
M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 54–68, 2003.
© Springer–Verlag Berlin Heidelberg 2003

A Practical OpenMP Compiler for System on Chips

Feng Liu1 and Vipin Chaudhary2

1 Department of Electrical & Computer Engineering, WSU, USA
fliu@ece.eng.wayne.edu

2 Institute for Scientific Computing, WSU and Cradle Technologies, Inc.
vipin@wayne.edu

Abstract. With the advent of modern System-on-Chip (SOC) design, the inte-
gration of multiple-processors into one die has become the trend. By far there
are no standard programming paradigms for SOCs or heterogeneous chip mul-
tiprocessors. Users are required to write complex assembly language and/or C
programs for SOCs. Developing a standard programming model for this new
parallel architecture is necessary. In this paper, we propose a practical OpenMP
compiler for SOCs, especially targeting 3SoC. We also present our solutions to
extend OpenMP directives to incorporate advanced architectural features of
SOCs. Preliminary performance evaluation shows scalable speedup using dif-
ferent types of processors and effectiveness of performance improvement
through optimization.

1. Introduction

OpenMP is an industrial standard [1, 2] for shared memory parallel programming
with growing popularity. The standard API consists of a set of compiler directives to
express parallelism, work sharing, and synchronization. With the advent of modern
System-on-Chip (SOC) design, chip multiprocessors (CMP) have become a new
shared memory parallel architecture. Two major shared memory models exist today:
Symmetric Multiprocessor machines (SMP) and distributed memory machines or
clusters. Unlike these two models, SOCs incorporate multiple distinct processors into
one chip. Accordingly, it has a lot of new features which normal OpenMP standard
could not handle, or at least could not take advantage of.

By far there are no standard programming paradigms for SOCs or heterogeneous
chip multiprocessors. Users are required to write complex assembly language and/or
C programs for SOCs. It’s beneficial to incorporate high-level standardization like
OpenMP to improve program effectiveness, and reduce the burden for programmers
as well. For parallel chips like Software Scalable System on Chip (3SoC) from Cradle,
parallelism is achieved among different types of processors; each processor may have
different instruction sets or programming methods. Thus, developing a standard par-
allel programming methodology is necessary and challenging for this new architec-
ture.

Cradle’s 3SoC is a shared-address space multi-processor SOC with programmable
I/O for interfacing to external devices. It consists of multiple processors hierarchically
connected by two levels of buses. A cluster of processors called a Quad is connected

A Practical OpenMP Compiler for System on Chips 55

by a local bus and shares local memory. Each Quad consists of four RISC-like proc-
essors called Processor Elements (PEs), eight DSP-like processors called Digital Sig-
nal Engines (DSEs), and one memory Transfer Engine (MTE) with four Memory
Transfer Controllers (MTCs). The MTCs are essentially DMA engines for back-
ground data movement. A high-speed global bus connects several Quads. The most
important feature for parallel programming is that 3SoC provides 32 semaphore
hardware registers to do synchronization between different processors (PEs or DSEs)
within each Quad and additional 64 global semaphores [3].

Fig. 1. 3SOC Block Diagram

In this paper, we describe the design and implementation of our preliminary
OpenMP compiler/translator for 3SoC, with detailed focus on special extensions to
OpenMP to take advantage of new features of this parallel chip architecture. These
features are commonplace among SOCs; techniques used here may be targeted for
other SOCs as well. Giants like Intel, Sun and IBM have addressed their own plans
for SOCs and it’s believed that CMP will dominate the market in the next few years.
We give detailed explanation of each extension and how it should be designed in
OpenMP compiler.

In the next section we briefly introduce the parallel programs on 3SoC, targeting
different processors: PEs or DSEs, respectively. In section 3 we present the design of
our OpenMP compiler/translator with special focus on synchronization, scheduling,
data attributes, and memory allocation. This is followed in section 4 with a discussion
on our extensions to OpenMP. Section 5 outlines the implementation aspects of a
practical OpenMP compiler for SOCs followed by a performance evaluation in sec-
tion 6. Conclusion is given in section 7.

M
S
P

M
S
P

M
S
P

M
S
P

MEMORY C
L

O
C

K
S

M
S
P

M
S
P

M
S
P

M
S
P

MEMORY D
R

A
M

C

O
N

T
R

O
L

DRAM

Global Bus

PROG I/O PROG I/O

P
R

O
G

 I
/O

P

R
O

G
 I

/O

P
R

O
G

 I
/O

PROG I/O PROG I/O PROG I/O PROG I/O

P
R

O
G

 I/O

P
R

O
G

 I/O

NVMEM

M
S
P

M
S
P

M
S
P

MEMORY

M
S
P

M
S
P

M
S
P

M
S
P

MEMORY

M
S
P

PE DSE

MEM

Multi Stream Processor
750 MIPS/GFLOPS

Shared
Prog
Mem

Shared
Data
Mem

Shared
DMA

DSE

MEM

I/
O

 B
u

s

Feng Liu and Vipin Chaudhary56

2. Parallel Programs on 3SoC

In this section, we briefly describe the approach to program 3SoC. Our OpenMP
translator will attempt to create such parallel programs.

2.1 Programming Different Parallel Processors

A 3SOC chip has one or more Quads, with each Quad consisting of different parallel
processors: four PEs, eight DSEs, and one Memory Transfer Engine (MTE). In addi-
tion, PEs share 32KB of instruction cache and Quads share 64KB of data memory,
32KB of which can be optionally configured as cache. Thirty-two semaphore registers
within each quad provide the synchronization mechanism between processors. Figure
2 shows a Quad block diagram. Note that the Media Stream Processor (MSP) is a
logical unit consisting of one PE and two DSEs. We will now have a look at how to
program parallel processors using PEs or DSEs.

Fig. 2. Quad block diagram

2.2 Programming Using PEs

PE has a RISC-like instruction set consisting of both integer and IEEE floating point
instructions. In 3SoC architecture, there are a number of PEs which can be viewed as
several “threads” compared with normal shared memory architecture. Each processor
has its own private memory stack, similar to “thread” context. At the same time, each
processor is accessing the same blocks of shared local memory inside Quad, or
SDRAM outside Quad. These memories are all shared. In a typical 3SoC program,
PE0 is responsible for initializing other processors like PEs or DSEs, so that PE0 acts
as the “master” thread while other processors act as “child” threads. Then PE0 will
transfer parameters and allocate data movement among different processors. It will
load MTE firmware and enable all MTCs. Through data allocation PE0 tells each
processor to execute its own portion of tasks in parallel. PE0 will also execute the re-
gion itself as the master thread of the team. Synchronization and scheduling must be
inserted properly. At the end of each parallel region, PE0 will wait for other proces-
sors to finish and collect required data from individual processor.

PE

DSE

MEM

DSE

MEM

PE

DSE

MEM

DSE

MEM

PE

DSE

MEM

DSE

MEM

PE

DSE

MEM

DSE

MEM

PROGRAM
MEM/

CACHE

DATA
MEM/

CACHE

INTERFACE
GLOBAL BUS

Arbiter

MSP

MTE

A Practical OpenMP Compiler for System on Chips 57

PEs are programmed using standard ANSI C. The 3SoC chip is supplied with
GNU-based optimizing C-compilers, assemblers, linkers, debuggers, and performance
accurate simulators (refer to 3SoC programmer’s guide [4]). To incorporate several
PEs to work in a parallel program, the approach is similar to conventional parallel
programming [6].

We present the concept of translating an OpenMP program to a 3SoC parallel pro-
gram using several PEs. The #pragma omp parallel defines a parallel region whereas
the directive #pragma omp single specifies that only one thread executes this scope.
Correspondently, in the 3SoC main program, each PE is associated with its ID,
my_peid. The parallelism is started by PE0 (my_peid==0), and only PE0 allocates
and initializes all other processors. Once started, all PEs will execute function() in
parallel. Within its own function context, each PE will execute its portion of tasks by
associated processor ID. At the end of each parallel region, all PEs reach an implicit
barrier where PE0 waits and collects data from other PEs. Finally, PE0 terminates
other PEs and releases resources to the system.

int main() {
 ..
 #pragma omp parallel
 {
 #pragma omp single
 {
 printf(“hello world!\n”);
 }
 }
 ..
}

void function() {
 ..
 my_quadid=_QUAD_INDEX;
 my_peid=(my_quadid*4)+_PE_INDEX;
 //identify each processor by its ID
 ..
 if(my_peid==2)
 {
 printf(“hello world!\n”);
 }
 //only one processor execute this
 <communication and synchronization for this parallel region>
 <implicit barrier>
}

int main() {
 ..
 if(my_peid==0)
 {
 <allocate and initialize number of processors>
 <start all other processors>
 }
 ..
 function();
 // all processors run this parallel region
 <terminate all processors>
}

Fig. 3. Translation of a simple OpenMP program (left) to 3SoC parallel region (right)

2.3 Programming Using DSEs

DSE is a DSP-like processor which uses a different programming methodology.
DSEs are programmed using C-like assembly language (“CLASM”) combined with
standard ANSI C. DSEs are the primary processing units within 3SoC chip. Compil-
ers, assemblers, and tools are supplied for DSE.

Writing OpenMP program for DSE requires a completely different approach. The
controlling PE for a given DSE has to load the DSE code into the DSE instruction
memory. Then PE initializes the DSE DPDMs (Dual Ports Data Memory) with de-
sired variables and starts the DSE. The PE either waits for the DSE to finish by poll-

Feng Liu and Vipin Chaudhary58

ing, or can continue its work and get interrupted when the DSE has finished its task.
A number of DSE library calls are invoked. See Fig. 4.

First, the PE initializes the DSE library call via dse_lib_init(&LocalState). Then
the PE does some Quad I/O check and data allocation such as assigning initial values
for the matrix multiplication. In the next for-loop, the PE allocates a number of DSEs
and loads the DSE code into the DSE instruction memory by dse_instruction_load().
This is done by allocating within one Quad first, dse_id[I]=dse_alloc(0), if failed, it
will load from other Quads. Afterwards, the PE loads the DPDM’s onto the allocated
DSEs, dse_loadregisters(dse_id). Each DSE starts to execute the parallel region from
the 0th instruction, via dse_start(dse_id[i],0). PE is responsible for waiting for DSEs
to complete computation and terminating all resources.

void main() {
..
int dse_id[NUM_DSE];
dse_lib_init(&LocalState);

 pe_in_io_quad_check();
 ..

<Data allocation>
 ..

// load the MTE firmware and enable all MTCs
_MTE_load_default_mte_code(0x3E);

for(i = 0; i < NUM_DSE; i++) {
// allocate a DSE in this Quad
dse_id[i] = dse_alloc(0);

if(dse_id[i] < 0) {
 // allocate DSE from any Quad
 dse_id[i] = dse_alloc_any_quad(0);
 if(dse_id[i] < 0) {

<error condition>
 }

}
// load the instructions on the allocated DSEs
dse_instruction_load(dse_id[i], (char *)&dse_function, (char

*)&dse_function_complete, 0);
}
// Load the Dpdm's on the allocated DSEs
DSE_loadregisters(dse_id);

for(i = 0; i < NUM_DSE; i++) {
// Start all DSEs from the 0th instruction
dse_start(dse_id[i], 0);

}

for(i = 0; i < NUM_DSE; i++) {
// Wait for the DSE's to complete and free DSEs
dse_wait(dse_id[i]);

}
<other functions>
..
dse_lib_terminate();
..

}

Fig. 4. Sample 3SoC parallel program using multiple DSEs

3. Design of OpenMP Compiler/Translator

To target the OpenMP compiler for 3SoC, we have to cope with the conceptual differ-
ences from standard OpenMP programs. OpenMP treats the parallelism at the granu-
larity of parallel regions, and each function may have one or more independent paral-
lel regions; while 3SoC treats the parallelism at the level of function, where each

A Practical OpenMP Compiler for System on Chips 59

private data structure is defined within one function. We also have to treat the data
scope attributes between processors like “Firstprivate”, “Reduction” along with ap-
propriate synchronization and scheduling.

3.1 Synchronization

Hardware semaphores are the most important features that distinguish normal chip
multiprocessors from “parallel” chips. Developers can use hardware semaphores to
guard critical sections or to synchronize multiple processors. On 3SoC platform, each
Quad has 32 local and 64 global semaphore registers that are allocated either statically
or dynamically. For parallel applications on 3SoC, the semaphore library (Semlib)
procedures are invoked for allocating global semaphore or for locking and unlocking.

Equipped with this feature, users can implement two major synchronization pat-
terns.
1. By associating one hardware semaphore for locking and unlocking, user can define

a critical construct which is mutually exclusive for all processors.
2. By combining one semaphore along with global shared variables, OpenMP barrier

construct can be achieved across all processors. Sample barrier implementation is
as follows:
semaphore_lock(Sem1.p);
done_pe++; //shared variable
semaphore_unlock(Sem1.p);
while(done_pe<(NOS)); //total # of parallel processors
_pe_delay(1);

For OpenMP compiler, barrier implementation is important. There are a number of
implicit barriers existing at the end of each OpenMP parallel region or work-sharing
construct. Therefore, hardware semaphores allocation and de-allocation becomes a
crucial factor. We take two steps to implement this. First step is to allocate all sema-
phores into local shared memory as “_SL” to improve data locality, i.e. “static sema-
phore_info_t SemA _SL”. (Type of variables like “_SL” is discussed in Section 3.3).
Secondly we allocate semaphores dynamically at run-time. This provides more flexi-
bility than static approach with respect to the limited number of semaphores in each
chip. Each semaphore is initialized and allocated at the beginning of the parallel re-
gion; while after use, it’s de-allocated and returned to the system for next available
assignment. This is done by system calls at run-time [4].

3.2 Scheduling and Computation Division

In OpenMP programs, the computation needs to be divided among a team of threads.
The most important OpenMP construct is the work-sharing construct, i.e., for-
construct. The parallelism is started by the OpenMP directive #pragma omp parallel.
Any statement defined within this parallel directive will be executed by each thread
of the team. For the work sharing constructs, all statements defined within will be di-

Feng Liu and Vipin Chaudhary60

vided among threads. Each thread will execute its own share, like for-construct, which
is a small portion of loop iterations.

A common translation method for parallel regions employs a micro-tasking
scheme, like OdinMP [5]. Execution of the program starts with a master thread,
which during initialization creates a number of spinner threads that sleep until they
are needed. The actual task is defined in other threads that are waiting to be called by
the spinner. When a parallel construct is encountered, the master thread wakes up the
spinner and informs it of the actual task thread to be executed. The spinner then calls
the task thread to switch to specific code section and execute. We follow this scheme
but take different approach. For CMP, each “thread” is a processor, which has its
own processing power and doesn’t wait for resources from other processors. The
number of “threads” is the actual number of processors instead of a team of virtual
threads. It’s not practical to create two “threads”, one for spinning, and another for
actual execution. In our implementation, we assign each parallel region in the pro-
gram with a unique identifying function, like func_1(). The code inside the parallel
region is moved from its original place and replaced by a function statement, where
its associated region calls this function and processors with correct IDs execute se-
lected statements in parallel.

Scheduling is an important aspect of the compiler. Conceptually there are three ap-
proaches to distribute workload, known as: cyclic, block, and master-slave methods.
Cyclic and block methods use static approach while master-slave method distributes
dynamically. To implement common OpenMP work-sharing constructs like for-loop,
we apply different methods.

First, we try to use the static approach. The OpenMP compiler will analyze and
extract the for loop header to find the index, loop initial, loop boundary and the in-
crement, then distributes the workload into small slices. Each processor will be as-
signed a small portion of loop iterations based on algorithms like cyclic or block allo-
cation. It is the responsibility of the programmer to ensure that the loop iterations are
independent. Secondly, we deploy dynamic scheduling. For Master-slave method, it
needs one or two master threads which are responsible for distributing workload and
several slave threads which fetch their own portions from the master thread dynami-
cally. The master thread will be created at the beginning of parallel region and assign
workload to slave threads in request-grant manner. In our implementation for CMP,
we didn’t create a master thread due to limited number of processors and potential
waste of resources. Instead, we use a global shared variable which is accessible to all
processors. The total amount of work is evenly divided into small slices; each time a
processor obtains one slice by accessing and modifying the shared variable. With the
growing value of this shared variable, workload is distributed dynamically at runtime.
A semaphore, which guarantees that only one processor can modify a variable at any
given time, protects this shared variable.

We implement both dynamic and static scheduling on 3SoC. User can choose one
of the two scheduling methods through OpenMP compiler parameter during compila-
tion. This provides more flexibility to do performance evaluation for different appli-
cations. Among the above two approaches, static allocation shows better performance
on average. The reason is that 3SOC is a CMP environment where each “thread” is a
processing unit. By contacting the master thread or accessing the shared variable a

A Practical OpenMP Compiler for System on Chips 61

dynamic approach involves more synchronizations that interrupt the processors more
frequently. Sample OpenMP code using static scheduling is shown in Fig. 5.

#pragma omp parallel shared(matA) private(k,j)
{
 for(k=0;k<SIZE;k++)
 {
 …
 #pragma omp for private(i)
 for(i=k+1;i<SIZE;i++)
 for(j=k+1;j<SIZE;j++)

 matA[i][j]=matA[i][j]-matA[i][k]*matA[k][j];
 }
} /* end of parallel construct */

 {
 for(k=0;k<SIZE;k++) {

…
{
 int count_ums=0,mymin,mymax;
 count_ums=((SIZE) - (k+1))/PES;

 mymin=my_peid*count_ums + (k+1);
 if(my_peid==(PES)-1)
 mymax=SIZE;
 else
 mymax=mymin+count_ums-1;

 for(i=k+1;i<SIZE;i++)
 if(i>=mymin && i<=mymax)
 {
 for(j=k+1;j<SIZE;j++)
 matA[i][j]=matA[i][j]-matA[i][k]*matA[k][j];
 }

 //barrier using hardware semaphore
 semaphore_lock(Sem2.p);
 done_pe2++;
 semaphore_unlock(Sem2.p);
 while(done_pe2<(PES));
 _pe_delay(1);
 if(my_peid==0)
 done_pe2=0;
}

 }
 …
} /* end of parallel construct */

Fig. 5. Sample OpenMP code (LU decomposition) using static allocation

3.3 Data Attributes and Memory Allocation

In OpenMP, there are a number of clauses to define data attributes. Two major groups
of variables exist: shared or private data. By default, all variables visible in a parallel
region are shared among the threads. OpenMP provides several directives to change
default behavior, such as variables defined in “FIRSTPRIVATE”, “PRIVATE”, and
“REDUCTION”. For OpenMP compiler, some private variables need initialization
and combination before or after parallel construct, like “FIRSTPRIVATE” and
“REDUCTION”. Access to these data needs to be synchronized.

On 3SOC platform, there are two levels of shared memory: local memory within
Quad and shared DRAM outside Quad. The local data memory has a limited size of
64KB. Accordingly, there are four types of declarations for variables in 3SOC, de-
fined as:

ß “_SD” - Shared DRAM, shared by all PEs.
ß “_SL” - Shared Local memory of a Quad and shared by all PEs within Quad
ß “_PD” - Private DRAM, allocated to one PE
ß “_PL” - Private Local memory, allocated in local memory to one PE

By default, if none of these are declared, the variable is considered _PD in 3SOC.
The sample OpenMP code below illustrates data attributes:
1. int v1, s1[10];
2. void func() {
3. int v2, v3, v4;

Feng Liu and Vipin Chaudhary62

4. #pragma omp parallel shared(v1,v2)
 firstprivate(v3) reduction(+: v4)
5. {…}
6. }

If variables v1 and v2 are declared as shared, it should be defined in the global
shared region. v1 is already in global shared memory, no special action needs to be
taken, the only thing is to re-declare it as _SD(shared DRAM) or _SL(shared local).
v2 is within the lexical context of func() which is a private stack area. This private
stack is not accessible to other processors if it’s not moved from func() to global
shared memory during compilation. “FIRSTPRIVATE” is a special private clause that
needs to be initialized before use. A global variable (v3_glb) needs to be defined and
copied to the private variable (v3) before the execution of parallel construct.
“REDUCTION” is another clause which needs global synchronization and initializa-
tion. A global variable is also defined in shared region and each local copy (_PL) is
initialized according to reduction operation. At the end of parallel region, modifica-
tion from each processor is reflected to the global variable.

For embedded systems, memory allocation is a crucial factor for performance be-
cause the local data memory is connected to a high-speed local bus. For standard
OpenMP programs, data declaration in OpenMP should be treated differently for
memory allocation in 3SoC. This is a challenging task since the local memory has
limited size for all CMP or equivalent DSP processors. It’s not applicable to define all
shared and private data structure into local memory first. We must do memory alloca-
tion dynamically in order to produce better performance.

We design to do memory allocation using “request-and-grant” model during com-
pilation. At compilation, compiler will retrieve all memory allocation requests from
each parallel region agreed on by some algorithm or policy-based methods. Then
complier will assign different memory to different variable. For example, based on
the size of data structure or frequency of referencing in the region, it will grant mem-
ory to different data structure. We also provide extensions to OpenMP to use the spe-
cial hardware feature of CMP to allocate memory at runtime. (See 4.2.1 and 4.2.2)

4. Extensions to OpenMP

In a Chip Multiprocessor environment, there are several unique hardware features
which are specially designed to streamline the data transfer, memory allocations, etc.
Such features are important to improve the performance for parallel programming on
CMP. In order to incorporate special hardware features for CMP, we extend OpenMP
directives for this new parallel architecture.

4.1 OpenMP Extensions for DSE Processors

To deal with the heterogeneity of different processors within CMP, we try to incorpo-
rate DSEs into our OpenMP compiler. Unlike PE, DSE uses different programming

A Practical OpenMP Compiler for System on Chips 63

methodology which combines C and C-like Assembling Language (CLASM). We
extend OpenMP with a set of DSE directives based on 3SOC platform.

1. #pragma omp parallel USING_DSE(parameters)
This is the main parallel region for DSEs.

2. #pragma omp DSE_DATA_ALLOC
This is within DSE parallel region and used to define data allocation function.

3. #pragma omp DSE_LOADCOMREG
Define data registers to be transferred to DSE

4. #pragma omp DSE_LOADDIFFREG(i)
Define DSE data register with different value.

5. #pragma omp DSE_OTHER_FUNC
Other user defined functions

The main parallel region is defined as #pragma omp parallel USING_DSE (pa-
rameters). When the OpenMP compiler encounters this parallel region, it will switch
to the corresponding DSE portion. The four parameters declared here are: number of
DSEs, number of Registers, starting DPDM number, and data register array, such as
(8, 6, 0, dse_mem). “Number of DSEs” tells the compiler how many DSEs are re-
quired for parallel computation. Number of DSE data registers involved is defined in
“number of Registers”. There is an array where the PE stores the data that has to be
transferred into the data registers of the DSE. The PE initializes the array and calls a
MTE function to transfer the data into the DSE data registers. This array is defined in
“data register array.” In this example, it is dse_mem. The “starting DPDM number” is
also required when loading data registers.

void main() {
 //other OpenMP parallel region
 #pragma omp parallel
 {...}
 …
 //OpenMP parallel region for multiple DSEs
 #pragma omp parallel USING_DSE(8,6,0,dse_mem)

{
 #pragma omp DSE_DATA_ALLOC
 {

 <initialization functions>
 }
 #pragma omp DSE_LOADCOMREG
 {

 <define data registers to be transferred to DSE>
 }
 #pragma omp DSE_LOADDIFFREG(i)
 {

 <define DSE data registers with different value>
 }
 #pragma omp DSE_OTHER_FUNC
 {

 <other user defined functions>
 }

 //main program loaded and started by PE
 #pragma omp DSE_MAIN
 {

 <order of executing main code>
 }
}

}

Fig. 6. Sample OpenMP program using DSE extensions

Feng Liu and Vipin Chaudhary64

 Instead of writing 3SoC parallel program using multiple DSEs in Fig. 4, user can
write equivalent OpenMP program using DSE extensions shown in Fig. 6. For our
OpenMP compiler, the code generation is guided by the parameters defined in “par-
allel USING_DSE” construct. The compiler will generate initialization and environ-
ment setup like dse_lib_init(&LocalState),dse_allo(0), DSE startup and wait call
dse_start(), dse_wait(), and termination library call dse_lib_terminate(). So users will
not do any explicit DSE controls, like startup DSE dse_start(). The DSE parallel re-
gion can also co-exist with standard OpenMP parallel regions that will be converted
to parallel regions using multiple PEs.

The benefit of using OpenMP extensions is that it helps to do high-level abstrac-
tion of parallel programs, and allows the compiler to insert initialization code and data
environment setup when necessary. Users are not required to focus on how to declare
system data structures for DSE, and how PE actually controls multiple DSEs by com-
plicated system calls. This will hide DSE implementation details from the program-
mer and greatly improve the code efficiency for parallel applications. Performance
evaluation between different numbers of DSEs based on our OpenMP compiler will
be given in section 6.

4.2 OpenMP Extensions for Optimization on SOCs

For SOCs or other embedded systems, memory allocation is critical to the overall per-
formance of parallel applications. Due to the limited size of on-chip caches or memo-
ries, techniques have to be developed to improve the overall performance of SOCs.
[7, 8].

4.2.1 Using MTE Transfer Engine.
Given the availability of local memory, programs will achieve better performance in
local memory than in DRAM. But data locality is not guaranteed due to small on-chip
caches or memories. One approach is to allocate data in DRAM first, then move data
from DRAM to local memory at run-time. Thus, all the computation is done in local
memory instead of slow DRAM. In 3SOC, a user can invoke one PE to move data
between the local memory and DRAM at run-time.

3SOC also provides a better solution for data transfer using MTE. MTE processor
is a specially designed memory transfer engine that runs in parallel with all other
processors. It transfers data between local data memory and DRAM in the back-
ground. We also incorporate MTE extensions to our OpenMP compiler.

1. #pragma omp MTE_INIT(buffer size, data structure, data slice)
MTE_INIT initializes a local buffer for designated data structure.

2. #pragma omp MTE_MOVE(count, direction)
MTE_MOVE will perform actual data movement by MTE engine.

MTE_INIT initializes a local buffer for data structure with specified buffer size.
MTE_MOVE will perform actual data movement by MTE engine. Data size of equal-
ing count*slice will be moved with respect to the direction (from local to DRAM or
DRAM to local). Within a parallel region, a user can control data movement between

A Practical OpenMP Compiler for System on Chips 65

local memory and SDRAM before or after the computation. Accordingly, the MTE
firmware needs to be loaded and initiated by PE0 at the beginning of the program. A
number of MTE library calls will be generated and inserted by the OpenMP compiler
automatically during compilation.

With the help of these extension, user can write OpenMP parallel program which
controls actual data movement dynamically at run-time. The results show significant
performance speedup using the MTE to do data transfers, especially when the size of
target data structure is large. Performance evaluation of using the MTE versus using
the PE to do memory transfer is given in section 6.

5. Implementation

In this section, we will discuss our implementation of the OpenMP com-
piler/translator for 3SoC. However, this paper is not focused on implementation de-
tails. To implement an OpenMP compiler for 3SOC, there are four major steps.

1. Parallel regions: Each parallel region in the OpenMP program will be assigned a
unique identifying function number. The code inside the parallel region is moved
from its original place into a new function context. The parallel construct code will
be replaced by code of PE0’s allocating multiple PEs or DSEs, setting up environ-
ment, starting all processors, assigning workload to each processor, and waiting for
all other processors to finish.

2. Data range: Through analysis of all the data attributes in the OpenMP data envi-
ronment clause, i.e., “SHARED”, “PRIVATE”, “FIRSTPRIVATE”,
”THREADPRIVATE”, “REDUCTION”, compiler determines the data range for
separate functions and assign memory allocation like “_SL”, or “_SD” in 3SOC.
Related global variable replication such as “REDUCTION” is also declared and
implemented. Similar approach has been taken in Section 3.3.

3. Work sharing constructs: These are the most important constructs for OpenMP,
referred as for-loop directive, sections directive and single directive. Based on the
number of processors declared at the beginning of the 3SOC program, each proces-
sor will be assigned its portion of work distinguished by processor ID. During run-
time, each processor will execute its own slice of work within designated func-
tions. For example, for the “sections” construct, each sub-section defined in
#pragma omp section will be assigned a distinct processor ID, and run in parallel
by different processors.

4. Synchronization: There are a number of explicit or implicit synchronization
points for OpenMP constructs, i.e., critical, or parallel construct. Correspondingly,
these constructs are treated by allocating a number of hardware semaphores in
3SOC. Allocation is achieved statically or dynamically.

The first version of our compiler can take standard OpenMP programs. With our
extension, user can also write OpenMP programs for advanced features of CMP, like
using multiple DSEs.

Feng Liu and Vipin Chaudhary66

6. Performance Evaluation

Our performance evaluation is based on 3SOC architecture; the execution environ-
ment is the 3SOC cycle accurate simulator, Inspector (version 3.2.042) and the 3SOC
processor. Although we have verified the programs on the real hardware, we present
results on the simulator as it provides detailed profiling information. We present re-
sults of our preliminary evaluation.

To evaluate our OpenMP compiler for 3SOC, we take parallel applications written
in OpenMP and compare the performance on multiple processors under different op-
timization techniques: without optimization, using data locality (matrices in local
memory), using the MTE for data transfer, and using the PE for data transfer. We also
show the compiler overhead by comparing the result with hand-written code in 3SOC.

Figure 7 shows the results of matrix multiplication using multiple PEs. The
speedup is against sequential code running on single processor (one PE). Figure 8 is
the result for LU decomposition using multiple PEs against one PE. By analysis of
both charts, we conclude the following:

1. Local memory vs DRAM: As expected, memory access latencies have significant
effect on performance. When the size of the data structure (matrix size) increases,
speedup by allocation of data in local memory is obvious. For 64*64 matrix LU
decomposition, the speedup is 4.12 in local memory vs 3.33 in DRAM.

2. Using the MTE vs data in DRAM only: As discussed in Section 5, we can deploy
the MTE data transfer engine to move data from DRAM to local memory at run-
time, or we can leave the data in DRAM only and never transferred to local during
execution. For small size matrices below 32*32, the MTE transfer has no benefit;
in fact, it downgrades the performance in both examples. The reason is that the
MTE environment setup and library calls need extra cycles. For larger-size matri-
ces, it shows speedup compared to data in DRAM only. For 64*64 matrix multipli-
cation, the speedup is 4.7 vs 3.9. Actually 64*64 using MTE engine is only a 3.2%
degrade compared to storing data entirely in the local memory. Therefore, moving
data using MTE will greatly improve performance for large data structure.

3. Using the MTE vs using the PE: We observed scalable speedup by using the
MTE over the PE to transfer memory. The extra cycles used in MTE movement do
not grow much as the matrix size increases. For large data set movements, the
MTE will achieve better performance than the PE.

4. Using OpenMP compiler vs hand-written code: The overhead of using the
OpenMP compiler is addressed here. Since the compiler uses a fixed method to
distribute computation, combined with extra code inserted to the program, it is not
as good as manual parallel programming. In addition, some algorithms used in par-
allel programming cannot be represented in OpenMP. The overhead for OpenMP
compiler is application dependent. Here we only compare the overhead of the same
algorithm deployed by both the OpenMP compiler and hand-written code. It shows
overhead is within 5% for both examples.

Figure 9 shows the result of matrix multiplication using multiple DSEs. The matrix
size is 128*128.

A Practical OpenMP Compiler for System on Chips 67

1. Scalable speedup using different number of DSEs: 4 DSEs achieve 3.9 speedup
over 1 DSE for the same program, and 32 DSEs obtain 24.5 speedup over 1 DSE.
It shows that 3SOC architecture is suitable for large intensive computation over
multiple processors on one chip and performance is scalable.

0

1

2

3

4

5

4 8 1 6 3 2 4 8 6 4

Size of Matrix

S
p

ee
d

u
p Local Memory

SDRAM

Opt using MTE

Opt using PE

handwritten

Fig. 7. Matrix Multiplication using four PEs

0

1

2

3

4

5

4 8 1 6 3 2 4 8 6 4

Size of Matrix

S
p

ee
d

u
p

Local Memory
SDRAM
Opt using MTE
Opt using PE
handwr i t ten

Fig. 8. LU decomposition using four PEs

0

5

1 0

1 5

2 0

2 5

3 0

1 2 4 8 1 6 3 2

Number of DSEs

Fig.9. Matrix Multiplication using DSEs

Feng Liu and Vipin Chaudhary68

7. Conclusion

In this paper, we present a practical OpenMP compiler for System on Chips, espe-
cially targeting 3SOC. We also provide extensions to OpenMP to incorporate special
architectural features. The OpenMP compiler hides the implementation details from
the programmer, thus improving the overall efficiency of parallel programming for
System on Chips architecture or embedded systems. Results show that these exten-
sions are indispensable for performance improvement of OpenMP programs on 3SoC,
and such compilers would reduce the burden for programming SOCs. We plan to
evaluate the translator/compiler on other large DSP applications and the new OpenMP
benchmarks [9].

Acknowledgement

We thank the reviewers for their contributive comments on a draft of this paper. We
also acknowledge the support of the Institute for Manufacturing Research at Wayne
State University.

References

[1] OpenMP Architecture Review Board, OpenMP C and C++ Application Program Interface,
Version 2.0, March, 2002. http://www.openmp.org

[2] OpenMP Architecture Review Board, OpenMP: An Industry-Standard API for Shared-
Memory Programming. IEEE Computational Science & Engineering, Vol. 5, No. 1, Janu-
ary/March 1998, http://www.openmp.org

[3] 3SOC Documentation – 3SOC 2003 Hardware Architecture, Cradle Technologies, Inc.
March. 2002

[4] 3SOC Programmer’s Guide, Cradle Technologies, Inc., Mar. 2002, http://www.cradle.com
[5] Christian Brunschen, Mats Brorsson, OdinMP/CCp – A portable implementation of
 OpenMP for C, Lund Universtiy, Sweden, 1999
[6] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. Parallel Pro-

gramming in OpenMP. Morgan Kaufmann Publishers, 2001
[7] Chong-Liang Ooi, Seon Wook Kim, and Il Park. Multiplex: Unifying conventional and

speculative thread-level parallelism on a chip multiprocessor, Proceedings of the 15th in-
ternational conference on Supercomputing June 2001

[8] Non-Uniform Control Structures for C/C++ Explicit Parallelism, Joe Throop, Kuck & As-
sociates, USA Poster Session at ISCOPE'98

[9] SPEC OMP Benchmark Suite, http://www.specbench.org/hpg/omp2001

	1 Introduction
	2 Parallel Programs on 3SoC
	2.1 Programming Different Parallel Processors
	2.2 Programming Using PEs
	2.3 Programming Using DSEs

	3 Design of OpenMP Compiler/Translator
	3.1 Synchronization
	3.2 Scheduling and Computation Division
	3.3 Data Attributes and Memory Allocation

	4 Extensions to OpenMP
	4.1 OpenMP Extensions for DSE Processors
	4.2 OpenMP Extensions for Optimization on SOCs

	5 Implementation
	6 Performance Evaluation
	7 Conclusion

