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Abstract

This paper describes a generic mechanism to migrate
threads in heterogeneous distributed environments. To
maintain high portability and flexibility, thread migration is
implemented at language level. At compile-time, a prepro-
cessor scans the C and C++ programs to build thread state,
detects possible thread migration points, and transforms the
source code accordingly. Run-time support helps migrate
threads physically. Since the physical thread state is trans-
formed into a logical form, and pointers and dynamically
allocated memory in heap are supported, the proposed so-
lution places no restriction on thread types and migration-
enabled systems. We implemented this approach in Strings:
a multithreaded software distributed shared memory system.
Some microbenchmarks and performance measurements on
SPLASH-2 suite are reported.

1 Introduction

A Network of Workstations (NOW) provides an op-
portunity to support high-performance parallel applications
within an everyday computing infrastructure. Studies have
indicated that a large fraction of workstations could be un-
used for a large fraction of time[10]. Batch-processing sys-
tems that utilize idle workstations for running sequential
jobs have been in production use for many years. However,
the utility of harvesting idle workstations for parallel com-
putation is less clear. When a workstation running a parallel
job is reclaimed by its primary user, the remaining processes
of the same job have to stop. To make progress, a paral-
lel job requires that a group of processor be continuously
available for a sufficiently long period of time. If the state
of a large number of processors rapidly oscillates between
availableandbusy, a parallel computation will be able to
make little progress even if each processor is available for�
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a large fraction of time. Also, parallel programs are often
not perfectly parallel, they are able to run only on certain
configurations - for example, configurations with

���
pro-

cessors. Addition or deletion of a single workstation may
have no effect, a small effect or a very significant effect on
the performance depending on the application requirements
and the number of available machines.

In order for the parallel computation to proceed, one
should allow the computation to be reconfigured, especially
in terms of the degree of parallelism, or the number of pro-
cessors required. Reconfiguration may need one or more
of data and loop repartitioning, data and/or process migra-
tion, and updating data location information. To exploit
idle cycles on remote workstations, thread/process migra-
tion is the necessity. Compared to processes, threads need
shorter time for creation, context switch, and synchroniza-
tion so that threads are more efficient. Multi-threading helps
achieve better load distribution between nodes in the system
by splitting the application into smaller chunks of work [2].
More efficient threads allow programs to be finer-grained,
which benefits both structure and performance [11]. Con-
sequently, thread migration is the first step to exploit idle
cycles and balance load in NOWs. Recently, thread mi-
gration is becoming increasingly important as distributed
shared memory (DSM) systems and meta-computing be-
come efficient alternatives to traditional supercomputing.

The semantic of thread migration is to stop the thread
computation on the source node, migrate the thread state to
the destination node, and resume the execution at the state-
ment following the migration point on the destination node.
In homogeneous environments, similar hardware and soft-
ware configurations ease thread migration. But in hetero-
geneous systems, such as meta-computing environments, a
generic thread migration scheme is necessary.

In this paper, we describe the design and implementation
of a thread migration and make the following contributions:

� Design thread migration scheme for any type of thread
on heterogeneous systems.� Translate physical thread state into a logical form so
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that it could be restored easily on different machines.� Design and implement a preprocessor to work with
regular C/C++ compilers. The preprocessor is used
only if the users want to add the thread migration fea-
ture into their applications.� Detect migration points automatically and insert es-
sential statements to dynamically contact the run-
time support subsystem, which communicates with the
global scheduler to migrate threads across nodes in a
network of workstations.� Support dynamically allocated memory in heap.� Update all pointers correctly on destination nodes.� Place no restriction on thread stacks and local heaps.

We implement thread migration on our multi-threaded soft-
ware DSM system:Strings[9].

The remainder of this paper is organized as follows: In
Section 2 we discuss related work. Section 3 gives the
overview ofStringsand the thread migration strategy. Sec-
tion 4 describes the thread migration design and implemen-
tation details. In Section 5, we analyze the migration over-
head. Section 6 presents some microbenchmarks to eval-
uate the performance of thread migration. In Section 7,
we show some experiment results from real benchmark pro-
grams. We wrap up with conclusions and continuing work
in Section 8.

2 Related Research

A lot of research has been conducted in the general area
of thread migration. The core of thread migration is about
how to transfer thread state and necessary data in local heap
to the destination. However, since the addresses on the des-
tination machine may be different from the original ones,
internal self-referential pointers may no longer be valid.
There are three approaches in the research literature to deal
with this problem.

The first approach is to use language and compiler
support to maintain enough type information and identify
pointers[7, 6]. This approach implies that thread migration
will be bound to languages instead of operating systems or
platforms. Emerald[3] and Arachne[6] are examples of this
approach.

Emerald[3] is a new language and compiler designed to
support fine-grained object mobility. Compiler-produced
templates are used to describe the format of data structures
and help translate pointers. Arachne[6] supports thread
migration between heterogeneous platforms with dynamic
stack size management. It adds three keywords to the C++
language and a preprocessor is used to generate pure C++
code. No pointers are supported here.

The second approach requires scanning the stacks at
run-time to detect and translate the possible pointers
dynamically[1]. Since some pointers in stack cannot pos-
sibly be detected (as pointed out by [2]), the resumed exe-
cution can be incorrect. The representative implementation
of this is Ariadne[1] which is a user-space threads library.
It achieves thread migration over thread context-switch by
calling C-library setjmp() and longjmp() primitives. On the
destination node, the migrated stack is scanned to identify
and translate possible pointers. It is possible that some
misidentified pointers incur wrong execution. Moreover,
pointers referencing data in heap will not be updated be-
cause these data are not migrated.

The third approach is most popular and necessitates the
partitioning of the address space and reservation of unique
virtual address for the stack of each thread so that the inter-
nal pointers remain the same values. A common solution is
to preallocate memory space for threads on all machines and
restrict each thread to migrate to its corresponding ones on
other machines. This solution requires large address space
and is not scalable. The total number of threads and the
stack size is limited by the address space of single node.
Even though the 64-bit address architectures will ease this
restriction[2, 7, 12] in the near future, it is not a desired long
term solution. Another drawback of this “iso-address” ap-
proach is that thread migration is restricted to homogeneous
systems.

Amber[4] supports data and thread migration and the
location of objects is managed explicitly by applications.
UPVM system[5] utilizes User Level Processes (ULPs)
with characteristics from both threads and processes. The
migrated ULP state includes context, stack, private data,
and heap. The private heap could worsen the severe
memory limitations. PM2[13] is a DSM system whose
protocols may mix page replication, page migration, and
thread migration. Millipede[2] is a system which mi-
grates lightweight processes on Windows-NT. The thread
migration in the Nomad system[14] is designed to be very
lightweight, and in principle involves only the migration of
the top page of the thread’s stack and the current register
values to the new node[14]. Missing stack pages are fetched
later. This could reduce the startup time. This is the only
approach whose migration time is not closely related to the
stack size of the thread. In the approach by Cronk et al.[8],
each thread has its own heap, and both the heap and stack
are migrated. This places a limitation on the amount of heap
space for a thread.

3 Thread Migration in Strings

Currently we implement a generic thread migration
scheme onStrings[9], a multi-threaded DSM system.
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Detect all related 
    functions for 
   transformation

Collect functions’ local
  variables into newly
created data structures

Insert additional primitives
    to handle dynamically
      allocated memory

Preprocessor

Detect and label possible
       migration points

Insert switch statement
to dispatch computation
     to labeled points

Compile transformed 
       souce code

Compile source code with
  C/C++ compiler to erase
     possible syntax errors

Figure 1. Flow chart for compile-time support.

3.1 Strings

Stringsis built using POSIX threads, which can be mul-
tiplexed on kernel lightweight processes. The kernel can
schedule these lightweight processes across multiple pro-
cessors on symmetrical multiprocessors (SMPs) for better
performance.Stringsis designed to exploit data parallelism
at the application level and task parallelism at the run-time
level.

3.2 Thread migration

To reduce the restriction on thread migration, our ap-
proach uses language level support to transform the phys-
ical thread state into a logical form. Thus, it could be used
in heterogeneous environments for any type of thread li-
braries or subsystems. Both the portability and the scal-
ability of stack are improved. There is no need to preal-
locate addresses of stacks on each machine which is too
costly and almost impossible in meta-computing environ-
ments. The limitation on virtual memory address space is

Source Node Destination Node
.
.

Yes

No

.

.

.

Pack thread state

Terminate thread

Continue execution

Create a thread

Update pointers

Resume computation

Reallocate dynamically
    allocated memory

.

.

.

.

.

.

Transfer thread state

Restore thread state

Receive thread state

Reach possible migration
          point in thread

             Get
migration grant from
   inter−scheduler
               ?

Get  acknowledgement

Figure 2. Flow chart for run-time support.

also removed. Since thread data in heap is migrated with
stack and restored remotely, dynamically allocated memory
is supported by this approach. Pointers referencing stack
or heap are represented in a generic manner so that they
could be updated precisely on destination nodes. Compile-
time support is built in a preprocessor compatible with tra-
ditional C/C++ compilers. There are no new languages and
compilers as in Arachne[6] and Emerald[3]. The prepro-
cessor is run only when users want to add thread migration
functionality into their applications, not an essential step as
in Arachne. An overview of the tasks involved during the
compile-time and run-time process of our thread migration
strategy is given in Figures 1 and 2, respectively.

3.3 Migration points

The overheads associated with destroying a thread, trans-
ferring thread state, creating a thread and initiating remote
execution are relatively high. Therefore, a thread should
have sufficient amount of computation and two consequent
migrations should keep distant spans in order to minimize
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void  test(int arg1, int *arg2)
{

}

int   i;
int  *list;

list = arg2;
for (i=0; i<arg1; i++)
    printf("%d", list[i]);

STR_barrier();
printf("\n Done.\n");
return;

Figure 3. Original function definition.

the impact from the cost of thread migration.
If the memory model of the distributed system is the

traditional sequential consistency, then the system appears
like a multiprogrammed uniprocessor and threads can be
migrated randomly with a guarantee of correctness of re-
sumed execution. However, software DSMs, for better
performance, adopt relaxed memory models such as re-
lease consistency model to reduce both the number of mes-
sages and the amount of data transfers between processors.
In such models, some virtually shared data between two
synchronization points or barriers could be in inconsistent
states. If migrated threads access such data in the destina-
tion node, the resumed computation could be incorrect, es-
pecially when they are used as input data. To ensure correct-
ness, thread migration can only be allowed at synchroniza-
tion points or barriers. The preprocessor scans the appli-
cation code, detects synchronization points automatically,
and inserts suitable thread migration primitives. However,
users can insert migration primitives at any points they pre-
fer. But they need to ensure the correctness after migration.
Note thatStringsuses release consistency model.

4 Design and Implementation of Thread Mi-
gration

The proposed strategy is implemented as a combination
of compile/run-time modules.

4.1 Compile-time support

To support thread migration in heterogeneous environ-
ments, the physical thread state needs to be transformed
into a logical one for portability. In our system, compile-
time support helps achieve this at the language level instead
of burying it in run-time library or kernel. Currently it sup-
ports C/C++ and can be extended to other languages easily.

A thread state consists of a program counter (PC), a set
of registers, and a stack of procedure records containing
variables local to each procedure. We abstract the thread

{
void  STR_test(int arg1, int *arg2)

}

struct sr_var_t {
    void   *sr_ptr;
    int     stepno;
    int     arg1;
    int     i;
} sr_var;

struct sr_ptr_t {
    int     *arg2;
    int     *list;
} sr_ptr;

sr_var.sr_ptr = (void *)&sr_ptr;
sr_var.stepno = 0;

STR_mig_init((void *)&sr_var, 
    sizeof(struct sr_var_t), 
    (void *)&sr_ptr, 
    sizeof(struct sr_ptr_t));

if (sr_var.stepno == 0) {
   sr_var.arg1 = arg1;
   sr_ptr.arg2 = arg2;
}
else {
   arg1 = sr_var.arg1;
   arg2 = sr_ptr.arg2;
}

switch(sr_var.stepno) {
   case 0:
       break;
   case 1:
       goto STR_step_1;
       break;
   default:
       break;
}

sr_ptr.list = sr_ptr.arg2;
for (sr_var.i=0; sr_var.i<sr_var.arg1; 
        sr_var.i++)
  printf("%d", sr_ptr.list[sr_var.i]);

STR_barrier();

sr_var.stepno = 1;
STR_checkpoint();
STR_step_1:

printf("\n Done.\n");
return;

Figure 4. Transformed function definition.

state up to the language level by representing the program
counter and the local variables of procedures in two data
structures at compile-time. The stack and dynamic memory
management is done at run-time. No information from low
level devices, such as registers, needs to be retrieved. Thus,
the control of thread is moved up to the application level.

4.1.1 Data variables

Threads can access three types of variables:

� Global variables shared by all threads on any machine
in the system.� Variables shared by all threads in the current process
on a local machine.
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� Variables local to procedures.

The global shared variables are placed in the global
shared memory areas inStrings. Page/object migration
is the essential tool for data consistency. Different mem-
ory models follow different protocols to achieve this goal,
thereby constraining thread migration only to synchroniza-
tion or barrier points. The access to variables shared among
local threads in the current process is forbidden during
thread migration due to the difficulty in identifying the
scope of data sharing. The local variables, which repre-
sent the state of the threads, are transferred during thread
migration.

During migration, the values of all local variables for
related functions should be packed, transferred to destina-
tion nodes, and restored remotely. To speed up this process,
the preprocessor collects all local variable declarations, puts
them into a local structure��� 	�
�� at the beginning of the
functions, and migrates�
� 	�
�� (instead of searching and
transferring local variables individually at run-time). The
preprocessor scans all the functions, locates all references
to the original local variables and replaces them with the
references to the corresponding fields in��� 	�
�� . For exam-
ple, the declaration of local variable� , as shown in Figure
3, will be moved into��� 	�
�� , and all references to� in the
thread function will be changed to��� 	�
���� � , as in Figure 4.
This tedious task is done by the preprocessor.

4.1.2 Pointers

Pointers are the main problem in thread migration because
the memory address space on destination node could be to-
tally different. Pointers will become invalid unless they are
updated accordingly. This updating is handled at run-time
and could be very complicated. To simplify this, many sys-
tems choose to reserve memory space on all machines to
keep the pointers valid. In our approach, pointers are identi-
fied at language level and collected by the preprocessor into
a structure type variable��� ����� , as shown in Figure 4.

On the destination node, the memory area for��� �����
is scanned to translate all the pointers. If some structure
type variables in��� 	�
�� or pointers of structure variables
in ��� ����� contain pointer fields, these need to be referenced
by new pointer variables in��� ����� and initialized right after
the ��� ����� declaration. All pointer declarations are moved
to ��� ����� or represented by newly created fields in�
� ����� .
All the above work is done by the preprocessor.

Overall, there are two structure type variables created by
the preprocessor:�
� 	�
�� and ��� ����� . Since some functions
may not contain pointers,�
� ����� could be missing. For de-
tecting the existence of��� ����� at run-time,�
� 	�
���� ��� ����� in��� 	�
�� is used to keep the address of��� ����� . To keep the
records of�
� 	�
�� and ��� ����� , both their address and size are
passed intoSTR mig init() during function initialization.

4.1.3 Function parameters

In C/C++, the parameters of a function carry information
and status, and consequently the state of threads. There-
fore, this information needs to be restored on the destination
nodes. Fields with the same types and names are defined in�
� 	�
�� or ��� ����� depending on whether they are variables
or pointers. During initialization, the values of these fields
are set by function parameters. Later on, all references to
function parameters will be substituted by the ones to these
fields. This strategy benefits from the “pass-by-copy” func-
tion calling in C/C++.

4.1.4 Program counter

The program counter (PC) is the memory address of the
current execution point within a program. It indicates the
start of computation after the migration. When the PC is
moved up to the language level, it should be represented in
a portable form. We represent the PC as a series ofinteger
values declared as�
� 	�
���� ����������� in each affected function,
as shown in Figure 4.

Since all possible migration points have been detected
at compile-time, differentinteger values of��� 	�
���� �����������
correspond to different migration points. In our approach,
STR barrier() is a typical synchronization point. The
preprocessor appendsSTR checkpoint() after the barrier,
STR barrier(), to contact the scheduler for any possible
thread migration. If the migration request is granted, the
run-time support will help execute the migration proce-
dure and the computation should be resumed right after
this statement on the destination node. We set the value of�
� 	�
���� ����������� and label the jump locations as�! #" ������� �
(see Figure 4).

In the preprocessor transformed code, aswitch state-
ment is inserted to dispatch execution to each labeled
point according to the value of��� 	�
����$����������� , and exe-
cuted after the function initialization. Non-zero values of�
� 	�
���� ����������� indicate that this thread was migrated and
has executed on another node (partially). However, a zero
value does not indicate that this thread was not migrated
since migration could take place before reaching the current
function. Theswitch andgoto statements help control jump
to resumption points quickly.

4.1.5 Preprocessor

The compile-time support is implemented in our preproces-
sor that is based on LEX. We borrow tokens generated by
LEX and analyze their relations according to C/C++ syntax
and semantics. The high level scheme is shown in Figure
1. First, the user compiles his program using a conventional
C/C++ compiler. Then, the preprocessor phase is used if
thread migration is needed.
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The overall transformation procedure is outlined as fol-
lows (refer to Figure 4 too):

1. Rename function names toSTR xxx().

2. Collect non-pointer variables and function parameters
into ��� 	�
�� that contain the fields��� 	�
���� ��� ����� and�
	�
�� 	�
����$�����%����� .

3. Collect pointer variables and function parameters into�
� ����� .
4. Set��� 	�
����$�
� ����� to reflect the existence of��� ����� .
5. Set��� 	�
����$����������� to zero.

6. Register the addresses and sizes of�
� 	�
�� and ��� �����
throughSTR mig init() to the run-time support sub-
system.

7. Set function parameter fields in��� 	�
�� and ��� ����� ac-
cording to the migration status.

8. Construct aswitch statement to dispatch execution
to the proper location according to the value of�
� 	�
���� ����������� .

9. Scan the original code to replace references to local
variables and parameters with the ones to the corre-
sponding fields in��� 	�
�� and ��� ����� .

10. Detect synchronization points and barriers, such as
STR barrier(), or other suitable migration points, and
insert the following statements after them:

(a) Set the value of�
� 	�
���� ����������� .
(b) Insert migration primitive, such as

STR checkpoint() to contact the scheduler
for possible thread migration permission.

(c) Insert proper label�& #" �����%� � to resume com-
putation on destination machines.

11. Detect other transformed user functions, and do the
following around them:

(a) Set the value of��� 	�
���� ����������� before calling
these functions.

(b) Insert proper label�& #" �����%� � ahead.

(c) Append cleanup primitivesSTR mig cleanup()
afterwards to pop the top record on stack for the
last finished function.

12. UseSTR mig reg() andSTR mig unreg() to register
and unregister dynamically allocated memory space in
heap and keep records of them in run-time support sub-
system (discussed in Section 4.2.2).

thread_ID

msg_queue

function

state

stack

seg_in_heap

tran_tab

Thread Record  Stack
Control

head

tail

current

head

tail

current

var_addr

var_size

ptr_addr

ptr_size

First Frame

.

.

.

var_addr

var_size

ptr_addr

ptr_size

Last Frame

First Seg

addr

size

addr

size

.

.

.

.

.

Last Seg

source_1

dest_1

size_1

source_2

dest_2

size_2

source_n

dest_n

size_n

.  .  .  .

Pointer Translation Table

Seg_in_Heap
Control

Figure 5. Thread records in Thread Control
Area (TCA).

4.2 Run-time support

The run-time support subsystem maintains a thread con-
trol area (TCA) which holds a record for each thread con-
taining references to a thread stack, a control block of mem-
ory segments in the heap and a pointer translation table, as
shown in Figure 5.

4.2.1 Stack

One of the important aspects of a thread state is the stack
of activation records containing variables local to each pro-
cedure. In our approach, we duplicate activation records in
user applications, name them as��� 	�
�� and ��� ����� , and reg-
ister them throughSTR mig init(). The stack is a linked list
of simplified activation frames in the run-time subsystem,
as shown in Figure 5. Each activation frame consists of the
addresses and sizes of��� 	�
�� and ��� ����� . Pointers in this
format of stack can be identified and updated easily. Note
that our representation of the stack is different from those
used in libraries or kernels. The kernels need to take care
of both user functions and system calls. Our user version

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02) 
1530-2075/02 $17.00 © 2002 IEEE 

Authorized licensed use limited to: SUNY Buffalo. Downloaded on October 23, 2008 at 10:57 from IEEE Xplore.  Restrictions apply.



stack is simpler and fits the requirement well. When a user
function is called, it contacts the run-time support through
STR mig init() to create and push an activation frame onto
the stack. When control returns from a user function, the
calling function appliesSTR mig cleanup to pop the top
frame from the stack.

4.2.2 Memory segments in heap

Threads can have their own local heaps or share the heap
in the processes. When threads allocate memory segments
for themselves, no matter in which manner the heap exists,
this will bring complexity into thread migration. In our ap-
proach, a control of memory segments in heap (see Figure
5) maintains a linked list of segment records, traces all dy-
namically allocated memory in local or shared heap, and
provides the information for pointer updating. Each seg-
ment record consists of the address and size of the refer-
enced memory block.

In user applications, whenmalloc() and free() are
invoked to allocate and deallocate memory space, the
statementsSTR mig reg() and STR mig unreg() are ap-
pended, correspondingly, to create and delete memory seg-
ment records in the run-time support subsystem. Essen-
tially, the dynamically allocated memory management is
duplicated at application level to support thread migration.

4.2.3 Thread state transfer

To migrate the thread computation correctly, we need to
transfer the thread state from the source node to the des-
tination node. In our approach, thread state is transformed
at language level and maintained by the run-time support
subsystem. Thread state consists of a stack, a linked list of
memory segment records, and memory areas referenced by
both of them. The run-time support subsystem packs the
thread state, contacts the scheduler to identify the destina-
tion nodes, and transfers the state by UDP/IP.

Since the aforementioned two data structures and related
memory areas are ready when the migration is activated, the
communication cost is the major overhead.

4.2.4 State restoration and pointer translation

When a thread state arrives at the destination node, the run-
time support subsystem restores it by recreating everything
as in Figure 5. A new thread is created to continue the exe-
cution of the incoming thread. The thread stack implies the
order and depth of the execution of user functions. In fact,
the new thread just re-runs those functions in the same or-
der. When functions callSTR mig init() to pass their local
variables��� 	�
�� and ��� ����� , variable values are reset to the
ones from source nodes. The computation restarts from the
right place based on the value of��� 	�
����$����������� .

heap

base addr

size

pointer

Source Node Destination Node

heap

base addr

size

seg

seg

old value

pointer

new value

Pointer Translation Table

source

dest

size

.  .  .  . .  .  .  .

dist

dist

Figure 6. Mapping memory segments.

A new linked list of memory segment records is rebuilt.
For each segment record, the value ofsize is the same as the
one from source node and is used to re-allocate new mem-
ory space on destination nodes. Again, the contents of the
newly allocated ones are substituted by the ones from source
nodes.

Now we can update the Pointer Translation Table (PTT)
in the Thread Control Area. Each element in PTT consists a
field, size, which holds the size of the memory segment, and
thesource anddest fields, which point to the base memory
addresses on the source and destination nodes. This depicts
a one-to-one mapping between two memory blocks on two
machines. Each record in the memory segment control up-
dates one element in PTT. When those related user functions
are rerun on the newly created thread, the memory areas for
the ��� 	�
�� and ��� ����� also need to be recorded at two ele-
ments in PTT.

As the new thread runs through the stack to restore the
thread state, the run-time support subsystem needs to trans-
late the pointers in��� ����� whenSTR mig init() is called.
The content of��� ����� is scanned. The memory segment for
pointers is determined by their base addresses and sizes. If
a memory address lies in a memory segment on the source
nodes, its value should be changed to the one with the same
distance from the mapped base addresses on the destination
nodes (see Figure 6).

If a pointer is referencing a field in��� 	�
�� or ��� ����� ,
there is one more indirect reference. We should change
the value of the pointed field instead of the pointer itself.
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This is only used to handle pointers in nested data structures
within local variable definition areas��� 	�
�� and �
� ����� ,
which group variables by determining if the top-level type
is a pointer or not.

5 Performance Analysis

As a generic scheme, our approach tries to reduce over-
heads to the minimum. The overhead comes from three ar-
eas: compile-time support, run-time support, and migration.

At compile-time, the preprocessor transforms the appli-
cation code to enable migration feature. This is a one-time
cost. The size of the generated executable file is slightly
larger than the original one. For each affected function, at
least two assignment statements and one switch statement
are added (see Figure 4). Each function parameter and mi-
gration point will bring in one assignment statement.

The time spent at run-time support plays a bigger role.
Each affected function needs one initialization primitive
STR mig init() , and oneSTR checkpoint() at each possi-
ble migration point. TheSTR mig init() registers the local
variables and allocates memory to maintain records in stack.
Similar cost is incurred for dynamic memory management
only if STR mig reg() or STR mig unreg() is invoked.

Since STR checkpoint() is only invoked at migrated
functions to contact the scheduler for possible migration,
its cost is determined by the scheduler’s decision making
speed and communication overhead. The migration costs
occurred atSTR checkpoint() are classified as follows:

� Scheduling Cost �(' : Plays the main role in
STR checkpoint() by contacting the scheduler; deter-
mining the destination node; creating a new thread; and
setting up communication.� Transfer Cost��) : Transfers a thread state from the
source node to the destination node and builds raw
state on destination one.� Restoration Cost�(* : Restores the thread state and
translates pointers on destination nodes.

Given the cost of each category, we can derive the overall
thread migration cost, as follows:+-,/.�0%1(2
354 �(6 ,728,79;:&< � 9 � 9=,>< �(' < � ) < �(* (1)

where � 6 ,728,79;: is the time to execute statements inserted at
compile-time, and� 9 � 9=, is the state initialization time at
runtime. Since�(6 ,728,79;: and � 9 � 9?, may vary with the thread
stack length or amount of activation frames, and� ) and �(*
are proportional to the thread stack size, the cost could be
rewritten as:

+-,/.�0�1(2@3A4 �B
9;CED>F 9�< F8GIH�J 1 � < �(' <LKNM ��6 9?OP1�Q><SR �I6 9?OP1 (2)
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Figure 7. Thread migration costs.

where � 6 ,728,79?: is represented by a summation of statement
execution timeF 9 for all functions, F G is the cost of� 9 � 9=, in
a single function,H J 1 � is the amount of activation frames in
the stack,� 6 9;O�1 is the thread state size,

R
is a constant, and

K
is a function of the stack size. Obviously, besides a constant
fundamental cost, stack size is the main factor for thread
migration overhead, which must be significantly lower than
the average thread lifetime to make migration worthwhile.

6 Microbenchmarks

Our main migration platform is a cluster of SMPs (SUN
UltraEnterprise 3000s) connected by fast Ethernet. Each
SMP contains four 330Mhz UltraSparc processors.

A thread migration overhead breakdown for a simple ex-
ample with one thread function and one 40-byte stack is
listed in Table 1. It indicates the typical overhead distribu-
tion trend in thread migration. More complicated programs
just increase the costs proportionally.

Item Cost (nsec) Percentage (%)
function activation 276 -
Statements (� 6 ,72@,79?: ) 361 0.015
Initialization (� 9 � 9=, ) 28,869 1.206
Scheduling (�(' ) 1,779,428 74.320
Transfer (��) ) 574,794 24.007
Restoration (�(* ) 10,825 0.452
Total (

+ ,/.�0%1(2
3
) 2,394,277 100.000

Table 1. Overhead breakdown in nanoseconds.
The complete thread migration cost is shown in Figure 7

for up to 70 Kbytes thread state size. Transfer cost��) plays
a major role for migrations with big state size. Scheduling
cost � ' is a constant and the restoration cost� * increases
linearly. Other costs including� 6 ,72@,79?: and � 9 � 9?, are generally
negligible. This validates our analysis in Section 5.
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7 SPLASH-2 and other real applications

We use several applications from the SPLASH-2 [15]
application suite and matrix multiplication to evaluate the
thread migration cost. At compile-time, the preprocessor
scan and transforms programs. The preprocessor’s running
time varies from 1.34 to 5.87 seconds. The file size changes
resulting from the transformation are listed in Table 2.

Program Original Altered Increase
(lines) (lines) (%)

FFT 1059 1408 33
LU-c 1047 1430 37
LU-n 829 1189 43
MatMult 415 562 35
RADIX 1012 1414 40

Table 2. Program sizes changed by preprocessor.
If there are no migrations, our approach does not incur

any noticeable overhead despite the compile-time transfor-
mations. There are minimal overheads when migrations oc-
cur. Table 3 shows the migration costs for the various ap-
plications. Most overheads are less than 3% (and 2.5ms)
of the computation time even though the application input
sizes are very small. The absolute overhead for RADIX is
larger than others due to its larger stack size. From these
applications, it is clear that our strategy incurs negligible or
small overhead on thread migration.

Program Input Size Stack size Exec. Migration
(bytes) (ms) (ms)

FFT 64 Points 160 85 2.5
LU-c 16 x 16 184 77 2.5
LU-n 16 x 16 176 346 2.5
MatMult 16 x 16 100 371 2.5
RADIX 64 keys 32,984 688 5.1

Table 3. Migration Overhead in real applications.

8 Conclusion and future work

The thread migration scheme proposed in this paper is
shown to be generic in its scope. It handles pointers ac-
curately, supports dynamic memory management in the
heap, and is applicable for heterogeneous environments. To
achieve efficient and flexible implementation, we found it
practical to transform the physical thread state into a logical
one at the language level. Microbenchmarks and real appli-
cations indicate that the overhead of our scheme is minimal.

We are currently investigating scheduling strategies for
the scheduler that would encompass the choice of data or
thread migration and the implementation of our scheme on
several different platforms to verify wide scale heterogene-
ity.
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