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Abstract. In this paper we highlight the suitability of MDSP 3 architec-
ture to exploit the data, algorithmic, and pipeline parallelism offered by
video processing algorithms like the MPEG-2 for real-time performance.
Most existing implementations extract either data or pipeline parallelism
along with Instruction Level Parallelism (ILP) in their implementations.
We discuss the design of MP@ML decoding system on shared memory
MDSP platform and give insights on building larger systems like HDTV.
We also highlight how the processor scalability is exploited. Software
implementation of video decompression algorithms provides flexibility,
but at the cost of being CPU intensive. Hardware implementations have
a large development cycle and current VLIW dsp architectures are less
flexible. MDSP platform offered us the flexibilty to design a system which
could scale from four MSPs (Media Stream Processor is a logical clus-
ter of one RISC and two DSP processors) to eight MSPs and build a
single-chip solution including the IO interfaces for video/audio output.
The system has been tested on CRA2003 board. Specific contributions
include the multiple VLD algorithm and other heuristic approaches like
early-termination IDCT for fast video decoding.

1 Introduction

Software programmable SoC architectures eliminate the need for designing ded-
icated hardware accelerators for each standard we want to work with. With
the rapid evolution of standards like MPEG-2, MPEG-4, H.264, etc. such pro-
grammable systems are desirable. Building hardware accelerators for the new
upcoming standards like H.264 becomes time critical if the evolution time be-
tween two successive standards is small e.g. MPEG-4 and H.264. The ability to
implement these algorithms in software has many advantages: it is less expensive
and more flexible for accommodating new algorithms and enhancements as they
evolve. In order to meet the demands of higher-quality video applications, an
SoC must provide, in addition to a high level of arithmetic processing power, a
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sufficient degree of flexibility, integrate a powerful on-chip communication struc-
ture, and employ a well-balanced memory system to account for the growing
amount of data to be handled.

On general purpose processors, decoder implementations are usually memory
bottlenecked. An extension of a programmable core with dedicated modules,
e.g. Trimedia [30], does not help when the functions that have been hard-wired
change in a new version of a multimedia standard. Our solution combines both
the data and algorithmic parallelization approach. We apply agreedy strategy
to exploit performance. We apply static scheduling within MSP and use the
co-worker model for dynamic scheduling of tasks on MSPs. Thus we primarily
rely on spatial decomposition and then further exploit algorithmic parallelism.
Software implementation allowed us to plug-in new intellectual contributions
(like multiple VLD, faster IDCT; explained below) to make the implementation
faster.

1.1 Contributions

Multiple VLD: We consider Multiple VLD as our most valuable contribution
to the field. The multiple VLD algorithm is discussed in section 4.2. Verderber et.
al. [28] reports a lookup table based VLD structure proposed by Lei and Sun [29]
as the fastest known VLD decoder. We could improve this VLD algorithm further
by 25-30 percent by our Multiple VLD algorithm. Our modification adds the
capability to decode each codeword in a single cycle as well as multiple VLD
symbols in a single access whenever allowed by the bit stream.

Early-termination IDCT: This idea is an offshoot of the MPEG-4 AC-DC
prediction. The current block’s first row or column coefficients are predicted
based on the gradient of the higher DC value either in column or row direction.
This serves as indication of the possibly flat areas in the horizontal or vertical
direction. When gradient across columns is higher for the previous blocks, we
do the row-wise 1D IDCT first. This helps in termination of some of the IDCT
calculations. The column-wise 1D IDCT is done as a normal procedure. When
gradient across rows is higher, early-termination is performed on the column-
wise 1D IDCT and row-wise 1D IDCT is performed as a normal operation. We
achieve a speedup of about 15-20 percent on the test bit-streams.

Software-only implementation on a chip sustaining 80 percent peak
performance: The implementation presented in this paper is a complete MPEG-
2 implementation of the standard (some portions are omitted for brevity) in
software including the IO interfaces. We achieved a sustained performance of 80
percent of the peak processing power of MDSP engines.

The rest of the paper is organized as follows:We present design goals and
parallelization opportunities in section 3. Section 4 covers a brief overview of the
MDSP architecture, processor mapping,resource estimation and implementation
strategy. Section 5 gives details on results and performance analysis.
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2 Related Work

Lot of work [6, 8, 10, 12–16] has been done on parallelization of the MPEG-2
video decoding. Bilas et. al. [13] compare the coarse-grain parallelism at the
GOP level and fine-grain parallelism at the slice level implemented on an SGI
challenge multiprocessor. We used fine-grained parallelism at the slice level in our
contribution. [11] presents a software solution on TI’s Multimedia Video multi-
Processor C80 and reports real-time results for the codec implementation. The
MVP has a RISC processor, 4 DSP-like processors, DMA and video controller
and large amount of cache. Ishiwata et. al. [17] reports the MEP customizable
media processor core by the Toshiba. MEP is largely a hardware solution wherein
the core can be customized for different applications like MPEG-2 to provide a
hardware solution. It uses hardware accelerators for VLD, IDCT etc. Sriram and
Hung [18] use data and instruction parallelism in their implementation on TI
C6x along with the ILP offered by the VLIW.

3 MPEG-2 Video Decoder

An extensive description of the MPEG-2 could be found in [1–4]. MPEG-2 ad-
dresses the compression of various profiles and layers for bit-rates ranging from
4 to 100 Mbps and resolutions ranging from CIF to HDTV.

The decoder performs the following steps in the algorithm as shown in Fig. 1:
(1) VLC decoding, VLD (2) De-quantization, IQ (3) Inverse DCT, IDCT - this
step outputs the error (4) Motion compensation, MC (5) Add prediction and
error.
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Fig. 1. Functional block diagram of the MPEG-2 Decoder

3.1 Design Goals

The design of decoder was done with the following goals in mind: (1) Minimal
resources in terms of (a) processors (b) DRAM bandwidth (c) DRAM size and
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(d) local memory size (2) Scalability in terms of (a) the ability to run on a
variable number of processors, i.e. processor scalable (b) should exploit the on-
chip memory, i.e. memory scalable (3) Reusability in terms of (a) have library of
commonly used domain specific routines (b) design should support re-configuring
of modules, i.e. plug & play (i) Selection of processor and (ii) Communication
between processes (loosely coupled). These goals are common to most of the
implementations on the MDSP architecture.

3.2 Parallelization Opportunities

The MDSP architecture allows us to exploit all kinds of parallelization opportu-
nities provided by the MPEG-2 bit-stream.

Data Parallelism: Individual slices can be decoded independently and hence
concurrently. Individual MSPs could be put to this task of decoding, called
DecodeSliceTask(). Thus data parallelism is exploited at the MSP level as shown
in Fig. 2 and 3.

Algorithmic Parallelism: Prediction error computation (VLD,IQ,IDCT) and
Motion Compensated prediction (MC) can be done in parallel on different MBs.
The decoded MB is obtained by adding MC data with the corresponding pre-
diction error (see Fig. 2).

Pipelined Parallelism: The error prediction computation, which consists of
(a) VLD (b) IQ and (c) IDCT, can be done in a pipe. VLD and IDCT are
compute intensive operations. While one processor is decoding the VLC codes
of block N another processor can compute the IDCT of the already decoded
block N-1 as shown in Fig. 2. Thus, after an initial pipelline delay the above
tasks run in parallel.

4 MDSP Architecture Overview and Processor Mapping

MDSP is an array of RISC and DSP processors that provide a seamless, scalable
system solution to the full spectrum of video and multimedia related products.
Four MSPs (4 PEs, 8 DSEs) are grouped in a single Compute Quad and share a
common instruction cache (32 KB) and data memory (64 KB). The instruction
cache is utilized by the PEs only. Each DSE has its own dedicated instruction
memory of 512 instructions and 128 dedicated registers. A 4-way hardware mul-
tithreaded DMA engine (MTE) facilitates data pre-fetch from external DRAM.
An IO quad facilitates the interface to the external world with its 2 PEs and 2
MTEs.

Each quad has 32 local and 64 global semaphores for synchronization be-
tween tasks and guarding critical, shared resources. The architecture is more
amenable to high throughput when computation is effectively overlapped with
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parallelism more easily. 
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Fig. 2. Overview of various parallelisms existing in MPEG-2 Decoder

data communication. This can be done using double (or ping-pong) buffering
strategies.
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Fig. 3. Mapping MPEG-2 Video decoder on MDSP

4.1 Resource Estimation

Based on the profiling and hand-coding the compute intensive algorithms for
DSEs,we estimated the decoder to take (a) 6-8 MSPs for supporting 15 Mbps
video decoding (b) 32 KB local memory (c) 3.2 MB of DRAM (d) 300-400 MBps
peak DRAM bandwidth (e) Average DRAM bandwidth required for I-pictures
about 70 MBps and for B-pictures about 100 MBps. Fig. 3 shows the mapping
on MDSP based on this estimation.
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4.2 Implementation Strategy

The decoder implementation is divided into different tasks and typically works
as a co-worker model. The following tasks are the main tasks that are imple-
mented: (a) Detect/Bin Slice Task: detect slice pointers and put them in a bin,
DetectSliceTask (b) DecodeSliceTask (c) FrameReorderTask and (d) Controller-
Task

The controller task is the main task that is responsible for scheduling, allo-
cation of tasks and updating shared global variables that facilitate communica-
tion between these tasks. The ControllerTask() is protected by a semaphore. As
shown in Fig. 4, any MSP seeking a task has to wait till this semaphore is free.
Once the semaphore is free, ControllerTask() allocates the next task to the MSP
based on the status of the decoder.
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Cluster-1

Controller Task

DetectSliceT
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DecodeSlice
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Task() .   .

.   .

Fig. 4. Controller Task

Multiple VLD: The main idea in the multiple VLD implementations is to
decode multiple symbols for every table lookup operation. The tables are packed
in such a fashion that they carry multiple symbols whenever possible. This is
done on a subset of most probable symbols with small number of bits. The
symbols associated with larger number of bits of VLC code are put in separate
tables. The smaller VLC codes are assigned to most frequent symbols in all of
the video and image processing standards. This helps in packing more symbols
together and also speeding the implementation. Fig. 5 shows an example of
how multiple symbols can be packed. The field access unit present in each DSE
facilitates easy extraction of multiple symbols. The speedup achieved by this
approach varies from 35-40 percent on most bit-streams.

Implementing IDCT: We have implemented Chen’s [9] IDCT algorithm. The
algorithm uses floating-point arithmetic. It also uses the even-odd decomposition
technique described in [26]. The implementation includes the saturation logic
required for the MPEG-2 Video. The IDCT is implemented using the 4 MACs
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Index Run-0 Level-0 Run-1 Level-1 Valid Bit Count 

… … … … … … 

01000100 1 1 1 1 8 

01000101 1 1 1 -1 8 

… … … … … … 

01010100 1 -1 1 1 8 

01010101 1 -1 1 -1 8 

… … … … … … 

01001000 1 1 0 1 7 

01001001 1 1 0 1 7 

01001010 1 1 0 -1 7 

01001011 1 1 0 -1 7 

… … … … … … 

01011000 1 -1 0 1 7 

01011001 1 -1 0 1 7 

01011010 1 -1 0 -1 7 

01011011 1 -1 0 -1 7 

… … … … … … 

01110100 0 3 0 1 8 

01110101 0 3 0 -1 8 

… … … … … … 

01111100 0 -3 0 1 8 

01111101 0 -3 0 -1 8 

… … … … … … 

10010000 0 1 0 1 6 

Fig. 5. Multiple VLD implementation example (Table B-15 from MPEG-2 standard)

available on the DSE. The core loop performs 1-D IDCT in 55 Clock Cycles. The
IDCT alongwith saturation takes 1600 clock cycles. With the early-termination
algorithm the cycles reduce to 1300-1400. Since the MAC floating-point results
can be truncated as well as rounded, we don’t need to take special care of the
IEEE precision requirements. This implementation has been verified to pass both
the IEEE precision requirements for IDCT [2, 27, 7] as well as the dynamic range
requirement in Corrigendum-2 of the MPEG-2 Video.

We have also done standalone experiments to implement the IDCT using the
SIMD capabilities of the newer CRA3001 instruction set. The reference imple-
mentation is suggested in [22]. On these experiments we have got a speedup of
1.67.

Implementing Motion Compensation: Motion compensation is split across
2 DSEs. The MC DSE calculates the predictions for the Luma blocks and adds
them to the IDCT error block from the IDCT DSE. Chroma prediction are also
calculated on the MC DSE. However the addition of chroma predictions to the
IDCT error is done by the IDCT DSE. The addition of the blocks on both the
DSEs starts after the IDCT and Motion Prediction on the MB is finished by
the respective DSEs. This achieves a better load-balance between the two DSEs
within MSP and performance improvement, since both the DSEs do the same
amount of work in terms of cycles. Each MSP replicates the above mapping.

4.3 General Design Strategy for Media Applications

While designing on multiprocessor architecture like MDSP it is important to
understand whether the application is parallelizable. 1. Look for opportunities
for parallelism, mainly data parallelism. 2. Compute the resource requirements
in terms of cycles and bandwidth requirements 3. Allocate independent tasks to
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M processors in a controlled manner 4. Keep all processors busy and processing
units load-balanced. 5. Overlap compute with communicate using ping-pong
buffering stratergies. The idea here is that while one of the ping-pong buffer is
getting filled by the DMA engine, the processing units can work on the previously
filled ping-pong buffer. 6. Speed up tasks like VLD (it can’t be parallelized
and other tasks in the pipe depend on it) so that they don’t starve the other
tasks in the pipe. 7. Invest in a good control procedure to reduce operating
system overhead. The simplest stratergy is to statically allocate processors for
particular tasks. Another is to implement a work task scheduler, as shown in
Fig. 4. Alternatively, an SMP real-time kernel such as eCos can be used.

5 Performance Analysis

We refrain from comparing against implementations like TI C6x [18], Pentium
(with MMX), HP PA(with MAX) [20] and UltraSPARC (with VIS) for the rea-
son that the goal of MPEG-2 MP@ML is to achieve 30 fps real-time video, which
we achieve in our implementation. Also the results specified in our implementa-
tions are on real-bitstreams provided by third party. Sriram and Hung [18] do
a comparison between their implementation and the implementations specified
above. However, these are biased towards 25 percent non-zero DCT coefficients
and GOP structure of 2I, 20B, 8P frames of every 30 frames. This is not the
case with real bit streams and sometimes not a good assumption as specified
in [18]. Fig. 6 depicts the scalability of the implementation for SDTV sequences
of NTSC and PAL formats. Thus, one would require 4-6 MSPs to decode bit-
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Fig. 6. Processor Scalability for different bit streams

streams ranging 5-15 mbps. On an average MDSP requires 1350M cycles for
decoding 1 sec SDTV video. For HDTV we would require close to 28 MSPs as-
suming overheads. We expect the current Cradle chip CT3400 in production to
meet these performance requirements.
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6 Conclusions

Current implementation on CRA2003 does not exploit the SIMD/PIMAC ca-
pabilities offered by current chips like CT3400 in the MDSP family. These can
be effectively utilized for motion compensation and IDCT algorithms as done
in the implementations [22–25]. VLD algorithm is presently implemented on the
PE, comparatively a slower processor to the DSE. The DSE’s field access unit
can be effectively utilised for further speeding up the VLD computation.

From our design experience on MDSP architecture we see that the architec-
ture is processor scalable and suitable for video processing applications. Video
processing applications are more amenable to data parallelism and are in turn
processor scalable. Most of the implementations are bottlenecked for being pro-
cessor scalable as well as memory scalable. We have found that it typically
requires up to 4 MSPs to decode a MPEG-2 video sequence of 5 Mbps and up
to 6 MSPs to decode a sequence of 15 Mbps. Also the processor scalable nature
of the architecture gives in to code reuse which in turn would reduce the de-
velopment cost and time. General purpose CPUs are very expensive in terms of
dollar cost and solutions using just DSP multiprocessors require additional I/O
components for a full solution for interfaces to external world. On the MDSP this
could be done on the same chip using the IO quad provided with additional MTE
units and software programmable IO. Exploiting peak sustained peformance out
of VLIW DSP processors costs more development time as compared to MDSP.
With MDSP we could achieve a sustained 80 percent of peak performance in our
implementation.
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