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Abstract. Most of the new embedded systems require high performance pro- 
cessors at low power. To cater to these needs, most semiconductor companies are 
designing multi-core processors, also known as chip-multiprocessors, while some 
are developing multi-chip boards with existing multi-core processors. Developing 
applications on these powerful architectures require specialized tools to obtain 
the optimum performance. Most applications running on these processors not 
only require high processing power, but also have tight resource constraints. For 
both, chip-multiprocessors and multi-chip boards, one faces some common 
problems while developing applications for them. To meet this end, we have 
developed tools to model high-performance embedded applications on these 
complex high-end systems. We have integrated these tools in the modeling 
framework of MILAN, and have modeled a real application, Mpeg-2 Audio 
Video Decoder. For validation we have used Cradle Technologies MDSP multi-
core chip as the target processor. 

1   Introduction 

Chip Multiprocessors are being widely used to develop System-on-Chip (SOC) 
solutions for high-end embedded systems. An SOC consists of processors 
(RISC/DSP), internal memory, external memory, device controllers, timers, etc. SOC 
architecture for a low/medium scale device would not require more than a couple of 
processors. On the other hand, high-end embedded systems, such as HDTV, bio-
medical applications, high capacity printers and copiers would require multiple cores 
of RISC/DSP or a combination of both, to fulfill the high performance requirement. 
Most of these applications can be parallelized over multiple low power processors to 
obtain the desired performance.  

Most of the multi-core chips available consist of not more than 8 cores on a single 
chip [1]. For a high-end application this might not be suitable. ASIC-based solutions 
are not suitable either, as these solutions take longer time to market and have high 
cost per unit. There are few companies developing multi-core chips with 30-60 cores 
in one chip [2] [3]. While other companies, in order to achieve the high performance 
requirements for these high-end applications, develop multi-chip boards, with each 
board housing 2-4 chips, where each chip has 4-8 processors [4][5][6]. This gives 
enough computational power for the high-end systems. 

As the number of processors increase, the bandwidth requirement for the 
application over the shared global bus increases. In order to sustain such high 
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requirements, these systems have a hierarchical architecture consisting of clusters. 
Each cluster is made up of RISC and/or DSP processors with some shared internal 
memory to be used as a scratch pad. In addition, it has semaphores, timers and 
interrupts. Any access to the resource within the cluster takes less time as compared to 
any access to resources in the other cluster or global resources since the request has to 
be served through shared global bus. The desirable implementation on this system 
would be to reduce access outside the cluster in order to improve performance. The 
programmer can also benefit from the nature of most of the high-end applications, 
where the computation to communication ratio is high. 

Due to similarity in architecture, these high processor-count chip-multiprocessors 
and multi-chip board solutions face some common problems for developing 
applications. Though these systems provide high computational power, they require 
specialized tools to harness their raw power. One requires tools to design and map 
resource constraint applications on these high performance systems, tools to simulate 
the system at various granularity levels and provide feedback through profiling 
statistics, which can be incorporated back into the design to optimize the application.  
As most of the high-end system would be heterogeneous, the tools must provide 
mechanisms or interfaces for seamless integration of different simulators for different 
types of processors in the underlying system. 

There are lots of tools for modeling SOC systems. Some of them are Ptolemy[7], 
Polis [8], Chinook [9], SystemC [10] and MILAN [11]. We tried to use these tools for 
modeling systems on such clustered/hierarchical architecture and found that they were 
not suitable in their existing setup. Modification needs to be done to incorporate the 
type of architecture we were using. Most of these tools are complex and proved 
cumbersome to integrate the simulators for this architecture. MILAN is relatively 
easy to understand and provides simple interface to integrate any new simulator. It 
also provides Design Space Exploration capability to obtain a near optimum design 
solution for the system under consideration.  

For validation, we have considered Cradle Technologies’ MDSP architecture [12]. 
This architecture uses a combination of low performance RISC and DSP processors, 
with each chip consisting of 36 to 60 processors. This architecture provides a very 
high raw computational power in the range of 10-15 GMACs. We have developed an 
interpreter for MILAN to model applications for MDSP. In addition, we have 
developed and incorporated a new heuristic for mapping applications on clustered 
architecture. In this paper, we have presented modeling of a complex application 
Mpeg-2 Audio Video Decoder (MAVD) using MILAN on the MDSP chip.  

The paper is organized as follows. Section 2 gives the problem definition, section 
3 discusses the Model Interpreter, section 4 discusses the MAVD modeling, section 5 
discusses the related work in this area and section 6 has the concluding remarks. 

2   Problem Definition 

The MDSP is a heterogeneous multi-core chip developed by Cradle Technologies. 
The chip has a hierarchical architecture, with clusters within a chip. Each cluster or 
Quad consists of 4 RISC processors or PEs, 8 DSP co-processors or DSEs, 64 Kbytes 
of data memory, 4 channel DMA engines and other resources such as semaphores, 
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and timers. Each chip may have varying number of clusters from 1 to 5. If one wants 
to design an MPEG-2 Audio Video Decoder (MAVD) system using the MDSP chip, 
one needs to decide on the resource requirements for each task. A typical MAVD 
system will consists of following tasks: Audio Decoder, Video Decoder, Audio 
Renderer, Video Renderer, TS Parser, System Controller, TS Feeder Simulator. The 
memory and processor requirement provided by Cradle Technologies is given in the 
Fig. 1. 
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Fig. 1. MAVD System Resource Requirement Table 
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Fig. 2. MAVD System Communication Graph 

While designing such a complex system, the extent of communication between 
different modules might not be obvious. One would like to select a design, which 
would minimize the execution time. Most of the time the system tasks are developed 
independently and needs to be integrated. During integration, one would like to map 
the system on the chip, which would reduce the communication time, which in turn 
would minimize the execution time. MILAN provides excellent design space exploration 
functionality, whereby one can consider different designs, simulate those at high level or 
low level using the appropriate architecture simulators and then choose a good solution. 
In our case, since we are only considering one chip, the simulation becomes simple. 
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MILAN incorporates an optimal mapping algorithm for linear array of tasks [13]. But 
it requires the tasks to be executed in linear order, whereas in our case, the tasks are 
executed concurrently on different processors. Hence it cannot be used for our 
problem domain. In order to support MDSP chip in MILAN, one needs to provide: 

a. MILAN interpreter to interpret system models and generate output for 
MDSP simulator, and associated tools. 

b. A new mapping heuristic to map applications on MDSP processor. 

3   Model Interpreter 

MILAN uses GME or Generic Modeling Environment [14] to synthesize a domain 
specific modeling interface for modeling the system. GME provides interfaces to 
specify different modeling paradigm for different domains. Modeling paradigm is a 
set of building blocks and composition rules using which, the designer models the 
system. MILAN is an example of such a modeling paradigm. 

While modeling any system, the designer will perform two main activities: 
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Fig. 3. System Modeling 
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1. Application Modeling, where the designer defines application modules or tasks 
and inter-task communication between different modules using task-graph. 

2. Resource modeling, where the designer models the underlying architecture. In 
this the designer defines various architecture parameters such as frequency, 
power consumption, cache size etc. for the architecture under consideration. 

In application modeling, we found no provision to specify shared memory 
communication between multiple modules. In the existing setup in order to represent 
shared memory communication one would have to show it by connecting different 
modules using communication channels. This might complicate the design with lots 
of connections between modules involved in communication. In order to represent 
shared memory communication, we added a new feature to the paradigm to represent 
shared memory communication. 

MILAN provides various model interpreters to interpret the model and generate 
output for different simulators. In order to generate the output for MDSP simulator, 
we developed our own interpreter. This interpreter takes the model and applies our 
proposed heuristic to generate a good mapping scheme and then generate code to 
allocate resources and launch the specific threads of various tasks on the processors. 
This divides the interpreter into three main components, the Model Parser, the 
Mapping Heuristic and the Code Generator. 

3.1   Model Parser 

The Model parser is a COM object, which is invoked from the GME as an interpreter. 
This parser performs a top-down parsing of the components defined in the GME and 
forms the input to the Mapping heuristics. It forms the list of tasks T defined, based 
on primitive components. It also forms the resource requirement matrix and 
communication matrix. The priority for each task is obtained from the attributes of the 
task.  The processor requirement for each task is obtained from the resource reference 
provided by the user in the Mapping Aspect window. These inputs are provided to the 
Mapping heuristic module to provide a good mapping scheme. 

3.2   Mapping Heuristic 

MILAN provides a mapping algorithm to map linear array of tasks onto single and 
multiple device. It requires the tasks to be in linear order where, given a set of tasks T 
= {t1, t2,…..tn }, ti+1 executes only after ti, 1≤ i ≤ n. The mapping problem in our case 
is different than the one discussed.  

Suppose we want to map the MAVD system on the MDSP processor by integrating 
different tasks, which were developed independently. In this case some of the tasks 
are independent, while others have inter-task communication. The first requirement 
would be to allocate all the processors for a given task in the same cluster, as most of 
the tasks will have more intra-task communication than inter-task communication. In 
addition to intra-task communication, the tasks will communicate with the allocated 
resources to varying degree. The resources in this case are memory, and co-processor. 
If there were more communication between co-processor and processor than inter-
task communication, it would be better to allocate the co-processor from the same 
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cluster in which the task is running, and then try to see if the two tasks involved in 
communication can be allocated to the same cluster. 

We have developed Improved First Fit Decreasing [15], which improves over the 
existing First Fit Decreasing (FFD) algorithm [16]. Since we use a priority queue, if 
there are m clusters then this will require O(nlogn*m) time, where n is the number of 
tasks to be mapped. So, in worst case it would be O(n2logn), where the number of 
tasks is equal to the number of clusters in the chip.  

3.3   Code Generation Module 

The code generation module generates C code to allocate processors and launch 
programs on the processors. To compile a multi-task program on MDSP, one needs a 
loader script also known as LD script to determine the code sections and the memory 
requirement for the executable. This LD script is used by the GNU ld program to 
generate the executable. The script specifies the tasks running with information about 
the local and DRAM data memory used by each task. In addition it also specifies the 
code sections for each task.  

For any program running on MDSP, the main thread is started on QUAD 0, PE 0. 
This thread will start the other threads on the other processors. The task, which is 
mapped to QUAD 0, PE 0 forms the main thread. This thread will launch one thread 
from each of the other tasks on the mapped processors. Those threads in turn will start 
threads from its task. The launching is similar to a tree structure and its shown in the 
following figure. 

The code in table 1 is from the main task launched on QUAD 0 PE 0.   
During application modeling one specifies the buffer length to be used in the 

communication between different modules. This buffer length is used to allocate the 
shared memory structure. A shared memory structure consists of the following fields, 
Memory ID, Semaphore, Thread Count, Buffer Size, and Buffer Pointer. 

Based on the tasks involved in communication the buffer will be allocated in local 
memory or shared DRAM. If all the tasks involved in communication are in the same 
cluster, then the shared memory is allocated in the local memory of the cluster. This 
would reduce the communication latency as the local memory access takes far less 
amount of time than DRAM. But, this is based on the availability of the local memory.  
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Fig. 4. Task Startup Tree 
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If the tasks involved in communication are in different cluster, then the buffer is 
allocated in the Shared DRAM. Some communication buffers require to be guarded by 
a semaphore. Again, based on the tasks involved in communication, the semaphores are 
allocated from the local or global pool. The thread count indicates the number of threads 
involved in communication. The buffer can be freed when the thread count goes to zero. 

For shared memory communication one has to generate structures to be used with 
the shared memory library. We developed this library, and it has a similar structure to 
that of the windows shared memory library API. The shared memory library 
structures are generated in common header files. Once this code is generated, the user 
can integrate it with the core Intellectual Property modules developed. In the case of 
MAVD, the audio and video library forms the IP libraries. 

This code is compiled and linked using the LD script generated to produce the 
executable. This executable is run on the hardware or the simulator to verify the 
results. 

Table 1. Code generated by the Mapping tool for one of the synthetic test application 

#define MAX_PROCS 20 /*total processors on the chip*/ 
void main() 
{ 
 int procArray[MAX_PROCS] = {0,0,0,5,6,6,6,6,2,2,2,5,3,3,3,7,1,1,4,4};  /* application number   

loaded on proc */ 
 int my_peid; 
 my_peid = (_QUAD_INDEX * 4) + _PE_INDEX; 
 if(my_peid == 0) 
 { 
  StartPrograms(procArray); /* start 1  instance of each task*/ 
  start_other_pes(0, 2, procArray); /* other instances of this task */ 
 } my_peid = get_PE_number();  /* get my PE ID*/ 
 /*Perform useful computation*/ 
 terminate_program(my_peid, (Load_Table *)load_table_address, FREE_PL | FREE_PD); /*  

terminate the task*/ 
} 
StartPrograms(int *procArray) 
{ 
 int i; 
 for(i = 1; i < MAX_PROCS; i++) /*  for all the tasks*/ 
  { 
  if(procArray[i] != -1) 
  { 
   if(procArray[i-1] != procArray[i]) /* start only one instance of this task*/ 
    start_program_on_proc(procArray[i], i, 0); 
  } 
 } 
} 

4   MAVD Modeling 

The two main types of modeling in MILAN are Application Modeling and Resource 
Modeling. During application modeling, one builds the dataflow model in the 
dataflow aspect window.  There are three main types of dataflow classes; Primitive, 
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Compound, and Alternate. Compounds are composite dataflow nodes. They contain 
dataflow graphs themselves. For example, in MAVD, the Audio Decoder is a 
composite model. It will contain the PE component and the DSE component, which 
forms the primitive model. Alternates are similar to composite models, but they 
represent alternative implementation. Suppose a component can be executed on PE 
and on DSE then one would specify it as an alternate. During mapping one can select 
the processor based on the availability. For system instantiation only one alternate is 
selected.  Figure 5 shows the MAVD model created in GME using MILAN paradigm. 
On the right hand window the folder structure is shown.  MAVD is the root composite 
folder with different modules in it. These folders in the root folder are composite 
module and form root for the module. The communication between different modules 
are bi-directional and is shown using connection between in-port and out-port of the 
specific modules. 

 

Fig. 5. Modeling MAVD using GME 
 

 

Fig. 6. MAVD Solution for MDSP Chip 
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For each of the composite module there are primitive or composite modules within 
these modules. Figure 6 shows the Video Decoder Module. There are 6 Video 
Decoder threads running on 6 PEs and 12 Video Decoder threads running on 12 
DSEs. The 6 PE threads are shown as 6 primitive components, while the 12 DSE 
threads are enclosed within a composite component, which has 12 primitive 
components. This makes design easy to understand. 

In dataflow model there are two ways of showing shared memory communication. 
One way is to show it through connection between all the modules. This becomes 
complicated with too many connections. The other way is add a new primitive called 
SharedMemory in the window, which will show the shared memory communication 
between all the modules shown in the current window. We have defined a new Atom 
[13] called SSharedVariable in the MILAN paradigm.  

Once a primitive component is defined, it needs to be mapped onto one type of 
processor. But before we map onto processor, we need to model these processors. 
This is done using the Resource Modeling paradigm in MILAN.  MILAN provides 
support for resource modeling to model various architecture capabilities that can be 
exploited to perform design space exploration and drive a set of widely used energy 
and latency simulators from a single model.  The Resource Modeling provides 
support for modeling of various architectural components such as CPU, BUS, 
Memory, IO.  One can even specify the type of cache used in the architecture. For 
each component one can specify what is the throughput, energy estimate, latency 
estimate and various other parameters. To specify that the current primitive module is 
going to run on a particular processor, one has to provide a reference to the processor 
in the primitive module in the mapping aspect.  

Figure 6 shows the final mappin. In the MAVD system, the Video Decoder and 
Video Renderer has more communication, so they are placed within the same cluster. 
Similarly, Audio Decoder and Audio Renderer are placed in the same cluster. There is 
more communication between TS-PES Parser task and Audio Decoder task, so they 
have to be placed in the same cluster. Similarly, the System Controller has more 
communication with Audio Decoder due to higher rater of Audio ISR than Video ISR 
and needs to be placed in the same cluster. 

We compared the mapping obtained by our algorithm and the mapping done 
manually by experienced system designers from Cradle over the span of two years 
and found it to be same. The design had gone through multiple iterations before it was 
finalized, while we obtained it using our tool within the first iteration. 

5   Related Work 

One of the most popular hardware/software co-design tools is Ptolemy. It provides an 
environment for design, modeling, and simulation of concurrent heterogeneous 
embedded systems. Though Ptolemy provides different models of computation, the 
main problem with it is, it does not provide mechanisms for integration of external 
simulators. 

Writing simulators of complex multiprocessor systems for the modeling 
environment is not a trivial task. Instead, one can use the existing simulators provided 
with these processors and use them in the modeling environment. This is precisely 
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what MILAN offers. Easy integration of existing simulators, ease in modification of 
the paradigm to suit the underlying architecture. 

There are other co-design or modeling projects for embedded system. Some of 
them are Polis [8], which uses finite state machine model for hardware/software co-
design, Chinook [8], which focuses on IP composition, communication synthesis and 
rapid evaluation. In Chinook, one has to provide behavioral description of the 
application, target description and mapping function in order to synthesize the system. 
But none of these tools could suffice our need of simulator integration. The 
mechanism for mapping application onto the architecture was not present in Chinook. 
Instead, the user has to provide the allocation function. Though Polis provides 
mapping mechanism, it was not for clustered architecture like the one we are 
considering. 

MILAN incorporates an optimal mapping algorithm for linear array of tasks [13]. 
But it requires the tasks to be executed in linear order, whereas in our case, the tasks 
are executed concurrently on different processors. Hence it cannot be used for our 
problem domain. There has been lot of research in scheduling theory for various types 
of problems [17] [18][19][20]. The solutions from these researches could not be 
directly applied to the problem under consideration.  

6   Conclusions 

In this paper we have presented tools to model complex high-performance embedded 
systems. We have validated our techniques by modeling a complex application using 
a multi-core processor. The same techniques can be used to model complex 
applications on multi-chip boards.  

The tools still require man-in-loop process to provide feedback to the modeling 
environment after simulation, based on the profiling results. The future direction of 
the research would be to automate this process, so that given a system, the tools 
would optimize the design automatically without much human intervention. 
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