial machines like the IN- 
TEL iPSC/l, iPSC/L?, and the nCUBE. Hence a great 
deal of study has been devoted to  the properties and 
capabilities of this topology. Properties which are 
used to determine the quality of a particular network 
include the number of connections required at each 
node, the communication delay between pairs of nodes 
and the fault tolerance of the network. In graph theo- 
retic terms, these are related to the degree of a node, 
the diameter of the graph, and the connectivity, re- 
spectively. Existence of an efficient message routing 
algorithm and the scalability of the network are addi- 
tional features to be considered. 

In practice one may want to run programs with 
varying degrees of parallelism on a multiprocessor ma- 
chine. However, programs that do not require all 
the available computing power would waste the excess 
nodes. One would therefore like to allocate parts of 
the larger machine to various jobs or programs which 
can execute concurrently, leading to an improved uti- 
lization. These parts are generally constrained to form 
a smaller version of the original network. A suitable 
operating system could thus schedule a number of jobs 
concurrently, making optimum use of the available re- 
sources. 

After a task is done, it must return the nodes com- 
prising the sub-graph to the operating system, ie. the 
sub-graph has to be deallocated. The repeated allo- 
cation and deallocation of sub-graph could give rise 
to fragmentation in the network, which means that 
there are enough nodes in the network to form a sub- 
graph, but they cannot be linked up due to scatter- 
ing. Thus the efficiency of a scheme would be greatly 
reduced if it introduced too much or avoidable frag- 
mentation. Another parameter to be considered is 
the ability to recognize sub-graphs of various sizes in 
a network. Depending on the degree of hierarchy of 
the network, the number of distinct sub-graphs can 
be very large. However, a particular scheme may rec- 
ognize only a subset of all existing sub-graphs. So it 
may be possible for a free sub-graph to exist, which 
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an inefficient allocation scheme does not detect. This 
condition has been termed as a pseudo fault. On the 
other hand an exhaustive scheme which searches all 
possibilities may require too much time or memory to 
be of any practical use. To date, the recognizability of 
a processor allocation scheme was considered a prime 
criteria for determining its quality. In this paper we 
introduce a new metric to compare the efficiencies of 
simple allocation schemes with complex and exhaus- 
tive schemes. We evaluate this metric for two kinds of 
networks which have received attention recently, the 
Star Graph and the k-ary n-cube. Extensive simula- 
tions were carried out to validate the metric. 

The Star Graph is an interconnection network with 
many properties superior to the Hypercube, as shown 
in section 2 of this paper. Though its growth in size 
is far more rapid than for the Hypercube, due to its 
strong hierarchical nature, it lends itself to a similar 
approach to increasing utilization, by allocating sub- 
stars to the various programs that need to execute on a 
machine. The k-ary n-cube is another important net- 
work that subsumes meshes with wrap-around connec- 
tions a well as binary hypercubes, ie., k-ary 2-cubes 
are 2-D meshes with wrap-around and 2-ary n-cubes 
are binary hypercubes. This network has been used in 
several concurrent computers, like the Ametek 2020, 
the experimental J-machine, the Mosaic, the i-Warp 
and the Cray T3D. Meshes, rings and hypercubes can 
be embedded in this network [3]. 

We devised a Simple Buddy scheme for allocation 
of sub-stars and studied its performance through ex- 
tensive simulation. We compared our scheme with 
an Extended Buddy system which is more exhaustive 
than the Simple Buddy scheme. The simulations show 
that there is hardly any gain from using a more ex- 
haustive scheme, as predicted by our efficiency metric. 
Hence we would expect that future research should be 
addressed towards devising more efficient scheduling 
strategies as shown by Krueger [4]. 

The rest of the paper is organized as follows: Sec- 
tion 2 presents some background information about 
the Star Graph and some useful theorems are derived. 
Relevant properties of the k-ary n-cube are discussed 
in section 3. The efficiency metric is introduced in 
section 4. The simulation results are shown in section 
5 and we conclude in section 6 .  

1324 
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11. STAR GRAPH 
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We first define the Star Graph and look at various 
graph parameters which will be used to establish the 
efficiency metric. 

An interconnection network can be represented by 
an undirected graph G = (V,E)  where the vertex 
set V corresponds to the processing elements and the 
edge set E corresponds to bidirectional communica- 
tion channels. 

Figure 1: 4-Star 

Definition 1 A Star Graph with n! nodes is called a n  
n-Star and denoted by S, = (V,, E,) where 

V, = {A = 

E, = 

. . *, 1 *i E { a l ,  . . . , U,}, 1 5 i 5 n 

{(*,*') I 3! i , 2  5 i,j 5 nand*j = *'.jb'j # i) 

We assume { a l ,  a2,. . . ,a,} = {1,2,. . . , n} so that 
V, becomes the set of n! permutations of the n num- 
bers 1 ,2 , .  . . , n and an edge exists in the Star Graph 
if two permutations differ only in two positions, the 
first one and any other. For example in a 4-Star, 4123 
can be obtained from 2143 by interchanging the first 
symbol with the third, so there exists a link between 
the corresponding nodes. Figure 1 a) shows a 4-Star. 
The lines indicate links between nodes, and like let- 
ters are connected by links which have been omitted 
for clarity. 

The quality of an interconnection network can be 
gauged by looking at various parameters such as the 
degree of the network, the diameter, and the average 
diameter. An n-Hypercube, or n-cube, has 2, pro- 
cessing nodes, a degree of n, a diameter of n, and an 
average diameter of n/2 [5] .  The diameter thus grows 
as the logarithm of the size of the Hypercube. On 
the other hand an n-Star Graph connects n! nodes 
with a degree n - 1 and a diameter which is at  most 
3(n - 1)/2 . This means that the degree as well as the 
diameter grow slower than a logarithmic function of 
the size. Hence the Star Graph offers a network with 
less interconnection edges and smaller communication 
delays when compared to a Hypercube of comparable 
size. 

Due to the hierarchical nature of the Star Graph 
we can define an r sub-star as follows: 

A*i = *j e i = j } 

Definition 2 An T-SUb-StW as a sub-graph of a n  n-  
Star and denoted by  RT(ST,pr) = (VT(ST,pT), ET)  where 

S, c {al,~~,...,an}1ISrI = (n -y )  

v, 
pr : s,r H {2,3, . . . , n} A pr  is injective 

= { * I . .  . #  i . ' ' * 1 . . .  E v, I # E S,,i = p , ( # ) }  
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Here S, is a set of n - r symbols and the relation 
pT fixes their positions. The first position cannot be 
fixed due to the definition of a Star Graph. A par- 
ticular 4-sub-star in an 7-Star would be represented 
as: *I 5 *3 3 *5 *6 1 where s4 = { 1 , 3 , 5 }  and 
p s ( 1 )  = 7 , p 4 ( 3 )  = 4 and p4(5)  = 2 .  

Remark 1 Two nodes * and *' are said t o  identical 
if V i * a  = *i, 1 5 i 5 n. 

Remark 2 Two r sub-stars R, and R: are said t o  be 
identical if V,(S,,p,.) = V,'(Si,p:). 

Theorem 1 Two r sub-stars R, and R: are identical 
if and only i f:  S, = S;andp, = p: 

Proof: Suppose R, and EL are identical, by Remark 3 

assume S, # Si  (which implies p ,  # p' ) 
Hence 3 # IC such that # IC f S, A # ",$! Si 
j y*l . . . # i.. . * l .  ~. E V, pr(# "1 = constant, say 
K 
j V*i - . .# --..ti - J -  E V,' the symbol at position K 
is # ", since v,(s,,~,) = v,'(s;,~;) 
Hence there are /Si{ + 1 = n - r + 1 k e d  symbols in 
V,', and it cannot be an r sub-star. 
Next assume S r  = Sh but p ,  # p: 
Hence 3 # " such that pT(# ') = K and p',(# ") = X' 
with K # K' 

j V*; . . . # . . . *I . . . E Vi symbol at position K = 

a contradiction since p:(# ') = K' with K # K'. 
Since the sets S,, Si  and the relations p,,p: specify 
V, and Vi completely, the reverse proof is trivial. 

From the proof of the theorem we get the following 
corollary: 

Corollary 1 Two r sub-stars R, and Ri are distinct 
if and only z f  p ,  # pi. 

Proof: From the above theorem for the two r sub-stars 
to be distinct, either p ,  # p', or S, # Si. However if 
S, # Si, then the mappings cannot be identical, since 
the pre-images are different. Hence p ,  # p i  in both 
cases. 

* VT(ST?pT) = v,'(si?p:) 

j V* l . .  . # z . .  . * E . .  . E vT pT(# "1 = 

# I C ,  since vT(sT,P,) = v,~(s',P:) 

Theorem 2 The number of distinct r-sub-stars in an  
n! n-I! n - s b -  is given b y  ,! (& (;-l)! [I1 

Proof:Given a set of symbols in S, we can choose the 
mapping p ,  in P,"_, ways. By Corollary I ,  each of 
these is a distinct r sub-star. For the set S, we have 
to select n - r symbols out of a possible n. This can 
be done in CEZ: ways. The number of distinct r sub- 
stars is the product x Pt-, 

Definition 3 Two r sub-stars R, and R', are said t o  
be disjoint zf V,(S,,p,) n V,'(Si,p',) = 4. 

Theorem 3 The number of disjoint r-sub-stars in an 
n-S tar  is  given b y  $ 

Proof: If a symbol is fixed in one position in an n-Star, 
the resulting set of nodes forms an (n - 1) sub-star. 
The particular symbol can be chosen in n ways, and 
all the corresponding sets VT(ST,pT) can be seen to be 
disjoint, since S, fl Si  = 4. Hence there are n d 
(n -1 )  sub-stars in a n-Star. Similarly there are (n-1) 
disjoint (n - 2) sub-stars in each (n - 1) (sub-)star so 
formed, n x (n - 1) in total. Continuing thus, we get 
n x (n - 1) . . . x (r + 1) disjoint r sub-stars in a n-Star. 
This number can also be written as 3. 
Theorem 4 A necessary and suficient condition for  
two r-sub-stars R, and RL in a n  n-S tar  t o  have com- 
m o n  nodes is: 
v # E Sr and #' E S~,P,(#) P:(#') @ # = #' 

Proof: To prove that it is necessary, assume that: 
3 # E S, and # E Si such that pT(# 1 = pi (#  ') 

3 V * E V, (S,  , p,) the symbol at p,(# ) is # . 
At the same time V *' E V;(Sh,pi) the symbol at 

Since # # # ' it implies that VT(SrlpT) and V,'(Si,p;) 
cannot have any common nodes. Similarly if we have 
# = # ' but pr(# 1 # p i (#  '1, then this particular 
symbol appears in two different places for all nodes 
in V,(S,,p,) and V;(Si,pk). So again there are no 
common nodes. 

To prove that it is sufficient we construct the com- 
mon nodes. Let * E V,(S,,p,) and *' E V;(Si,pG) 
such that 

but # z # ' 

Pr(#  ) is # 'a 

V# = # ' , * p 4 # )  = #  = # I = * I p : ( # ' )  

V # # # ', *kP(# ) = # and *p:(# )' = # ' 
This will use exactly IS, U Si{ symbols out of a total 
n. The remaining symbols can then be assigned so 
that = *:. Nodes constructed thus are identical. 

Remark 3 The above theorem does not assume that 
S, n Si  # 4, ie., the two sets could be disjoant. 

Corollary 2 The number of common nodes between 
two r sub-stars satisfying Theorem 4 is given by: 
(n - IS, U Sil)! 

Proof: From the construction of the nodes ]ST U Si1 
symbols are fixed, the remaining can be arranged in 
any permutation. 

Theorem 5 The number of r sub-stars that share a t  
least one common node with a given r sub-star as: 
E!"-" c,(n-r) ' ( n - T - 2 )  (-1) where 
max (0, (n  - 29- + 1)) 5 i 5 (n  - r )  
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m3 mz mr WO 

Figure 2: 4-ary 3-cube 

Proof: Let R, be the given r sub-star and Rt be any 
other r-sub-star of a n-Star Graph. Assume that R, 
and Rt have i symbols identical which must be at  the 
same position for the two r sub-stars to have at  least 
one node in common, by Theorem 4. Since IS,l = (n- 
r )  these i symbols can be chosen in C,!n-r) ways. Also, 
to create an r sub-star R: must have (n - r - i )  fixed 
positions different from R, and with different symbols, 
again by Theorem 4. The (n - r - i) positions can be 
chosen out of n - 1 - (n - r )  = r - 1 available ones, 
and the symbols can be any permutation of (n - r - i) 
symbols out of the n - (n - r )  remaining ones. This 
can hence be done in C : i I &  x P{n-T-i, ways. We 
require (n - r - i )  5 (r  - 1) as a constraint on i. 
Summing over all possible values of i we get the above 
formula. 

111. K-ARY N-CUBE 

We can derive similar theorems for the k-ary n- 
cube. Detailed proofs have been omitted for brevity 
and follow those presented in the previous section. 

Definition 4 A k-ary-n-cube has kn nodes and is de- 
noted by  Qk = (V,, E,) where 

If {a l ,  a2,. . . ,a,} = {1,2,. . . , n} the nodes of the k- 
ary n-cube can be thought of as n-digit radix k num- 
bers. A link exists between two node if they differ 
only in one position and that difference is one modu- 
lus k .  This provides a wrap-around connection at the 
edges. Figure 2 b) shows a 4-ary 3-cube with internal 
nodes and some links omitted for clarity. 

A k-ary n-cube has a diameter n and each node 
has 2n neighbors, for k > 2. 

We define a k-ary r-sub-cube formally as follows: 

Thus P, defines a set of fixed positions and s, maps 
any one of k symbols to each of the positions. 

Definition 6 Two k-ary r-sub-cubes are said to be 
identical if V,(P,, s,) = V,'(Pi, st).  

Theorem 6 Two k-ary r-sub-cubes R: and RI: are 
identical if and only if: 

P, = P; 
s, = s, I 

Proof: The proof follows the lines of proof for theorem 
1. 

We also have a corollary analogous to corollary 1 
for Star graphs. 

Corollary 3 Two k-ary r-sub-cubes R: and RI: are 
distinct if and only if s, # s:. 

Theorem 7 The number of distinct k-ary r-sub-cube 
in a k-ary n-cube is given by  

Proof: The n - r fixed positions can be chosen out of 
n possible ones in C?,-,) ways. Once the positions 
have been chosen, there are k choices for the symbols 
to occupy them. This gives a total of: 

c;-, x k(,-,) - - n! k(n-T) 
(n - r)!  r! 

Definition 7 Two k-ary r-sub-cubes R,k and RI: are 
said to be disjoint if V,(P,, s,) n V,'(Pi, s:) = 4. 

Theorem 8 The number of disjoint k-ary r-sub-cubes 
in a k-ary n-cube is given b y  k(,-,) 

Proof: By fixing any one position in a k-ary n-cube, 
one can get k disjoint k-ary (n-1)-sub-cubes. Sim- 
ilarly, each resultant 1-ary (n-1)-cube can again be 
decomposed into k disjoint k-ary (n-2)-cubes, giving 
a total of k x k such sub-cubes. Continuing thus we 
get kr disjoint k-ary r-sub-cubes. 

Theorem 9 The number of k-ary r-sub-cv.bes that have 
at least one node an common with a given k-ary r-sub- 

where max(0, (n - 2r ) )  5 i 5 (n - r )  
cube is given by: Gin-" C,!n-r) x Ctn-T-i) IC(n-,-i) 
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Proof: The proof goes along the lines of that for the- 
orem 5. If R: is the given r-sub-cube and R': is any 
other r-sub-cube in the same k-ary n-cube, then they 
can have i positions identical in C:(n-T) ways. The re- 
maining (n - r - i) fixed positions in must be dif- 
ferent from those in R,k and hence can be chosen out of 
r possible ones in C{12-,-z ways. Once the positions 

)"( 12- T - 2) ways. The total number of overlapping k-ary 
r-sub-cubes is obtained by summing over all possible 
values of i, hence the result. 

are chosen, they can be fil 1 ed by any of k symbols, in 

Sub- 
star 

IV. EFFECTIVENESS OF ALLOCATION 
SCHEMES 

Recognition (%) 
4 1  5 1  6 1  7 

Processor allocation schemes fall into two major 
types, bottom-up or bit-mapped techniques and top- 
down or list-based methods.[6, 71. While the former 
are usually less complex, they tend to suffer from 
poorer recognition ability. 

The Buddy Strategy in particular has been used 
bottom-up allocation for hypercubes [S] and can 

be readily adapted for other interconnection networks, 
such as the substar. It has been proven that the buddy 
strategy is statically optimal under a LIFO release 
scheme [9]. A general algorithm for a Buddy system 
is as shown below: 

function Buddy (r,n) 
searches for an r sub-graph in an n graph 

1. for 0 5 z < size of n-graph 
if node(z) is FREE 

if node(i + 1) through 
node(z + size of r-graph - 1) are all FREE. 

else 

endif 

set z = z + size of r-graph. 

Mark them BUSY and return this list 

continue 

else 

endif 
endfor 

2. if no T sub-graph was found, return 
UNSUCCESSFUL. 

The only requirement for extending this scheme 
to other graphs is a mapping of the nodes to a linear 
list, such that the appropriate contiguous set of nodes 
indeed forms a sub-graph. We were able to adapt 
the Buddy strategy for Star Graphs by adopting the 
indexing scheme proposed by Menn and Somani [lo]. 

The above algorithm detects only a particular dis- 
joint set of sub-graphs. We can evaluate the recog- 
nition percentage for Star graphs and k-ary n-cubes 
from Theorems 1 and 2 and Theorems 7 and 8 respec- 
tively, refer Tables 1 and 2. 

Based on this data, one may expect that the Buddy 
system should perform very poorly, especially when 
compared to an exhaustive scheme. We introduce 

7 100.00 

Table 1: Recognition for the Buddy Scheme in Star 
Graphs 

25.00 

Table 2: Recognition for the Buddy Scheme in k-ary 
n-cubes 

the concepts Search Space and Impact Se t  to develop 
a new metric for predicting efficiencies of allocation 
schemes. 

Definition 8 The Search Space f o r  an  r-sub-graph 
is the number of possible r-sub-graphs in an  n-graph, 
detectable by the processor allocation scheme at that 
time. 

Definition 9 The Impact Set as the set of recogniz- 
able r-sub-graphs lost after allocating r-sub-graphs us- 
ing a particular processor allocation scheme. 

We evaluate the efficiency (7) of a scheme by com- 
paring the Search Space left after allocating one r-sub- 
graph to the original Search Space. Thus our efficiency 
metric becomes: 

Original Search Space - Size of Impact Set 
Original Search Space 

We can now compare the efficiency after allocat- 
ing one r-sub-graph using the Buddy Scheme and a 
hypothetical Exhaustive Scheme, as shown in Tables 
3, 4 and 5 

As can be seen from the tables, the efficiency of the 
Buddy strategy is consistently higher than that for an 
exhaustive search scheme. Since the Search Space for 
the exhaustive scheme shrinks very rapidly it is diffi- 
cult to justify the extra time and memory overhead of 
more complex allocation strategies, even though the 
recognition of the Buddy strategy is comparatively 
poor. 
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Efficiency (W) 
Sub- 5 I 6 I 7 I 

Sub- 
cube 

0 

5 
6 

I , - I  

5-ary-3 9-ary-3 17-ary-3 
Bud. I Ex. Bud. I Ex. Bud. I Ex. 
99.20 I 99.20 99.86 I 99.86 99.98 I 99.98 

Table 3: Efficiency of Buddy (Bud.) and Exhaustive 
(Ex.) Allocation Schemes for Star Graphs 

--. 

star 

I II Efficiencv (9'0) I 

I I 

S.B. I E.B. I S.B. I E.B. I S.B. I E.B. 

Table 4: Efficiency of Buddy (Bud.) and Exhaustive 
(Ex.) Allocation Schemes for various k-ary 3-cubes 

We tested this metric by running extensive simu- 
lations usinn two allocation schemes on various Star 

Table 5: Efficiency of Buddy (Bud.) and Exhaustive 
(Ex.) Allocation Schemes for various k-ary 4-cubes 

the size of the sub-star requested, uniform and uni- 
formly decreasing. The uniform distribution uses a 
constant probability p ( r )  = l / (n  - 1) for the request 
size, while the uniformly decreasing distribution uses 
probability p ( r )  = C / T  such that C;-'C/T = 1. 

The utilization of the system can be determined 
by [41: 
mean reauest size X mean allocation rate X mean residence time 

Total number of nodes in the Star Graph 

We compared a Simple Buddy and an Extended 
Buddy scheme. The Extended Buddy required n times 
the storage as compared to the Simple Buddy scheme. 
Their respective recognization percentages are as given - 

Graphs. Further evaluation on k-ary n-cubes are planned. in 6 .  

V. SIMULATION MODEL AND RESULTS 

We carried out extensive simulations on various 
sized Star Graphs to determine whether a more ex- 
haustive scheme would lead to better results than a 
Buddy strategy. We used an event driven simulator, 
running on an IBM RS 6000 workstation. A central 
server accepts requests for sub-stars arriving at some 
allocation rate. If the request can be satisfied the cor- 
responding nodes are marked as busy. The nodes are 
released after some residence time. If the allocation 
strategy is not able to grant the request, it is put in 
a First Come First Served Queue. All the following 
requests are also put into this queue. When nodes are 
deallocated, the server examines the queue, and if it 
is found non-empty, it tries to allocate the request at  
the head of the queue. If this request is successful, the 
next request in the queue is attempted, else the head 
is replaced. This is continued until either no more re- 
quests can be satisfied or the queue becomes empty. 
While a First Come First Served scheduling strategy 
avoids starvation of requests as long as queues are 
bounded, it tends to under utilize the system, since 
larger requests a t  the head of the queue would in gen- 
eral block smaller requests. 

The residence times and allocation rates were as- 
sumed to follow an exponential distribution. The means 
of these distributions were varied over various simu- 
lation runs. Two types of distributions were used for 

Recognition (%) 
Sub- II 5 I 6 I 7 j 11 25.00 1 50.00 1 20.00 1 40.00 1 1;:; 1 33.33 

16.67 50.00 10.00 30.00 20.00 
25.00 100.00 10.00 40.00 20.00 

100.00 100.00 20.00 100.00 33.33 
6 100.00 100.00 16.67 100.00 

100.00 100.00 

Table 6: Recognition for the Simple Buddy (S.B.) and 
the Extended Buddy (E.B.) Schemes 

Our simulation results confirmed that the useful- 
ness of the Extended Buddy scheme was severely lim- 
ited, since most of the times, whenever the simple 
scheme would fail, so would the extended one. Table 
7 shows a typical run. A sub-star size of 0 indicates a 
failure in locating a free sub-star. As can be seen, the 
total number failures is far larger than the times that 
the Extended Buddy System was successful and the 
Simple Buddy failed. The utilization in this case was 
80 %. These results agree very well with the efficiency 
metric shown in Tables 3, 4 and 5. 

VI. CONCLUSION 

In this paper we introduced a new efficiency met- 
ric for processor allocation in multiprocessor computer 
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Size Found Found i l  I i 11 I 19643 
19708 19711 

19276 
4 19892 19896 
5 19529 19529 

Table 7: Sub-stars found by Simple (S.B.) and Ex- 
tended (E.B.) Buddy Schemes 

systems. The current metrics like recognizability and 
average of allocation and deallocation times are not 
adequate to predict the performance of an allocation 
scheme. We evaluated our metric for various Star 
Graphs and k-ary n-cubes. Our simulation results 
for Star Graphs confirm that a complex scheme with 
high recognizability, requiring more memory and time 
to determine, hardly outperforms a simple scheme . 
The overhead is difficult to justify in a dynamic sys- 
tem. Changes in the scheduling policy of the queue 
are likely to provide a far larger benefit 141. 
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