Parallelization of 3-D Range Image Segmentation on a SIMD
Multiprocessor

Vipin Chaudhary and Sumit Roy

Parallel and Distributed Computing Laboratory

Wayne State University
Detroit, MI 48202

Abstract

The paper presents a parallelized algorithm for seg-
mentation of 3-D range images. The segmented image
is useful as an input to higher level image processing
tasks. The algorithm is implemented on a mesh con-
nected multiprocessor machine, the MasPar series of
massively parallel computers. A 2-dimensional hier-
archical data distribution scheme is used to allocate
the image pixels on the machine. The original sequen-
tial segmentation procedure is modified to take into
account this data distribution. The performance of
the new programs is compared to that of the original
code, executed on an IBM RS6000 520H workstation.
The speed-up is found to be about three for a Mas-
Par consisting of an 128 x 128 processor array. This
is due to the architectural constraints of the MasPar,
in particular the implementation of its interprocessor
communications. The utilization of processors on the
MasPar is found to be as low as 56 % for this algo-
rithm. Results of executions on machines of various
sizes are also shown. Suggestions for better perfor-
mance are discussed.

1 Introduction

In most computer vision systems, the acquired data
needs to be represented using symbolic descriptions.
These descriptors can then be used for higher level vi-
sion tasks. The symbolic description is obtained by
partitioning or segmenting the data into a set of prim-
itives, depending on the nature of the input data used
at the higher level. Sabata [8] developed a modular
framework to the problem of segmenting a 3D range
image of a scene containing multiple arbitrarily shaped
objects into a set of homogeneous surface patches. The
first module of the segmentation procedure groups the
image pixels in terms of local properties derived from
the input data. This leads to a preliminary overseg-
mentation that is later refined by the final vision task.

Bikash Sabata
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025-3493

In the second module, the oversegmented results of
the low level segmentation are merged into homoge-
neous regions based on surface descriptions. Since the
description of the surface is not an invariant with re-
spect to the representation, the output of the merg-
ing module is a function of the surface representation.
The second module uses the result of the low level seg-
mentation, the raw input data as well as the surface
representation of the higher level task to arrive at a
final partition of the scheme.

The initial data driven phase uses a pyramidal clus-
tering algorithm based on seven properties: the surface
normal at very point and the six projections along each
plane from the two possible directions. This corre-
sponds to illuminating the scene from three orthogonal
directions. Zeroth- and first-order properties are ex-
ploited in this phase to reduce the sensitivity to noise
that higher order surface properties tend to exhibit[5].
This also makes the process less dependent on smooth-
ing algorithms and avoids the distortions that they
tend to introduce[3].

Another consequence of noise in data is that most
segmentation schemes require the specification of vari-
ous tolerance thresholds, which depend on the quality
and type of input data. The Pyramidal Clustering
Algorithm used here has the useful property that it
does not depend on such arbitrary or empirically de-
termined values.

This paper reports out parallel implementation of
the segmentation and clustering phases on the MasPar
series of massively parallel machines. The result of
the parallel low level segmentation can then be sent
to a merge module for higher level vision tasks. The
rest of the paper is organized as follows: Section 2
describes the architecture of the MasPar. Section 3
explains the algorithm used and describes the changes
made for the MasPar. Section 4 shows the output
generated by the algorithm on the MasPar and also
tabulates execution timings for machines of various

sizes. Section 5 briefly introduces some of the possible
applications of the algorithm. Finally, we draw some
conclusions in Section 6.

2 MasPar Architecture

The MasPar computer system works in a Single
Instruction Multiple Data fashion, with scalability in
terms of number of processing elements, system mem-
ory as well as communication bandwidth[2]. It can be
divided into a number of components:

Array Control Unit: This unit can control the ac-
tual Processor Element core or independently exe-
cute programs. Processor Elements are controlled
by broadcasting instructions from the ACU. Lim-
ited memory is available on the ACU.

Processor Element Array: The PE array is the
computational core of the machine. Each element
has on-chip registers, off-chip data memory, an
integer and floating point ALU and a communi-
cation interface. Logic is provided for conditional
execution based on internal data. This allows us
to selectively disable or enable processors.

Communication Interfaces: The MasPar provides
three major interfaces for communication:

e An X Network for nearest neighbor commu-
nication in 8 directions and wrap-around. It
assumes a 2-D mesh topology.

e A circuit switched global router network per-
mitting random simultaneous communica-
tion using a three level hierarchical crossbar
switch.

e Two global buses to communicate with the
ACU. The processor instructions are broad-

cast on one bus and status information is
collected by the ACU on the other.

UNIX Subsystem: This provides a user interface as
well as all job management and low speed network
access. This is implemented in a separate Front
End.

I/O Subsystem: This consists of a separate high
speed disk array and I/O RAM and allows over-
lapped communication and I/O operations.

3 Segmentation Algorithms

The initial 3D image consists of a data file with
views of the scene from the X, Y and Z direction. The

data points represent the coordinates of the objects
surface in 3D space. This data is first sent to a pre-
processing stage and then to the main pyramidal clus-
tering stage.

3.1 Preprocessing

The preprocessing stage generates six intensity im-
ages from the input 3D data and a seventh image that
is the surface normal image of the scene. Prior to this
several steps are performed.

Labeling. Each point in the input data is initially la-
beled as BACKGROUND, NOISE or OBJECT,
based on the range values for the particular pixel
and its North, West, East and South neighbors.
If the pixel has 0 valued X,Y and Z components,
it is set to BACKGROUND. A pixel surrounded
by neighbors with 0 X and Y components is set
to NOISE, everything else is an OBJECT. Also
isolated BACKGROUND pixels are set to the av-
erage of their neighbors.

Normals computation. The procedure is an exten-
sion to the process of using separable operators to
compute normals to graph surfaces [1]. Assuming
that the position vectors of the points in a scene
are given as a function of the (u,v) coordinates of
a parametric space, define

where u and v are some parameters. Then, if
X, and X, are the partial derivatives of X with
respect to u and v respectively, then:

Ty (u,v Zy (U, v)
X, = Yu(u,v) and X, = Yo (u,v)
2y (U, V) 2o (u,v)

These derivatives are computed using a separable
convolution operator. The partial derivatives of a
function f(u,v) are given by:

fu = Du*fa'nd fv = Dv*f
where D,, and D, are given by

[D.] = dodf and [D,] = d,d?

where

dp = =[1111111]

=

1 T
d = —-[-3-2-1012
1= og [-3 0123]
Thus each component of X,, and X, can be com-
puted and the normals result from the partial
derivatives as

. X, x X,
n= ———
X, x X,

Intensity image generation. In addition to com-
puting the surface normals, intensity images are
generated by assuming a light source from six dif-
ferent coordinate axes. This produces six different
images which are individually segmented. This is
combined with the segmentation of the surface
normals to provide the desired over segmentation
for the higher level merging routines.

For the MasPar implementation we used a block-
wise data distribution to minimize communication.
Parallel I/O is used to read in the data file directly
into the PE’s memory. It should be noted that the
ACU does not have enough space to store the pro-
gram and a 256 x 256 3D image. The data points on
the border of each data block require information from
the neighboring processor and incur some communica-
tion overhead. A partial data replication scheme could
have avoided this cost, but would have made the par-
allel I/O more complicated and expensive.

3.2 Pyramidal Clustering

The segmentation is accomplished using a Pyrami-
dal Clustering Algorithm. The desirable property of
this algorithm is a relative independence from arbi-
trarily determined thresholds. The approach is a type
of a “fuzzy” algorithm, where the groupings depend
on the statistics of the input data.

The pyramid consists of a regular array of nodes,
decreasing in size from the bottom up [4, 6]. Each
node at a higher layer is initialized to the average of a
neighborhood in the next lower layer. Thus the image
resolution decreases from the bottom up due to this
averaging process. The base level stores the original
input image, each pixel corresponding to a node. An
h level pyramid would have 2" x 2" nodes at the
bottom level. The nodes at level | are linked to some
nodes at level [+ 1 as well as to some at level [— 1.
Nodes at level [+ 1 and linked to a node n at level
[are referred to as the fathers of n and similarly the
nodes at level [— 1 linked to n are called its sons.

The clustering algorithm itself is divided into three
stages, an initialization stage, a node linking stage and

a tree generation stage. The pyramidal data structure
is initialized in the first stage, ie. the source data is
read into the base level and the higher level nodes are
computed as averages of some regions of the preced-
ing layer. The next stage is the iterative node linking
stage, which was considered for the timing measure-
ments. The clusters or segments are generated in this
stage and assigned unique labels using the tree gener-
ation stage.

The algorithms were adopted for the MasPar by
executing the code on all processors simultaneously.
The data distribution was maintained from the pre-
processing stage. The iterations at higher levels of the
pyramid tend to use only a part of the processor array
since the image size decreases by 75 % at each level.

3.3 Postprocessing

To compare the results from various machines some
postprocessing is also carried out. The seven seg-
mented images are integrated together to arrive at one
resultant over-segmented image. Maximal segmenta-
tion is achieved by converting the region R; in the
first partition and region Rs in the second partition
into three resultant regions, namely R; N Rz, Ry —
(R1 n Rz) and Ry — (R1 n Rz) Additionally small
regions, consisting only of a few pixels are merged into
larger neighbors using a median filtering operation.

The median filter was converted to MasPar parallel
code, however the region integration routines use an
inherently sequential algorithm and the original pro-
grams are used.

4 Results and Analysis

This section will show some of the results obtained
by the algorithm on a particular Range Image.

4.1 Processing Results

The image input file consists of a 512-byte header,
which contains information about the size of the im-
age, followed by the views from three orthogonal di-
rections, ie. the X-view, the Y-view and the Z-view,
Fig.1 (a). Each data element is a 32-bit floating point
number. The preprocessing routine produces a vec-
tor file of the surface normals of the image. The the
i-component of the normal is as shown in Fig.1 (b).
The edges of the objects can be clearly seen in the
figure.

The segmented and merged images, are shown for a
IBM RS 6000 520H in Fig.2 (a), a 32 x 32 MasPar in

(a) X-view of original im-
age mals

(b) i-component of nor-

Figure 1: Original and Preprocessed Images

Fig.2 (b), a 64 x64 MasPar in Fig.2 (c), and a 128 x128
MasPar in Fig.2 (d).

It can be seen that there are only minor differences
in the results, which are mostly due to quantization
errors and the fuzzy logic nature of the iterations. At
present the algorithm is portable across all machines
with a square processor array. This is due to limita-
tions in the tree gemeration part and the integration
programs.

4.2 Performance Analysis

While profiling the original code, it was found that
the node linking stage is the slowest part in the seg-
mentation scheme, hence detailed timings and speed
up estimatess were obtained for this part.

Calculating the speedup was not straight forward,
since the number of processors required could reduce
by 75 % at higher levels of the pyramid. Also proces-
sors having only background pixels do not take part
in any computation. Since a typical scene, even with
multiple objects, consists of 60 % background pixels,
one uses a correspondingly lower number of proces-
sors. Thus the machine utilization does not remain
constant over the execution of the linking stage.

To account for this we first measured the time taken
for each level and added the values that use the same
number of processors, ignoring the problem of back-
ground pixels. The average processor utilization can
then be obtained as:

Average used =

>~ (Processors at this level x Time for this

(a) IBM RS 6000 (b) 32 x 32 MasPar

(c) 64 x 64 MasPar

(d) 128 x 128 MasPar

Figure 2: Segmented Result on Different Machines

128 machine by using the mpswopt command. This
command allows us to reduce the number of processors
in the active set for the duration of the program. The
timings have been added across the seven runs ie. the
six projection runs and the normal run.

The machine utilization is given by:
Average used

Machine Utilization =
Machine size

Table 2 shows the speedup achieved with respect to
the IBM RS 6000. It is not possible to compare the
results with a single node MasPar since the data set
would not fit into the local memory of a single Process-
ing Element. The execution time for the node-linking
sub-routine in the pyramidal clustering programs was
evaluated on the IBM workstation with and without
optimization. Optimization on the MasPar produced
16¥8)) minor differences in execution times.

Total time

The timing data is presented in Table 1. The 32x 32
and the 64 x 64 machines were simulated on the 128 x

It may be noted that the relative speed up between
machines of increasing sizes is &~ 2, though the machine
size increases by a factor of 4. The cost performance

Total Time Speed Up

Machine Opt. On | Opt. OF | Opt. On | Opt. OF

IBM RS 6000 520H | 236.21 595.44 - -

32 x 32 MasPar 388.95 - 1.53 0.61
64 x 64 MasPar 137.17 - 4.34 1.72
128 x 128 MasPar 81.90 - 7.27 2.88

Table 2: Speedup with respect to IBM RS 6000 520H

analysis becomes very complex, since the number of
processors used at each level is dependent on the input
data set. Besides, the cost of the MasPar system does
not scale linearly with the number of processors.

5 Applications

An important application of the above algorithm
is the estimation of motion from sequences of range
images. Most early approaches used only local fea-
tures, like corners and edges, which tend to be sen-
sitive to noise and quantization errors. The use of
global features like surfaces would make such schemes
more robust. These surfaces would be generated by
the method described in [9].

Numerous other vision applications also depend on
the coarse description provided by the segmented im-
age, including tasks like object recognition and navi-
gation. However for practical applications one would
expect real time processing of this data, and the speed
up obtained on the MasPar seem to show that this is
a distinct possibility.

6 Conclusion

This paper presented an implementation of a se-
quential image segmentation algorithm on a massively
parallel SIMD machine. The proposed implementa-
tion is not suitable for the MasPar since the data set
size decreases with time and there is considerable com-
munication overhead. However it was still possible
to obtain some speed up on the machine, and a ma-
jor bottleneck appears to be communication overhead.
This could be reduced by using a different data layout
for the various phases of the program. A scheme for
maximum utilization of the available processing power
was suggested in [7]. Thus further speed—up may be
obtained at the cost of implementation complexity.

Acknowledgements

We would like to thank the MasPar Computer
Corporation and the Northeast Parallel Architectures

Center for providing support and access to their ma-
chines during the 1993 MasPar Challenge Contest.

References

[1] P. J. Besl,“Surface in Range Image Understand-
ing”,Springer Verlag, New York,1989.

[2] T. Blank, “The MasPar MP-1 Archi-
tecture”, Proceedings, COMPCON Spring 90,1990,
pp- 20 — 24.

[3] M. Brady, J. Ponce, A. Yullie, and H. Asada, “De-
scribing Surfaces”,Computer Vision Graphics Im-
age Processing 32,1985, pp. 1-28.

[4] P. J. Burt, T. H. Hong, and A. Rosen-
feld,“Segmentation and Estimation of Image Re-
gion Properties through Cooperative Hierarchical
Computation” , IEEE Trans. Systems Man Cyber-
netics. SMC -11, No. 12, 1981, pp. 802 —809.

[5] P. J. Flynn and A. K. Jain, “On Reliable Cur-
vature Estimation”,Proceedings, Computer Vision
and Pattern Recognition,1989, pp. 110-116.

[6] W. J. Grosky and R. Jain, “A Pyramid-based Ap-
proach to Segmentation applied to Region Match-
ing” , IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-8, No. 5, 1986, pp. 380 — 386.

[7] N. Ramesh and V. Chaudhary “Complexity Anal-
ysis of Range Image Segmentation on MasPar MP—
17, Proceedings, 35th Midwest Symposium on Cir-
cuits and Systems,1992.

[8] B. Sabata, F. Arman, and J. K. Aggarwal, “Seg-
mentation of 3D Range Images Using Pyrami-
dal Data Structures”, CVGIP: IMAGE UNDER-
STANDING,Vol. 57, pp. 373-387, 1993.

[9] B. Sabata and J. K. Aggarwal, “Estimation of
Motion from a Pair of Range Images: A Re-
view”, CVGIP: IMAGE UNDERSTANDING, Vol.
54, pp. 309-324, 1991.

Machine Time on n X n procs. (s) Total Average Machine
Size 128 x 128 | 64 x 64 | 32x 32 | 16 x 16 | 8 x 8 | time (s) used Utilization
32 X 32 - - 376.67 6.34 5.99 388.95 996.83 97 %
64 x 64 - 113.09 11.84 6.27 6.02 137.17 3479.85 85 %
128 x 128 | 41.50 15.25 12.64 6.52 5.91 81.90 9247.75 56%
Table 1: Execution time on the MasPar

