
Evaluation of Cluster Interconnects for a Distributed Shared Memory *

Sumit Roy and Vipin Chaudhary
Parallel and Distributed Computing Laboratory

Wayne State University
Detroit, MI 48202

(sroylvchaud)@ece.eng.wayne.edu

Abstract
Clusters of Symmetrical Multiprocessors (SMPs) have

recently become popular as low-cost, high-performance
computing solutions. The type of interconnection hard-
ware used in these clusters can become a deciding factor in
their overall pei$orinance. This paper evaluates the perfor-
mance of three different communication systems, I O Mbps
Ethernet, 100 Mbps FastEthemet and 155 Mbps ATM, us-
ing a multithreaded Distributed Shared Memory system,
Strings.

The raw peiformance of each network is$rst mea-
sured using netperf. Ten different upplications are then
used for Performance evaluation, including programs from
the SPLASH-2 benchmarks, a medical computing appli-
cation, and some computational kernels. It is found that
half of the programs tested are not significantly affected
by changes in the bandwidth. Though the ATM network
provides the highest overall bandwidth, the remaining ap-
plications show that the increase in latency compared to
FastEthernet prevents any performance improvement. On
the other hand, applications that require only moderately
high bandwidths perform substantially better with FastEth-
ernet.

1 Introduction
Though current microprocessors are getting faster at a

very rapid rate, there are still some very large and com-
plex problems that can only be solved by using multi-
ple cooperating processors. These problems include the
so-called Grand Challenge Problems, such as Fuel com-
bustion, Ocean modeling, Image understanding, and Ra-
tional drug design. Recently many vendors of traditional
workstations have adopted a design strategy wherein mul-
tiple state-of-the-art microprocessors are used to build high
performance shared-memory parallel workstations. These
symmetrical multiprocessors (SMPs) are then connected
through high speed networks or switches to form scal-

*This research was supported in part by NSF grants MIP-9309489,
EIA-9729828, US Army Contract DAEA 32-93D004 and Ford Motor
Company grants 96- I36R and 96-628R

able computing clusters. This important class of machines
includes the SGI Power Challenge Array using a HIPPI
interconnect, the IBM RS/6000 SP2 series with multi-
ple PowerPC based nodes, the Convex Exemplar series of
machines, the DEC Advantagecluster 5000 with the GI-
GAswitch, and the Cray/SGI Origin 2000 series with the
scalable Craylink network.

Using multiple nodes on such SMP clusters requires
the programmer to either write explicit message passing
programs, using libraries like MPI or PVM; or to rewrite
the code using a new language with parallel constructs eg.
HPF or Fortran 90. Message passing programs are cumber-
some to write and may have to be tuned for each individual
architecture to get the best possible performance. Parallel
languages only work well with code that has regular data
access patterns. In both cases the programmer has to be
intimately familiar with the application program as well as
the target architecture. The shared memory model on the
other hand, is easier to program since the programmer does
not have to worry about the data layout and does not have to
explicitly send data from one process to another. Hence, an
alternate approach to using these computing clusters is to
provide an illusion of logically shared memory over phys-
ically distributed memory, known as a Distributed Shared
Memory (DSM) or Shared Virtual Memory (SVM). Re-
cent research projects with DSMs have shown good per-
formance, for example TreadMarks [l], Quarks [2], CVM
[3], CASHMERE-2L [4], and Strings [5] .

This paper evaluates the performance of a multithreaded
DSM, Strings using three different networking technolo-
gies, 10 Mbps Ethernet, 100 Mbps FastEthernet and
155 Mbps OC-3 ATM. The performance is evaluated us-
ing programs from the SPLASH-2 [6] benchmark suite,
an application from medical computing, and some com-
putational kernels. It is found that 50 % of the programs
tested do not require a very high bandwidth, and show only
moderate performance differences when using the various
networks. Though some of the remaining applications are
latency tolerant, the performance improvement with ATM
is not very high as compared to FastEthernet. Thus the

0-7803-5258-0/99 $10.00 0 1999 IEEE 1

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:24 from IEEE Xplore. Restrictions apply.

mailto:sroylvchaud)@ece.eng.wayne.edu

added cost of this network technology does not translate
into corresponding gains in program execution time. On
the other hand, some applications do not require very high
bandwidth and perform substantially better with FastEth-
ernet.

The rest of the paper is organized as follows: Section 2
provides background on the distributed shared memory
system used for the evaluation. Section 3 describes the ex-
perimental environment. Section 4 provides details about
the programs used for testing. Section 5 presents and ana-
lyzes the results from the experiments. Section 6 summa-
rizes this paper and suggests directions for future work.

Event

Get Page
Lock Acquire
Lock Grant
Barrier Arrival
Barrier Release

2 Strings Distributed Shared Memory Sys-

Request Reply
(bytes) (bytes)

40 8226
36 28

2 36 28
32 28
32 28

tem
Strings [5] is a fully multithreaded DSM. Its distin-

guishing feature is that it incorporates Posix 1 .c threads
multiplexed on kernel light-weight processes for better per-
formance. The kernel can schedule independent threads
across multiple processors on SMP nodes, using these
lightweight processes. Thus, Strings is designed to ex-
ploit data parallelism at the application level and task par-
allelism at the DSM system level. Since DSMs share data
at the relative large granularity of a page, it can happen that
two processes try to write to different parts of a page at the
same time. This phenomenon is known as false sharing
and can lead to excessive ping-ponging of the page if only
a single writer is allowed. Strings solves this problem by
allowing multiple writers, and implements data coherency
using a relaxed consistency model [7].

Early generation DSM systems used interrupt driven
I/O to obtain pages, locks etc. from remote nodes. This
can cause considerable disruption at the receiving node,
and previous research tried to overcome this by aggre-
gating messages, reducing communication by combining
synchronization with data, and other such techniques [8].
Strings avoids this overhead by using a dedicated commu-
nication thread, which monitors the network port. Incom-
ing message queues are maintained for each active thread
at a node, and message arrival is announced using condi-
tion variables. This prevents wasting CPU cycles with busy
waits. A reliable messaging system is implemented on top
of UDP.

Table 1 shows the packet sizes that occur for common
events associated with the Strings runtime. The page size
for the evaluation environment was 8192 bytes. The sys-
tem maintains a distributed locking scheme, and the current
list of requests is sent to the next acquirer of a lock. Hence
the lock grant message can contain a variable number of
bytes depending on the queue length. The actual average
packet size for an application depends on the relative pro-
portion of paging, locking and barrier events.

Table 1 : Typical Message Sizes in Strings

3 Experimental Environment
All the experiments were carried out on a cluster of

four SUN UltraEnterprise Servers. One machine is a six
processor UltraEinterprise 4000 with 1.5 Gbyte memory.
The master process for Strings was always run on this ma-
chine. The other machines are four processor UltraEnter-
prise 3000s, with 0.5 Gbyte memory each. All machines
use 250 MHz UltraSparcII processors, with 4 Mb exter-
nal cache. Three different networks are used to intercon-
nect the machines in the cluster: 10 Mbps Ethernet with
a generic hub, 100 Mbps FastEthernet with a BayStack
FastEthernet Hub, and 155 Mbps OC-3 ATM with a Fore-
RunnerLE 155 ATM switch,

16 I I

10 Mbps Ethernet - -

100MbpsATM
100 Mbps Ethernet - -

-* -.-,
-*....“...4.----

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Average Packet Size (bytes)

Figure 1: Roundtrip times for UDP packets

The raw roundtrip latencies and streaming bandwidth
that can be obtained for UDP packets are shown in Fig-
ures 1 and 2. The results were obtained using two nodes
on an unloaded network, using the netpelf-2.1 evaluation
program [9]. These values place an upper bound on the
performance that each network can provide, since they do
not include the effects of network collisions and congestion
at the receiving ports. From Figure 1, the latencies for the
FastEthernet and ATM network indicate a crossover point
at around 4000 bytes. Figure 2 shows that both 10 Mbps
Ethernet and FastEthernet can utilize the full bandwidth
for packets larger than 512 bytes. The ATM network has

2

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:24 from IEEE Xplore. Restrictions apply.

140
10 Mbps Ethernet -
00 Mbps Ethernet -- -* --

155MbpsATM 0

- 100
n 5 80
3

C
a

60
0
E 40

20

n

* . . ** - - x x

32 64 128 256 512 1024 2048 4096 8192 16384
Packet Size (bytes)

Figure 2: Throughput for UDP packets

a high startup latency, since the bandwidth utilized is less
than for FastEthernet for packet sizes less than 512 bytes.
The ATM network uses the full bandwidth for packets of
approximately 1024 bytes.

Previous work on DSMs has presented performance on
ATM [lo, 11, 100 Mbps Switched FastEthernet Ell], and
the IBM SP-2 switch [12, 131.

4 Test Programs
The suite of test programs used to do the evaluation

consists of some programs from the SPLASH-2 bench-
mark suite [6], a complete application program for de-
blurring images obtained from Magnetic Resonance Imag-
ing (MRI), matrix multiplication (MATMULT), as well as
a kernel for doing Successive Over Relaxation program
(SOR) on a rectangular grid of numbers.
4.1 SPLASH-2 Benchmark Programs

The SPLASH-2 Benchmark programs have been writ-
ten for evaluating the performance of shared address-space
multiprocessors and include application kernels as well as
full fledged code. These programs can be adapted for use
on a DSM, since the shared memory initialization, syn-
chronization primitives, and task creation are encapsulated
within PARMACS-ANL macros [14]. Hence they are of-
ten used as benchmarks when presenting results on DSM
systems.

The execution model for SPLASH-2 programs follows
the Single Program Multiple Data (SPMD) type, and has
three phases. In the first phase the main task reads in
command-line parameters and the initial data. It sets up
a shared memory region and allocates globally shared data
from this region. Synchronization variables are also ini-
tialized. After this initialization phase, tasks are created to
execute the actual slave() routine in the computation phase.
The master also runs a copy of this routine. In the termina-
tion phase the master thread collects the results and gener-

ates timing statistics.
The data access patterns of the programs in the

SPLASH-2 suite have been characterized in earlier re-
search [15, 161. Fl;T performs a one-dimensional Fast
Fourier Transform of n complex data points. Three all-to-
all interprocessor communication phases are required for
a matrix transpose. The data access pattern is hence regu-
lar. Two programs for blocked LU factorization of a dense
matrix form part of the suite. The non-contiguous (LU-n)
version has a single producer and multiple consumers. It
suffers from considerable fragmentation and false sharing.
The contiguous version (LU-c) uses an array of blocks to
improve spatial locality. The sorting kernel (RADIX) per-
forms a radix sort on a set of integers. The program suf-
fers from a high-degree of false sharing at page granularity
during a permutation phase. Each processor writes the val-
ues of its keys into a random location in a shared array.
The Ocean simulation program with contiguous partitions
(OCEAN-c) simulates large scale ocean movements. This
version uses a red-black Gauss-Seidel multi-grid equation
solver and has a regular nearest-neighbor type access pat-
tern. The last two programs tested evaluate the forces
and potentials occurring over time in a system of water
molecules. The first version (WATER-n2) uses a simple
data structure, which results in a less efficient algorithm.
The second version (WATER-sp) uses a 3-D grid of cells
so that a processor that owns a cell only needs to look at
neighboring cells to find interacting molecules. Communi-
cation arises out of the movement of molecules from one
cell to another at every time-step.
4.2 Image Deblurring

The application tested is a parallel algorithm for deblur-
ring of images obtained from Magnetic Resonance Imag-
ing. The images generated may suffer a loss of clarity due
to inhomogeneities in the magnetic field. One of the tech-
niques for removing this blurring artifact is the demodula-
tion of the data for each pixel of the image using the value
of the magnetic field near that point in space. This method
consists of acquiring a local field map, finding the best fit to
a linear map and using it to deblur the image distortions due
to local frequency variations. This is a very computation
intensive operation and has previously been parallelized
using a message passing approach [17]. Each thread de-
blurs the input image around its chosen frequency points in
parallel. After deblurring around a frequency point, the rel-
evant portions of the final image have to be updated. Since
the portions updated by different threads could overlap, the
update has to be done under the protection of a global lock.
4.3 Matrix Multiplication

The matrix multiplication program computes the prod-
uct of two dense square matrices. The resultant matrix is
divided across the processors using a row-wise block dis-

3

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:24 from IEEE Xplore. Restrictions apply.

tribution. The size of each of the blocks has been set to a
multiple of the page size of the machine. Each application
thread computes at least one complete block of contiguous
values. Hence there is no false sharing in this implementa-
tion and the application is close to ideal for execution on a
page based DSM system.
4.4 Successive Over Relaxation

The successive over relaxation program (SOR) is a ker-
nel for solving partial differential equations using a red-
black algorithm. In every iteration, each point in a grid is
set to the average of its four neighbors. Most of the traffic
arises out of nearest neighborhood communication at the
borders of the grids.
4.5 Program Parameters

Table 2.
The problem sizes used in this evaluation are shown in

Program
Em
LU-c
LU-n
RADIX
OCEAN-c
WATER-n2

MATMULT
SOR
MRI

WATER-SP

Parameters
1048576 complex doubles
2048 x 2048 doubles, block size 128
1024 x 1024 doubles, block size 32
1048576 integers, radix 1024
258 x 258 grid
4096 molecules, 3 steps
1000 molecules, 3 steps
1024 x 1024 doubles, 16 blocks
2002 x 1002 doubles, 100 iterations
14 frequency points, PHANTOM image

Table 2: Problem Sizes for Network Evaluation

5 Experimental Results
Table 3 shows the utilization of each network in terms of

the the bandwidth used, and the average roundtrip latency
per node. The average packet size for an application is
the ratio of the total bytes transmitted to the number of
messages sent. Both these numbers are characteristic of the
application itself, and independent of the particular type of
network. The bandwidth utilization (BW) was calculated
as the ratio of the total bytes transmitted per task to the
lifetime of the task. This is a conservative estimate, since
some of the applications have a very high computation to
communication ratio. The roundtrip latency for a message
includes the processing overhead at the remote node.

Programs like LU-c , WATER- n2, WATER- sp , MAT-
MULT, and MRI have low bandwidth requirements and
that is reflected in the small performance improvements
while going from 10 Mbps Ethernet to the higher band-
width networks as shown in Figures 3 ,4 ,5 ,6 , and 7.
FFT, LU-n, and SOR have a high bandwidth require-

ment, and there is a distinct network bottleneck when us-

ing 10 Mbps Ethernet. This can be seen in Figures 8, 9,
and 12, FastEthernet and 155 Mbps ATM are able to pro-
vide a speed-up when more nodes are added to the cluster,
while the 10 Mbps cluster shows a slowdown with these
programs.

RADIX and OCEAN-c show similar trends in Fig-
ures 10 and 11. FIT, LU-c, LU-n, and RADIX have a
large average packet size. From Figure 1, the latency of
FastEthernet is lower than that of the ATM network only
for packets less than approximately 4000 bytes. Hence one
can see some performance improvement by using the ATM
network in these cases. On the other hand, WATER-n2 and
WATER-sp have a very small packet size, in this case the
low latency FastEthernet outperforms ATM. For the other
programs there is not much difference in the performance
of the two networks.

MRI has a very high computation to communication
ratio, and the final result is updated under the protection
of a lock, hence it shows the least latency in all three
cases. MATMULT has similar behavior, but at termination
all threads try to update their part of the resultant matrix,
which causes the latency to increase due to collisions at the
receiving node.

Figure 13 shows the roundtrip times for Strings mes-
sages on each network, using different payload sizes.
These results show that the communication system intro-
duces a fair amount of latency when compared to the raw
UDP data. The roundtrip time is measured for request-
reply pairs, with no event handling at the server side.
Hence these represent upper bounds that the current run-
time system may achieve. This indicates that some work
needs to be done to improve the performance of the Strings
communication system

6 Conclusion
Overall the communication results show that for half

the applications, namely LU-c, WATER-n2, WATER-sp,
MATMULT, and MRI, the bandwidth utilization is not very
high, and there does not seem to be much of an advantage
from using higher bandwidth networks. However, for ap-
plications like FFT, LU-n, and SOR, the 10 Mbps Ether-
net network poses a bottleneck. These programs show a
speed-up when run on higher bandwidth networks, but a
slowdown on 10 Mbps Ethernet.

In the worst case, if all nodes communicate at the same
time, on the same link, the total bandwidth requirement is
still within the theoretical limits for both high bandwidth
networks. However the latencies observed for most pro-
grams are much higher than predicted by the raw UDP
data. This indicates that there is substantial software over-
head in the runtime system.

The study also shows that in the current system, the ex-
tra cost of the ATM network and switch rarely translates

4

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:24 from IEEE Xplore. Restrictions apply.

Program

FFT
LU-c
LU-n
RADIX
OCEAN-c
WATER- n2
WATER-SP
MATMULT
SOR
MRI

Ethernet I FastEthernet Average
Msg. Size

4945.50
5976.38
6223.95
4886.12
4059.26

197.19
893.56

4385.72
7442.80
3440.01

(bytes)
BW

(Mbps)
2.12
1.93
2.02
2.16
1.91
0.62
0.92
1 .oo
2.14
2.13

BW

12.71
3.7 1
9.32

12.85
8.44
0.77
1.47
1.42

1 15.44
4.39

(Mbps)
Latency

(ms>
134.23
43 1.08
178.30
32.3 1

274.97
118.15
15.36
48.57 1 84.69

’ 7.31

BW

15.84
4.68
9.87

14.83
8.42
0.71
1.29
1.45

14.41
4.40

(Mbps)
Latency

(ms)
174.16
192.73
146.84

3.62
36.39

170.82
4.69
7.03

327.80
1.70

Latency
(ms)
111.68
256.80
148.68

2.80
31.90

313.30
5.27
5.24

373.75
1.62

Table 3: Communication Utilization Per Node (16 tasks)

into a performance improvement compared to the FastEth-
ernet. Out future work would include studying the behav-
ior of the programs when using switched FastEthernet, as
well as switched Gigabit Ethernet.

Finally, the Strings communication subsystem intro-
duces a large latency when compared to raw UDP pack-
ets. We plan to isolate these overheads more precisely, and
investigate better approaches to providing a fast reliable
communication system for the DSM.

References
[13 C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,

R. Rajamony, W. Yu, and W. Zwaeonopoel, “Tread-
Marks: Shared Memory Computing on Networks of
Workstations,” IEEE Computer, pp. 18-28, February
1996.

[2] D. Khandekar, Quarks: Portable Distributed Shared
Memory on Unix. Computer Systems Laboratory,
University of Utah, beta ed., 1995.

[3] P. Keleher, CVM: The Coherent Virtual Machine.
University of Maryland, CVM Version 2.0 ed., July
1997.

[4] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt,
L. Kontothanassis, S. Parthasarathy, and M. Scott,
“CASHMERE-2L: Software Coherent Shared Mem-
ory on a Clustered Remote-Write Network,” in Pro-
ceedings of the ACM Symposium on Operating Sys-
tem Principles, (Saint Manlo, France), October 1997.

[5] S. Roy and V. Chaudhary, “Strings: A High-
Performance Distributed Shared Memory for Sym-
metrical Multiprocessor Clusters,” in Proceedings of
the Seventh IEEE International Symposium on High

Performance Distributed Computing, (Chicago, IL),
pp. 90 -97, July 1998.

[6] S. C. Woo, M. Ohara, E. Torri, J. P. Singh, and
A. Gupta, “The SPLASH-2 Programs: Characteri-
zation and Methodological Considerations,” in Pro-
ceedings of the International Symposium on Com-
puter Architecture, pp. 24-36, June 1995.

[7] J. B. Carter, “Design of the Munin Distributed
Shared Memory System,” Journal of Parallel and
Distributed Computing, 1995.

[8] R. Mirchandaney, S. Hiranandani, and A. Sethi, “Im-
proving the Performance of DSM Systems via Com-
piler Involvement,” in Proceedings of Supercomput-
ing 1994,1994.

[9] Information Networks Division, Netpelf: A Network
Performance Benchmark. Hewlett-Packard Com-
pany, http://www.netperf.org, revision 2.1 ed., Febru-
ary 1996.

[IO] A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Raja-
mony, and W. Zwaenepoel, “Software vs. Hardware
Shared Memory Implementation: A Case Study,” in
Proceedings of the International Symposium on Com-
putertlrchitecture, pp. 106 - 117, April 1994.

[1 11 C. Amza, A. Cox, K. Rajamani, and W. Zwaenepoel,
“Tradeoffs Between False Sharing and Aggregation
in Software Distributed Shared Memory,” in Pro-
ceedings of the ACM Symposium on the Principles
and Practice of Parallel Programming, (Las Vegas),
pp. 90 - 99, June 1997.

[12] H. Lu, A. L. Cox, S. Dwarkadas, R. Rajamony, and
W. Zwaenepol, “Compiler and Software Distributed

5

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:24 from IEEE Xplore. Restrictions apply.

http://www.netperf.org

Shared Memory Support for Irregular Application,”
in Proceedings of the ACM Symposium on the Prin-
ciples and Practice of Parallel Programming, 1997, 10 Mbps Eltiemel - 7owoo -

[13] P. Keleher and C.-W. Tseng, “Enhancing Soft- -. - _ _ - __ .

ware DSM for Compiler-Parallelized Applications,”
in Proceedings of International Parallel Processing
Symposium, August 1997.

w 2 w m -

1 m - [14] R. Hempel, H. C. Hoppe, U. Keller, and W. Krotz,
0

1 2 4 8 16
Number of Tasks

PARMACS V6.0 Specijication. In te~ace Description.
Pallas GmbH, November 1993.

[15] D. Jiang, H. Shan, and J. P. Singh, “Application Re-
structuring and Performance Portability on Shared
Virtual Memory and Hardware-Coherent Multipro-
cessors,” in Proceedings of the ACM Symposium on
the Principles and Practice of Parallel Programming,
(Las Vegas), pp. 217 - 229, ACM, 1997.

[16] Y. Zhou, L. Iftode, J. P. Singh, K. Li, B. R. Toonen,
I. Schoinas, M. D. Hill, and D. A. Wood, “Relaxed
Consistency and Coherence Granularity in DSM Sys-
tems: A Performance Evaluation,” in Proceedings of
the ACM Symposium on the Principles and Practice
of Parallel Programming, (Las Vegas), pp. 193 - 205,
June 1997.

Figure 3: LU-c

1 2 4 8
Number 01 Tasks

Number of Tasks

Figure 5: WATER-sp
10 Mbps Ethemet -

100 Mbps Elhemel

- _ .

am . . - __._ -

I
1 2 4 8 16

5 1 2 4 8
Number of Tasks

5

Figure 4: WATER-n2
[171 P. Menon, V. Chaudhary, and J. G. Pipe, “Parallel Al-

gorithms for deblurring MR images,” in Proceedings
of ISCA 13th International Conference on Computers
and Their Applications, March 1998.

2aw0

26000

2 4 m

22ow
g
I : 2- -

law0

16000

14MM

W

- . _ .

Figure 6: MATMULT

6

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:24 from IEEE Xplore. Restrictions apply.

9woO

aww
7wm

6woO

50000

40000

30000

20000

1 0000

0
1 2 4 8 16

Number of Tasks

Figure 7: MRI

100000
I

-
E 70000 -
f 60000

5 50000

p 40000

30000

20000

10000
1 2 4 8 16

Number of Tasks

Figure 8: FFT

2 0 K O O

laOM0

lMM00 -
I 14MMo

3 lMHxM

-
1 m - . - .. __ .-

2 E 8 m 0

60000

4woo

2oM)O
1 2 4 8 16

Number of Tasks

Figure 9: LU-n

10 Mbps Elhemel

155MbpsATM *
160000

1 2 4 8 16

Number of Tasks

Figure 11: OCEAN-c

- - -- - . .. - - . ._

-- .-. . _.. - - - -

1 2 4 8 16

Number a1 Tasks

Figure 12: SOR

30 I

25 - 10MbpsEthernet - -
100 Mbps Ethernet ----* --

100MbpsATM
20- * * -

d . . .

.__._._ .~~.,'..-..--------
0 1000 2000 3000 40M) 5000 6000 7000 8000 9000

Average Packet Size (bytes)

Figure 13: Roundtrip times for Strings messages

Figure 10: RADIX

7

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 17:24 from IEEE Xplore. Restrictions apply.

