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Abstract 
Clusters of Symmetrical Multiprocessors (SMPs) have 

recently become popular as low-cost, high-performance 
computing solutions. The type of interconnection hard- 
ware used in these clusters can become a deciding factor in 
their overall pei$orinance. This paper evaluates the perfor- 
mance of three different communication systems, I O  Mbps 
Ethernet, 100 Mbps FastEthemet and 155 Mbps ATM, us- 
ing a multithreaded Distributed Shared Memory system, 
Strings. 

The raw peiformance of each network is$rst mea- 
sured using netperf. Ten different upplications are then 
used for Performance evaluation, including programs from 
the SPLASH-2 benchmarks, a medical computing appli- 
cation, and some computational kernels. It is found that 
half of the programs tested are not significantly affected 
by changes in the bandwidth. Though the ATM network 
provides the highest overall bandwidth, the remaining ap- 
plications show that the increase in latency compared to 
FastEthernet prevents any performance improvement. On 
the other hand, applications that require only moderately 
high bandwidths perform substantially better with FastEth- 
ernet. 

1 Introduction 
Though current microprocessors are getting faster at a 

very rapid rate, there are still some very large and com- 
plex problems that can only be solved by using multi- 
ple cooperating processors. These problems include the 
so-called Grand Challenge Problems, such as Fuel com- 
bustion, Ocean modeling, Image understanding, and Ra- 
tional drug design. Recently many vendors of traditional 
workstations have adopted a design strategy wherein mul- 
tiple state-of-the-art microprocessors are used to build high 
performance shared-memory parallel workstations. These 
symmetrical multiprocessors (SMPs) are then connected 
through high speed networks or switches to form scal- 
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able computing clusters. This important class of machines 
includes the SGI Power Challenge Array using a HIPPI 
interconnect, the IBM RS/6000 SP2 series with multi- 
ple PowerPC based nodes, the Convex Exemplar series of 
machines, the DEC Advantagecluster 5000 with the GI- 
GAswitch, and the Cray/SGI Origin 2000 series with the 
scalable Craylink network. 

Using multiple nodes on such SMP clusters requires 
the programmer to either write explicit message passing 
programs, using libraries like MPI or PVM; or to rewrite 
the code using a new language with parallel constructs eg. 
HPF or Fortran 90. Message passing programs are cumber- 
some to write and may have to be tuned for each individual 
architecture to get the best possible performance. Parallel 
languages only work well with code that has regular data 
access patterns. In both cases the programmer has to be 
intimately familiar with the application program as well as 
the target architecture. The shared memory model on the 
other hand, is easier to program since the programmer does 
not have to worry about the data layout and does not have to 
explicitly send data from one process to another. Hence, an 
alternate approach to using these computing clusters is to 
provide an illusion of logically shared memory over phys- 
ically distributed memory, known as a Distributed Shared 
Memory (DSM) or Shared Virtual Memory (SVM). Re- 
cent research projects with DSMs have shown good per- 
formance, for example TreadMarks [l], Quarks [2], CVM 
[3], CASHMERE-2L [4], and Strings [5 ] .  

This paper evaluates the performance of a multithreaded 
DSM, Strings using three different networking technolo- 
gies, 10 Mbps Ethernet, 100 Mbps FastEthernet and 
155 Mbps OC-3 ATM. The performance is evaluated us- 
ing programs from the SPLASH-2 [6] benchmark suite, 
an application from medical computing, and some com- 
putational kernels. It is found that 50 % of the programs 
tested do not require a very high bandwidth, and show only 
moderate performance differences when using the various 
networks. Though some of the remaining applications are 
latency tolerant, the performance improvement with ATM 
is not very high as compared to FastEthernet. Thus the 
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added cost of this network technology does not translate 
into corresponding gains in program execution time. On 
the other hand, some applications do not require very high 
bandwidth and perform substantially better with FastEth- 
ernet. 

The rest of the paper is organized as follows: Section 2 
provides background on the distributed shared memory 
system used for the evaluation. Section 3 describes the ex- 
perimental environment. Section 4 provides details about 
the programs used for testing. Section 5 presents and ana- 
lyzes the results from the experiments. Section 6 summa- 
rizes this paper and suggests directions for future work. 

Event 

Get Page 
Lock Acquire 
Lock Grant 
Barrier Arrival 
Barrier Release 

2 Strings Distributed Shared Memory Sys- 

Request Reply 
(bytes) (bytes) 

40 8226 
36 28 

2 36 28 
32 28 
32 28 

tem 
Strings [5] is a fully multithreaded DSM. Its distin- 

guishing feature is that it incorporates Posix 1 .c threads 
multiplexed on kernel light-weight processes for better per- 
formance. The kernel can schedule independent threads 
across multiple processors on SMP nodes, using these 
lightweight processes. Thus, Strings is designed to ex- 
ploit data parallelism at the application level and task par- 
allelism at the DSM system level. Since DSMs share data 
at the relative large granularity of a page, it can happen that 
two processes try to write to different parts of a page at the 
same time. This phenomenon is known as false sharing 
and can lead to excessive ping-ponging of the page if only 
a single writer is allowed. Strings solves this problem by 
allowing multiple writers, and implements data coherency 
using a relaxed consistency model [7]. 

Early generation DSM systems used interrupt driven 
I/O to obtain pages, locks etc. from remote nodes. This 
can cause considerable disruption at the receiving node, 
and previous research tried to overcome this by aggre- 
gating messages, reducing communication by combining 
synchronization with data, and other such techniques [8]. 
Strings avoids this overhead by using a dedicated commu- 
nication thread, which monitors the network port. Incom- 
ing message queues are maintained for each active thread 
at a node, and message arrival is announced using condi- 
tion variables. This prevents wasting CPU cycles with busy 
waits. A reliable messaging system is implemented on top 
of UDP. 

Table 1 shows the packet sizes that occur for common 
events associated with the Strings runtime. The page size 
for the evaluation environment was 8192 bytes. The sys- 
tem maintains a distributed locking scheme, and the current 
list of requests is sent to the next acquirer of a lock. Hence 
the lock grant message can contain a variable number of 
bytes depending on the queue length. The actual average 
packet size for an application depends on the relative pro- 
portion of paging, locking and barrier events. 

Table 1 : Typical Message Sizes in Strings 

3 Experimental Environment 
All the experiments were carried out on a cluster of 

four SUN UltraEnterprise Servers. One machine is a six 
processor UltraEinterprise 4000 with 1.5 Gbyte memory. 
The master process for Strings was always run on this ma- 
chine. The other machines are four processor UltraEnter- 
prise 3000s, with 0.5 Gbyte memory each. All machines 
use 250 MHz UltraSparcII processors, with 4 Mb exter- 
nal cache. Three different networks are used to intercon- 
nect the machines in the cluster: 10 Mbps Ethernet with 
a generic hub, 100 Mbps FastEthernet with a BayStack 
FastEthernet Hub, and 155 Mbps OC-3 ATM with a Fore- 
RunnerLE 155 ATM switch, 
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Figure 1: Roundtrip times for UDP packets 

The raw roundtrip latencies and streaming bandwidth 
that can be obtained for UDP packets are shown in Fig- 
ures 1 and 2. The results were obtained using two nodes 
on an unloaded network, using the netpelf-2.1 evaluation 
program [9]. These values place an upper bound on the 
performance that each network can provide, since they do 
not include the effects of network collisions and congestion 
at the receiving ports. From Figure 1, the latencies for the 
FastEthernet and ATM network indicate a crossover point 
at around 4000 bytes. Figure 2 shows that both 10 Mbps 
Ethernet and FastEthernet can utilize the full bandwidth 
for packets larger than 512 bytes. The ATM network has 
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Figure 2: Throughput for UDP packets 

a high startup latency, since the bandwidth utilized is less 
than for FastEthernet for packet sizes less than 512 bytes. 
The ATM network uses the full bandwidth for packets of 
approximately 1024 bytes. 

Previous work on DSMs has presented performance on 
ATM [lo, 11, 100 Mbps Switched FastEthernet Ell], and 
the IBM SP-2 switch [ 12, 131. 

4 Test Programs 
The suite of test programs used to do the evaluation 

consists of some programs from the SPLASH-2 bench- 
mark suite [6], a complete application program for de- 
blurring images obtained from Magnetic Resonance Imag- 
ing (MRI), matrix multiplication (MATMULT), as well as 
a kernel for doing Successive Over Relaxation program 
(SOR) on a rectangular grid of numbers. 
4.1 SPLASH-2 Benchmark Programs 

The SPLASH-2 Benchmark programs have been writ- 
ten for evaluating the performance of shared address-space 
multiprocessors and include application kernels as well as 
full fledged code. These programs can be adapted for use 
on a DSM, since the shared memory initialization, syn- 
chronization primitives, and task creation are encapsulated 
within PARMACS-ANL macros [14]. Hence they are of- 
ten used as benchmarks when presenting results on DSM 
systems. 

The execution model for SPLASH-2 programs follows 
the Single Program Multiple Data (SPMD) type, and has 
three phases. In the first phase the main task reads in 
command-line parameters and the initial data. It sets up 
a shared memory region and allocates globally shared data 
from this region. Synchronization variables are also ini- 
tialized. After this initialization phase, tasks are created to 
execute the actual slave() routine in the computation phase. 
The master also runs a copy of this routine. In the termina- 
tion phase the master thread collects the results and gener- 

ates timing statistics. 
The data access patterns of the programs in the 

SPLASH-2 suite have been characterized in earlier re- 
search [15, 161. Fl;T performs a one-dimensional Fast 
Fourier Transform of n complex data points. Three all-to- 
all interprocessor communication phases are required for 
a matrix transpose. The data access pattern is hence regu- 
lar. Two programs for blocked LU factorization of a dense 
matrix form part of the suite. The non-contiguous (LU-n) 
version has a single producer and multiple consumers. It 
suffers from considerable fragmentation and false sharing. 
The contiguous version (LU-c) uses an array of blocks to 
improve spatial locality. The sorting kernel (RADIX) per- 
forms a radix sort on a set of integers. The program suf- 
fers from a high-degree of false sharing at page granularity 
during a permutation phase. Each processor writes the val- 
ues of its keys into a random location in a shared array. 
The Ocean simulation program with contiguous partitions 
(OCEAN-c) simulates large scale ocean movements. This 
version uses a red-black Gauss-Seidel multi-grid equation 
solver and has a regular nearest-neighbor type access pat- 
tern. The last two programs tested evaluate the forces 
and potentials occurring over time in a system of water 
molecules. The first version (WATER-n2) uses a simple 
data structure, which results in a less efficient algorithm. 
The second version (WATER-sp) uses a 3-D grid of cells 
so that a processor that owns a cell only needs to look at 
neighboring cells to find interacting molecules. Communi- 
cation arises out of the movement of molecules from one 
cell to another at every time-step. 
4.2 Image Deblurring 

The application tested is a parallel algorithm for deblur- 
ring of images obtained from Magnetic Resonance Imag- 
ing. The images generated may suffer a loss of clarity due 
to inhomogeneities in the magnetic field. One of the tech- 
niques for removing this blurring artifact is the demodula- 
tion of the data for each pixel of the image using the value 
of the magnetic field near that point in space. This method 
consists of acquiring a local field map, finding the best fit to 
a linear map and using it to deblur the image distortions due 
to local frequency variations. This is a very computation 
intensive operation and has previously been parallelized 
using a message passing approach [17]. Each thread de- 
blurs the input image around its chosen frequency points in 
parallel. After deblurring around a frequency point, the rel- 
evant portions of the final image have to be updated. Since 
the portions updated by different threads could overlap, the 
update has to be done under the protection of a global lock. 
4.3 Matrix Multiplication 

The matrix multiplication program computes the prod- 
uct of two dense square matrices. The resultant matrix is 
divided across the processors using a row-wise block dis- 
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tribution. The size of each of the blocks has been set to a 
multiple of the page size of the machine. Each application 
thread computes at least one complete block of contiguous 
values. Hence there is no false sharing in this implementa- 
tion and the application is close to ideal for execution on a 
page based DSM system. 
4.4 Successive Over Relaxation 

The successive over relaxation program (SOR) is a ker- 
nel for solving partial differential equations using a red- 
black algorithm. In every iteration, each point in a grid is 
set to the average of its four neighbors. Most of the traffic 
arises out of nearest neighborhood communication at the 
borders of the grids. 
4.5 Program Parameters 

Table 2. 
The problem sizes used in this evaluation are shown in 

Program 
Em 
LU-c 
LU-n 
RADIX 
OCEAN-c 
WATER-n2 

MATMULT 
SOR 
MRI 

WATER-SP 

Parameters 
1048576 complex doubles 
2048 x 2048 doubles, block size 128 
1024 x 1024 doubles, block size 32 
1048576 integers, radix 1024 
258 x 258 grid 
4096 molecules, 3 steps 
1000 molecules, 3 steps 
1024 x 1024 doubles, 16 blocks 
2002 x 1002 doubles, 100 iterations 
14 frequency points, PHANTOM image 

Table 2: Problem Sizes for Network Evaluation 

5 Experimental Results 
Table 3 shows the utilization of each network in terms of 

the the bandwidth used, and the average roundtrip latency 
per node. The average packet size for an application is 
the ratio of the total bytes transmitted to the number of 
messages sent. Both these numbers are characteristic of the 
application itself, and independent of the particular type of 
network. The bandwidth utilization (BW) was calculated 
as the ratio of the total bytes transmitted per task to the 
lifetime of the task. This is a conservative estimate, since 
some of the applications have a very high computation to 
communication ratio. The roundtrip latency for a message 
includes the processing overhead at the remote node. 

Programs like LU-c , WATER- n2, WATER- sp , MAT- 
MULT, and MRI have low bandwidth requirements and 
that is reflected in the small performance improvements 
while going from 10 Mbps Ethernet to the higher band- 
width networks as shown in Figures 3 ,4 ,5 ,6 ,  and 7. 
FFT, LU-n, and SOR have a high bandwidth require- 

ment, and there is a distinct network bottleneck when us- 

ing 10 Mbps Ethernet. This can be seen in Figures 8, 9, 
and 12, FastEthernet and 155 Mbps ATM are able to pro- 
vide a speed-up when more nodes are added to the cluster, 
while the 10 Mbps cluster shows a slowdown with these 
programs. 

RADIX and OCEAN-c show similar trends in Fig- 
ures 10 and 11. FIT, LU-c, LU-n, and RADIX have a 
large average packet size. From Figure 1, the latency of 
FastEthernet is lower than that of the ATM network only 
for packets less than approximately 4000 bytes. Hence one 
can see some performance improvement by using the ATM 
network in these cases. On the other hand, WATER-n2 and 
WATER-sp have a very small packet size, in this case the 
low latency FastEthernet outperforms ATM. For the other 
programs there is not much difference in the performance 
of the two networks. 

MRI has a very high computation to communication 
ratio, and the final result is updated under the protection 
of a lock, hence it shows the least latency in all three 
cases. MATMULT has similar behavior, but at termination 
all threads try to update their part of the resultant matrix, 
which causes the latency to increase due to collisions at the 
receiving node. 

Figure 13 shows the roundtrip times for Strings mes- 
sages on each network, using different payload sizes. 
These results show that the communication system intro- 
duces a fair amount of latency when compared to the raw 
UDP data. The roundtrip time is measured for request- 
reply pairs, with no event handling at the server side. 
Hence these represent upper bounds that the current run- 
time system may achieve. This indicates that some work 
needs to be done to improve the performance of the Strings 
communication system 

6 Conclusion 
Overall the communication results show that for half 

the applications, namely LU-c, WATER-n2, WATER-sp, 
MATMULT, and MRI, the bandwidth utilization is not very 
high, and there does not seem to be much of an advantage 
from using higher bandwidth networks. However, for ap- 
plications like FFT, LU-n, and SOR, the 10 Mbps Ether- 
net network poses a bottleneck. These programs show a 
speed-up when run on higher bandwidth networks, but a 
slowdown on 10 Mbps Ethernet. 

In the worst case, if all nodes communicate at the same 
time, on the same link, the total bandwidth requirement is 
still within the theoretical limits for both high bandwidth 
networks. However the latencies observed for most pro- 
grams are much higher than predicted by the raw UDP 
data. This indicates that there is substantial software over- 
head in the runtime system. 

The study also shows that in the current system, the ex- 
tra cost of the ATM network and switch rarely translates 
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Program 

FFT 
LU-c 
LU-n 
RADIX 
OCEAN-c 
WATER- n2 
WATER-SP 
MATMULT 
SOR 
MRI 

Ethernet I FastEthernet Average 
Msg. Size 

4945.50 
5976.38 
6223.95 
4886.12 
4059.26 

197.19 
893.56 

4385.72 
7442.80 
3440.01 

(bytes) 
BW 

(Mbps) 
2.12 
1.93 
2.02 
2.16 
1.91 
0.62 
0.92 
1 .oo 
2.14 
2.13 

BW 

12.71 
3.7 1 
9.32 

12.85 
8.44 
0.77 
1.47 
1.42 

1 15.44 
4.39 

(Mbps) 
Latency 

(ms> 
134.23 
43 1.08 
178.30 
32.3 1 

274.97 
118.15 
15.36 
48.57 1 84.69 

’ 7.31 

BW 

15.84 
4.68 
9.87 

14.83 
8.42 
0.71 
1.29 
1.45 

14.41 
4.40 

(Mbps) 
Latency 

(ms) 
174.16 
192.73 
146.84 

3.62 
36.39 

170.82 
4.69 
7.03 

327.80 
1.70 

Latency 
(ms) 
111.68 
256.80 
148.68 

2.80 
31.90 

313.30 
5.27 
5.24 

373.75 
1.62 

Table 3: Communication Utilization Per Node (16 tasks) 

into a performance improvement compared to the FastEth- 
ernet. Out future work would include studying the behav- 
ior of the programs when using switched FastEthernet, as 
well as switched Gigabit Ethernet. 

Finally, the Strings communication subsystem intro- 
duces a large latency when compared to raw UDP pack- 
ets. We plan to isolate these overheads more precisely, and 
investigate better approaches to providing a fast reliable 
communication system for the DSM. 
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