
Parallelization of ��D Range Image Segmentation on a SIMD

Multiprocessor

Vipin Chaudhary and Sumit Roy Bikash Sabata

Parallel and Distributed Computing Laboratory SRI International

Wayne State University ��� Ravenswood Ave�

Detroit� MI ����� Menlo Park� CA �����	����

Abstract

The paper presents a parallelized algorithm for seg�
mentation of ��D range images� The segmented image
is useful as an input to higher level image processing
tasks� The algorithm is implemented on a mesh con�
nected multiprocessor machine� the MasPar series of
massively parallel computers� A ��dimensional hier�
archical data distribution scheme is used to allocate
the image pixels on the machine� The original sequen�
tial segmentation procedure is modi�ed to take into
account this data distribution� The performance of
the new programs is compared to that of the original
code� executed on an IBM RS���� ���H workstation�
The speed�up is found to be about three for a Mas�
Par consisting of an 	�
 x 	�
 processor array� This
is due to the architectural constraints of the MasPar�
in particular the implementation of its interprocessor
communications� The utilization of processors on the
MasPar is found to be as low as �� � for this algo�
rithm� Results of executions on machines of various
sizes are also shown� Suggestions for better perfor�
mance are discussed�

� Introduction

In most computer vision systems� the acquired data
needs to be represented using symbolic descriptions�
These descriptors can then be used for higher level vi�
sion tasks� The symbolic description is obtained by
partitioning or segmenting the data into a set of prim�
itives� depending on the nature of the input data used
at the higher level� Sabata �

 developed a modular
framework to the problem of segmenting a �D range
image of a scene containing multiple arbitrarily shaped
objects into a set of homogeneous surface patches� The
�rst module of the segmentation procedure groups the
image pixels in terms of local properties derived from
the input data� This leads to a preliminary overseg�
mentation that is later re�ned by the �nal vision task�

In the second module� the oversegmented results of
the low level segmentation are merged into homoge�
neous regions based on surface descriptions� Since the
description of the surface is not an invariant with re�
spect to the representation� the output of the merg�
ing module is a function of the surface representation�
The second module uses the result of the low level seg�
mentation� the raw input data as well as the surface
representation of the higher level task to arrive at a
�nal partition of the scheme�

The initial data driven phase uses a pyramidal clus�
tering algorithmbased on seven properties� the surface
normal at very point and the six projections along each
plane from the two possible directions� This corre�
sponds to illuminating the scene from three orthogonal
directions� Zeroth� and �rst�order properties are ex�
ploited in this phase to reduce the sensitivity to noise
that higher order surface properties tend to exhibit��
�
This also makes the process less dependent on smooth�
ing algorithms and avoids the distortions that they
tend to introduce��
�

Another consequence of noise in data is that most
segmentation schemes require the speci�cation of vari�
ous tolerance thresholds� which depend on the quality
and type of input data� The Pyramidal Clustering

Algorithm used here has the useful property that it
does not depend on such arbitrary or empirically de�
termined values�

This paper reports out parallel implementation of
the segmentation and clustering phases on the MasPar
series of massively parallel machines� The result of
the parallel low level segmentation can then be sent
to a merge module for higher level vision tasks� The
rest of the paper is organized as follows� Section �
describes the architecture of the MasPar� Section �
explains the algorithm used and describes the changes
made for the MasPar� Section � shows the output
generated by the algorithm on the MasPar and also
tabulates execution timings for machines of various



sizes� Section � brie�y introduces some of the possible
applications of the algorithm� Finally� we draw some
conclusions in Section ��

� MasPar Architecture

The MasPar computer system works in a Single
Instruction Multiple Data fashion� with scalability in
terms of number of processing elements� system mem�
ory as well as communication bandwidth��
� It can be
divided into a number of components�

Array Control Unit� This unit can control the ac�
tual Processor Element core or independently exe�
cute programs� Processor Elements are controlled
by broadcasting instructions from the ACU� Lim�
ited memory is available on the ACU�

Processor Element Array� The PE array is the
computational core of the machine� Each element
has on�chip registers� o��chip data memory� an
integer and �oating point ALU and a communi�
cation interface� Logic is provided for conditional
execution based on internal data� This allows us
to selectively disable or enable processors�

Communication Interfaces� The MasPar provides
three major interfaces for communication�

� An X Network for nearest neighbor commu�
nication in 
 directions and wrap�around� It
assumes a ��D mesh topology�

� A circuit switched global router network per�
mitting random simultaneous communica�
tion using a three level hierarchical crossbar
switch�

� Two global buses to communicate with the
ACU� The processor instructions are broad�
cast on one bus and status information is
collected by the ACU on the other�

UNIX Subsystem� This provides a user interface as
well as all job management and low speed network
access� This is implemented in a separate Front
End�

I�O Subsystem� This consists of a separate high
speed disk array and I�O RAM and allows over�
lapped communication and I�O operations�

� Segmentation Algorithms

The initial �D image consists of a data �le with
views of the scene from the X� Y and Z direction� The

data points represent the coordinates of the objects
surface in �D space� This data is �rst sent to a pre�

processing stage and then to the main pyramidal clus�

tering stage�

��� Preprocessing

The preprocessing stage generates six intensity im�
ages from the input �D data and a seventh image that
is the surface normal image of the scene� Prior to this
several steps are performed�

Labeling� Each point in the input data is initially la�
beled as BACKGROUND� NOISE or OBJECT�
based on the range values for the particular pixel
and its North� West� East and South neighbors�
If the pixel has � valued X �Y and Z components�
it is set to BACKGROUND� A pixel surrounded
by neighbors with � X and Y components is set
to NOISE� everything else is an OBJECT� Also
isolated BACKGROUND pixels are set to the av�
erage of their neighbors�

Normals computation� The procedure is an exten�
sion to the process of using separable operators to
compute normals to graph surfaces �	
� Assuming
that the position vectors of the points in a scene
are given as a function of the �u� v� coordinates of
a parametric space� de�ne

X �

�
�

x�u� v�
y�u� v�
z�u� v�

�
A

where u and v are some parameters� Then� if
Xu and Xv are the partial derivatives of X with
respect to u and v respectively� then�

Xu �

�
�

xu�u� v�
yu�u� v�
zu�u� v�

�
A and Xv �

�
�

xv�u� v�
yv�u� v�
zv�u� v�

�
A

These derivatives are computed using a separable
convolution operator� The partial derivatives of a
function f�u� v� are given by�

fu � Du � f and fv � Dv � f

where Du and Dv are given by

�Du
 � d�d
T

�
and �Dv
 � d�d

T

�

where

d� �
	

�
� 	 	 	 	 	 	 	 




d� �
	

�

� �� � � � 	 � 	 � � 


T

Thus each component of Xu and Xv can be com�
puted and the normals result from the partial
derivatives as

�n �
Xu � Xv

jXu � Xvj

Intensity image generation� In addition to com�
puting the surface normals� intensity images are
generated by assuming a light source from six dif�
ferent coordinate axes� This produces six di�erent
images which are individually segmented� This is
combined with the segmentation of the surface
normals to provide the desired over segmentation
for the higher level merging routines�

For the MasPar implementation we used a block�
wise data distribution to minimize communication�
Parallel I�O is used to read in the data �le directly
into the PE�s memory� It should be noted that the
ACU does not have enough space to store the pro�
gram and a ���� ��� �D image� The data points on
the border of each data block require information from
the neighboring processor and incur some communica�
tion overhead� A partial data replication scheme could
have avoided this cost� but would have made the par�
allel I�O more complicated and expensive�

��� Pyramidal Clustering

The segmentation is accomplished using a Pyrami�

dal Clustering Algorithm� The desirable property of
this algorithm is a relative independence from arbi�
trarily determined thresholds� The approach is a type
of a �fuzzy� algorithm� where the groupings depend
on the statistics of the input data�

The pyramid consists of a regular array of nodes�
decreasing in size from the bottom up ��� �
� Each
node at a higher layer is initialized to the average of a
neighborhood in the next lower layer� Thus the image
resolution decreases from the bottom up due to this
averaging process� The base level stores the original
input image� each pixel corresponding to a node� An
h level pyramid would have �h � �h nodes at the
bottom level� The nodes at level l are linked to some
nodes at level l � 	 as well as to some at level l � 	�
Nodes at level l � 	 and linked to a node n at level
l are referred to as the fathers of n and similarly the
nodes at level l � 	 linked to n are called its sons�

The clustering algorithm itself is divided into three
stages� an initialization stage� a node linking stage and

a tree generation stage� The pyramidal data structure
is initialized in the �rst stage� ie� the source data is
read into the base level and the higher level nodes are
computed as averages of some regions of the preced�
ing layer� The next stage is the iterative node linking

stage� which was considered for the timing measure�
ments� The clusters or segments are generated in this
stage and assigned unique labels using the tree gener�
ation stage�

The algorithms were adopted for the MasPar by
executing the code on all processors simultaneously�
The data distribution was maintained from the pre�
processing stage� The iterations at higher levels of the
pyramid tend to use only a part of the processor array
since the image size decreases by �� � at each level�

��� Postprocessing

To compare the results from various machines some
postprocessing is also carried out� The seven seg�
mented images are integrated together to arrive at one
resultant over�segmented image� Maximal segmenta�
tion is achieved by converting the region R� in the
�rst partition and region R� in the second partition
into three resultant regions� namely R� � R�� R� �
�R� � R�� and R� � �R� � R��� Additionally small
regions� consisting only of a few pixels are merged into
larger neighbors using a median �ltering operation�

The median �lter was converted to MasPar parallel
code� however the region integration routines use an
inherently sequential algorithm and the original pro�
grams are used�

� Results and Analysis

This section will show some of the results obtained
by the algorithm on a particular Range Image�

��� Processing Results

The image input �le consists of a �	��byte header�
which contains information about the size of the im�
age� followed by the views from three orthogonal di�
rections� ie� the X�view� the Y�view and the Z�view�
Fig�	 �a�� Each data element is a ���bit �oating point
number� The preprocessing routine produces a vec�
tor �le of the surface normals of the image� The the
i�component of the normal is as shown in Fig�	 �b��
The edges of the objects can be clearly seen in the
�gure�

The segmented and merged images� are shown for a
IBM RS ���� ���H in Fig�� �a�� a ��� �� MasPar in



�a� X�view of original im�
age

�b� i�component of nor�
mals

Figure 	� Original and Preprocessed Images

Fig�� �b�� a �����MasPar in Fig�� �c�� and a 	�
�	�

MasPar in Fig�� �d��

It can be seen that there are only minor di�erences
in the results� which are mostly due to quantization
errors and the fuzzy logic nature of the iterations� At
present the algorithm is portable across all machines
with a square processor array� This is due to limita�
tions in the tree generation part and the integration
programs�

��� Performance Analysis

While pro�ling the original code� it was found that
the node linking stage is the slowest part in the seg�
mentation scheme� hence detailed timings and speed
up estimatess were obtained for this part�

Calculating the speedup was not straight forward�
since the number of processors required could reduce
by �� � at higher levels of the pyramid� Also proces�
sors having only background pixels do not take part
in any computation� Since a typical scene� even with
multiple objects� consists of �� � background pixels�
one uses a correspondingly lower number of proces�
sors� Thus the machine utilization does not remain
constant over the execution of the linking stage�

To account for this we �rst measured the time taken
for each level and added the values that use the same
number of processors� ignoring the problem of back�
ground pixels� The average processor utilization can
then be obtained as�

Average used �

P
�Processors at this level�Time for this level�

Total time

The timing data is presented in Table 	� The �����
and the ����� machines were simulated on the 	�
�

�a� IBM RS ���� �b� ��� �� MasPar

�c� ��� �� MasPar �d� ��	 � ��	 MasPar

Figure �� Segmented Result on Di�erent Machines

	�
 machine by using the mpswopt command� This
command allows us to reduce the number of processors
in the active set for the duration of the program� The
timings have been added across the seven runs ie� the
six projection runs and the normal run�

The machine utilization is given by�

Machine Utilization �
Average used

Machine size

Table � shows the speedup achieved with respect to
the IBM RS ����� It is not possible to compare the
results with a single node MasPar since the data set
would not �t into the local memory of a single Process�
ing Element� The execution time for the node�linking
sub�routine in the pyramidal clustering programs was
evaluated on the IBM workstation with and without
optimization� Optimization on the MasPar produced
very minor di�erences in execution times�

It may be noted that the relative speed up between
machines of increasing sizes is� �� though the machine
size increases by a factor of �� The cost performance



Total Time Speed Up
Machine Opt
 On Opt
 O� Opt
 On Opt
 O�

IBM RS ���� ���H ���
�� �
�
�� � �
��� �� MasPar �		

� � �
�� �
��
��� �� MasPar ���
�� � �
�� �
��
��	� ��	 MasPar 	�

� � �
�� �
		

Table �� Speedup with respect to IBM RS ���� ���H

analysis becomes very complex� since the number of
processors used at each level is dependent on the input
data set� Besides� the cost of the MasPar system does
not scale linearly with the number of processors�

� Applications

An important application of the above algorithm
is the estimation of motion from sequences of range
images� Most early approaches used only local fea�
tures� like corners and edges� which tend to be sen�
sitive to noise and quantization errors� The use of
global features like surfaces would make such schemes
more robust� These surfaces would be generated by
the method described in ��
�

Numerous other vision applications also depend on
the coarse description provided by the segmented im�
age� including tasks like object recognition and navi�
gation� However for practical applications one would
expect real time processing of this data� and the speed
up obtained on the MasPar seem to show that this is
a distinct possibility�

� Conclusion

This paper presented an implementation of a se�
quential image segmentation algorithm on a massively
parallel SIMD machine� The proposed implementa�
tion is not suitable for the MasPar since the data set
size decreases with time and there is considerable com�
munication overhead� However it was still possible
to obtain some speed up on the machine� and a ma�
jor bottleneck appears to be communication overhead�
This could be reduced by using a di�erent data layout
for the various phases of the program� A scheme for
maximum utilization of the available processing power
was suggested in ��
� Thus further speed�up may be
obtained at the cost of implementation complexity�

Acknowledgements

We would like to thank the MasPar Computer
Corporation and the Northeast Parallel Architectures

Center for providing support and access to their ma�
chines during the 	��� MasPar Challenge Contest�

References

�	
 P� J� Besl��Surface in Range Image Understand�
ing��Springer Verlag� New York�	�
��

��
 T� Blank� �The MasPar MP�	 Archi�
tecture��Proceedings� COMPCON Spring ���	����
pp� �� � ���

��
 M� Brady� J� Ponce� A� Yullie� and H� Asada� �De�
scribing Surfaces��Computer Vision Graphics Im�

age Processing ���	�
�� pp� 	��
�

��
 P� J� Burt� T� H� Hong� and A� Rosen�
feld��Segmentation and Estimation of Image Re�
gion Properties through Cooperative Hierarchical
Computation��IEEE Trans� Systems Man Cyber�

netics� SMC �		� No� 	�� 	�
	� pp� 
�� �
���

��
 P� J� Flynn and A� K� Jain� �On Reliable Cur�
vature Estimation��Proceedings� Computer Vision
and Pattern Recognition�	�
�� pp� 		��		��

��
 W� J� Grosky and R� Jain� �A Pyramid�based Ap�
proach to Segmentation applied to Region Match�
ing��IEEE Trans� Pattern Anal� Mach� Intell�

PAMI�
� No� �� 	�
�� pp� �
� � �
��

��
 N� Ramesh and V� Chaudhary �Complexity Anal�
ysis of Range Image Segmentation on MasPar MP�
	�� Proceedings� ��th Midwest Symposium on Cir�

cuits and Systems�	����

�

 B� Sabata� F� Arman� and J� K� Aggarwal� �Seg�
mentation of �D Range Images Using Pyrami�
dal Data Structures�� CVGIP� IMAGE UNDER�

STANDING�Vol� ��� pp� �����
�� 	����

��
 B� Sabata and J� K� Aggarwal� �Estimation of
Motion from a Pair of Range Images� A Re�
view�� CVGIP� IMAGE UNDERSTANDING� Vol�
��� pp� �������� 	��	�



Machine Time on n� n procs
 �s� Total Average Machine
Size ��	 � ��	 ��� �� ��� �� ��� �� 	� 	 time �s� used Utilization

�� � �� � � ���
�� �
�� �


 �		

� 

�
	� 
� �
�� � �� � ���
�
 ��
	� �
�� �
�� ���
�� ���

	� 	� �
��	 � ��	 ��
�� ��
�� ��
�� �
�� �

� 	�

� 
���
�� ���

Table 	� Execution time on the MasPar


