
L.T. Yang et al. (Eds.): EUC 2005, LNCS 3824, pp. 360 – 370, 2005.
© IFIP International Federation for Information Processing 2005

On Tools for Modeling High-Performance Embedded
Systems

Anilkumar Nambiar and Vipin Chaudhary

Department of Computer Science, Wayne State University
{anambiar, vipin}@wayne.edu

Abstract. Most of the new embedded systems require high performance pro-
cessors at low power. To cater to these needs, most semiconductor companies are
designing multi-core processors, also known as chip-multiprocessors, while some
are developing multi-chip boards with existing multi-core processors. Developing
applications on these powerful architectures require specialized tools to obtain
the optimum performance. Most applications running on these processors not
only require high processing power, but also have tight resource constraints. For
both, chip-multiprocessors and multi-chip boards, one faces some common
problems while developing applications for them. To meet this end, we have
developed tools to model high-performance embedded applications on these
complex high-end systems. We have integrated these tools in the modeling
framework of MILAN, and have modeled a real application, Mpeg-2 Audio
Video Decoder. For validation we have used Cradle Technologies MDSP multi-
core chip as the target processor.

1 Introduction

Chip Multiprocessors are being widely used to develop System-on-Chip (SOC)
solutions for high-end embedded systems. An SOC consists of processors
(RISC/DSP), internal memory, external memory, device controllers, timers, etc. SOC
architecture for a low/medium scale device would not require more than a couple of
processors. On the other hand, high-end embedded systems, such as HDTV, bio-
medical applications, high capacity printers and copiers would require multiple cores
of RISC/DSP or a combination of both, to fulfill the high performance requirement.
Most of these applications can be parallelized over multiple low power processors to
obtain the desired performance.

Most of the multi-core chips available consist of not more than 8 cores on a single
chip [1]. For a high-end application this might not be suitable. ASIC-based solutions
are not suitable either, as these solutions take longer time to market and have high
cost per unit. There are few companies developing multi-core chips with 30-60 cores
in one chip [2] [3]. While other companies, in order to achieve the high performance
requirements for these high-end applications, develop multi-chip boards, with each
board housing 2-4 chips, where each chip has 4-8 processors [4][5][6]. This gives
enough computational power for the high-end systems.

As the number of processors increase, the bandwidth requirement for the
application over the shared global bus increases. In order to sustain such high

 On Tools for Modeling High-Performance Embedded Systems 361

requirements, these systems have a hierarchical architecture consisting of clusters.
Each cluster is made up of RISC and/or DSP processors with some shared internal
memory to be used as a scratch pad. In addition, it has semaphores, timers and
interrupts. Any access to the resource within the cluster takes less time as compared to
any access to resources in the other cluster or global resources since the request has to
be served through shared global bus. The desirable implementation on this system
would be to reduce access outside the cluster in order to improve performance. The
programmer can also benefit from the nature of most of the high-end applications,
where the computation to communication ratio is high.

Due to similarity in architecture, these high processor-count chip-multiprocessors
and multi-chip board solutions face some common problems for developing
applications. Though these systems provide high computational power, they require
specialized tools to harness their raw power. One requires tools to design and map
resource constraint applications on these high performance systems, tools to simulate
the system at various granularity levels and provide feedback through profiling
statistics, which can be incorporated back into the design to optimize the application.
As most of the high-end system would be heterogeneous, the tools must provide
mechanisms or interfaces for seamless integration of different simulators for different
types of processors in the underlying system.

There are lots of tools for modeling SOC systems. Some of them are Ptolemy[7],
Polis [8], Chinook [9], SystemC [10] and MILAN [11]. We tried to use these tools for
modeling systems on such clustered/hierarchical architecture and found that they were
not suitable in their existing setup. Modification needs to be done to incorporate the
type of architecture we were using. Most of these tools are complex and proved
cumbersome to integrate the simulators for this architecture. MILAN is relatively
easy to understand and provides simple interface to integrate any new simulator. It
also provides Design Space Exploration capability to obtain a near optimum design
solution for the system under consideration.

For validation, we have considered Cradle Technologies’ MDSP architecture [12].
This architecture uses a combination of low performance RISC and DSP processors,
with each chip consisting of 36 to 60 processors. This architecture provides a very
high raw computational power in the range of 10-15 GMACs. We have developed an
interpreter for MILAN to model applications for MDSP. In addition, we have
developed and incorporated a new heuristic for mapping applications on clustered
architecture. In this paper, we have presented modeling of a complex application
Mpeg-2 Audio Video Decoder (MAVD) using MILAN on the MDSP chip.

The paper is organized as follows. Section 2 gives the problem definition, section
3 discusses the Model Interpreter, section 4 discusses the MAVD modeling, section 5
discusses the related work in this area and section 6 has the concluding remarks.

2 Problem Definition

The MDSP is a heterogeneous multi-core chip developed by Cradle Technologies.
The chip has a hierarchical architecture, with clusters within a chip. Each cluster or
Quad consists of 4 RISC processors or PEs, 8 DSP co-processors or DSEs, 64 Kbytes
of data memory, 4 channel DMA engines and other resources such as semaphores,

362 A. Nambiar and V. Chaudhary

and timers. Each chip may have varying number of clusters from 1 to 5. If one wants
to design an MPEG-2 Audio Video Decoder (MAVD) system using the MDSP chip,
one needs to decide on the resource requirements for each task. A typical MAVD
system will consists of following tasks: Audio Decoder, Video Decoder, Audio
Renderer, Video Renderer, TS Parser, System Controller, TS Feeder Simulator. The
memory and processor requirement provided by Cradle Technologies is given in the
Fig. 1.

Program
and its
Resources

Audio
Deco-
der

Audio
Rend-
erer

Video
Deco-
der

Video
Rend-
erer

TS
Parser

System
Cont-
roller

TS
Feeder
Simulato

ISR
Simu-
lator

Timer
Simu-
lator

Compu-
tation

1 PE
1 DSE
(1 data
DSE)

1 PE
1 DSE

6 PE
12 DSE

1 PE
2 DSE

1 PE
1 DSE

1 PE 1 PE 1 DSE 1 DSE

Private
Local
Memory

0x22D0 0xDD0 0xD68 0xBF8 0xED8 0x2F0 0x78 - -

Shared
Local
Memory

- - 0x9C0 - 0x8 - - - -

Fig. 1. MAVD System Resource Requirement Table

Audio
Decoder

Audio
Renderer

Video
Decoder

Video
Renderer

TS
Parser

System
Controller

TS
Feeder

Fig. 2. MAVD System Communication Graph

While designing such a complex system, the extent of communication between
different modules might not be obvious. One would like to select a design, which
would minimize the execution time. Most of the time the system tasks are developed
independently and needs to be integrated. During integration, one would like to map
the system on the chip, which would reduce the communication time, which in turn
would minimize the execution time. MILAN provides excellent design space exploration
functionality, whereby one can consider different designs, simulate those at high level or
low level using the appropriate architecture simulators and then choose a good solution.
In our case, since we are only considering one chip, the simulation becomes simple.

 On Tools for Modeling High-Performance Embedded Systems 363

MILAN incorporates an optimal mapping algorithm for linear array of tasks [13]. But
it requires the tasks to be executed in linear order, whereas in our case, the tasks are
executed concurrently on different processors. Hence it cannot be used for our
problem domain. In order to support MDSP chip in MILAN, one needs to provide:

a. MILAN interpreter to interpret system models and generate output for
MDSP simulator, and associated tools.

b. A new mapping heuristic to map applications on MDSP processor.

3 Model Interpreter

MILAN uses GME or Generic Modeling Environment [14] to synthesize a domain
specific modeling interface for modeling the system. GME provides interfaces to
specify different modeling paradigm for different domains. Modeling paradigm is a
set of building blocks and composition rules using which, the designer models the
system. MILAN is an example of such a modeling paradigm.

While modeling any system, the designer will perform two main activities:

Modeling
Framework

Model Interpreter
developed by us

Model

Application Resource

Parse Model and Parameters

Map Application

Generate Simulator files

Integrate with Codec Library

Simulate System using

Generate Profiling Results

Generate C Code to
allocate Resources

Generate Linker Script
for Memory Maps

Manually modify
heuristic parameters
to improve system
performance

Fig. 3. System Modeling

364 A. Nambiar and V. Chaudhary

1. Application Modeling, where the designer defines application modules or tasks
and inter-task communication between different modules using task-graph.

2. Resource modeling, where the designer models the underlying architecture. In
this the designer defines various architecture parameters such as frequency,
power consumption, cache size etc. for the architecture under consideration.

In application modeling, we found no provision to specify shared memory
communication between multiple modules. In the existing setup in order to represent
shared memory communication one would have to show it by connecting different
modules using communication channels. This might complicate the design with lots
of connections between modules involved in communication. In order to represent
shared memory communication, we added a new feature to the paradigm to represent
shared memory communication.

MILAN provides various model interpreters to interpret the model and generate
output for different simulators. In order to generate the output for MDSP simulator,
we developed our own interpreter. This interpreter takes the model and applies our
proposed heuristic to generate a good mapping scheme and then generate code to
allocate resources and launch the specific threads of various tasks on the processors.
This divides the interpreter into three main components, the Model Parser, the
Mapping Heuristic and the Code Generator.

3.1 Model Parser

The Model parser is a COM object, which is invoked from the GME as an interpreter.
This parser performs a top-down parsing of the components defined in the GME and
forms the input to the Mapping heuristics. It forms the list of tasks T defined, based
on primitive components. It also forms the resource requirement matrix and
communication matrix. The priority for each task is obtained from the attributes of the
task. The processor requirement for each task is obtained from the resource reference
provided by the user in the Mapping Aspect window. These inputs are provided to the
Mapping heuristic module to provide a good mapping scheme.

3.2 Mapping Heuristic

MILAN provides a mapping algorithm to map linear array of tasks onto single and
multiple device. It requires the tasks to be in linear order where, given a set of tasks T
= {t1, t2,…..tn }, ti+1 executes only after ti, 1≤ i ≤ n. The mapping problem in our case
is different than the one discussed.

Suppose we want to map the MAVD system on the MDSP processor by integrating
different tasks, which were developed independently. In this case some of the tasks
are independent, while others have inter-task communication. The first requirement
would be to allocate all the processors for a given task in the same cluster, as most of
the tasks will have more intra-task communication than inter-task communication. In
addition to intra-task communication, the tasks will communicate with the allocated
resources to varying degree. The resources in this case are memory, and co-processor.
If there were more communication between co-processor and processor than inter-
task communication, it would be better to allocate the co-processor from the same

 On Tools for Modeling High-Performance Embedded Systems 365

cluster in which the task is running, and then try to see if the two tasks involved in
communication can be allocated to the same cluster.

We have developed Improved First Fit Decreasing [15], which improves over the
existing First Fit Decreasing (FFD) algorithm [16]. Since we use a priority queue, if
there are m clusters then this will require O(nlogn*m) time, where n is the number of
tasks to be mapped. So, in worst case it would be O(n2logn), where the number of
tasks is equal to the number of clusters in the chip.

3.3 Code Generation Module

The code generation module generates C code to allocate processors and launch
programs on the processors. To compile a multi-task program on MDSP, one needs a
loader script also known as LD script to determine the code sections and the memory
requirement for the executable. This LD script is used by the GNU ld program to
generate the executable. The script specifies the tasks running with information about
the local and DRAM data memory used by each task. In addition it also specifies the
code sections for each task.

For any program running on MDSP, the main thread is started on QUAD 0, PE 0.
This thread will start the other threads on the other processors. The task, which is
mapped to QUAD 0, PE 0 forms the main thread. This thread will launch one thread
from each of the other tasks on the mapped processors. Those threads in turn will start
threads from its task. The launching is similar to a tree structure and its shown in the
following figure.

The code in table 1 is from the main task launched on QUAD 0 PE 0.
During application modeling one specifies the buffer length to be used in the

communication between different modules. This buffer length is used to allocate the
shared memory structure. A shared memory structure consists of the following fields,
Memory ID, Semaphore, Thread Count, Buffer Size, and Buffer Pointer.

Based on the tasks involved in communication the buffer will be allocated in local
memory or shared DRAM. If all the tasks involved in communication are in the same
cluster, then the shared memory is allocated in the local memory of the cluster. This
would reduce the communication latency as the local memory access takes far less
amount of time than DRAM. But, this is based on the availability of the local memory.

Task1

Task2 Task3 Taskn

Thread 2
Thread 3 Thread n

Fig. 4. Task Startup Tree

366 A. Nambiar and V. Chaudhary

If the tasks involved in communication are in different cluster, then the buffer is
allocated in the Shared DRAM. Some communication buffers require to be guarded by
a semaphore. Again, based on the tasks involved in communication, the semaphores are
allocated from the local or global pool. The thread count indicates the number of threads
involved in communication. The buffer can be freed when the thread count goes to zero.

For shared memory communication one has to generate structures to be used with
the shared memory library. We developed this library, and it has a similar structure to
that of the windows shared memory library API. The shared memory library
structures are generated in common header files. Once this code is generated, the user
can integrate it with the core Intellectual Property modules developed. In the case of
MAVD, the audio and video library forms the IP libraries.

This code is compiled and linked using the LD script generated to produce the
executable. This executable is run on the hardware or the simulator to verify the
results.

Table 1. Code generated by the Mapping tool for one of the synthetic test application

#define MAX_PROCS 20 /*total processors on the chip*/
void main()
{
 int procArray[MAX_PROCS] = {0,0,0,5,6,6,6,6,2,2,2,5,3,3,3,7,1,1,4,4}; /* application number

loaded on proc */
 int my_peid;
 my_peid = (_QUAD_INDEX * 4) + _PE_INDEX;
 if(my_peid == 0)
 {
 StartPrograms(procArray); /* start 1 instance of each task*/
 start_other_pes(0, 2, procArray); /* other instances of this task */
 } my_peid = get_PE_number(); /* get my PE ID*/
 /*Perform useful computation*/
 terminate_program(my_peid, (Load_Table *)load_table_address, FREE_PL | FREE_PD); /*

terminate the task*/
}
StartPrograms(int *procArray)
{
 int i;
 for(i = 1; i < MAX_PROCS; i++) /* for all the tasks*/
 {
 if(procArray[i] != -1)
 {
 if(procArray[i-1] != procArray[i]) /* start only one instance of this task*/
 start_program_on_proc(procArray[i], i, 0);
 }
 }
}

4 MAVD Modeling

The two main types of modeling in MILAN are Application Modeling and Resource
Modeling. During application modeling, one builds the dataflow model in the
dataflow aspect window. There are three main types of dataflow classes; Primitive,

 On Tools for Modeling High-Performance Embedded Systems 367

Compound, and Alternate. Compounds are composite dataflow nodes. They contain
dataflow graphs themselves. For example, in MAVD, the Audio Decoder is a
composite model. It will contain the PE component and the DSE component, which
forms the primitive model. Alternates are similar to composite models, but they
represent alternative implementation. Suppose a component can be executed on PE
and on DSE then one would specify it as an alternate. During mapping one can select
the processor based on the availability. For system instantiation only one alternate is
selected. Figure 5 shows the MAVD model created in GME using MILAN paradigm.
On the right hand window the folder structure is shown. MAVD is the root composite
folder with different modules in it. These folders in the root folder are composite
module and form root for the module. The communication between different modules
are bi-directional and is shown using connection between in-port and out-port of the
specific modules.

Fig. 5. Modeling MAVD using GME

Fig. 6. MAVD Solution for MDSP Chip

368 A. Nambiar and V. Chaudhary

For each of the composite module there are primitive or composite modules within
these modules. Figure 6 shows the Video Decoder Module. There are 6 Video
Decoder threads running on 6 PEs and 12 Video Decoder threads running on 12
DSEs. The 6 PE threads are shown as 6 primitive components, while the 12 DSE
threads are enclosed within a composite component, which has 12 primitive
components. This makes design easy to understand.

In dataflow model there are two ways of showing shared memory communication.
One way is to show it through connection between all the modules. This becomes
complicated with too many connections. The other way is add a new primitive called
SharedMemory in the window, which will show the shared memory communication
between all the modules shown in the current window. We have defined a new Atom
[13] called SSharedVariable in the MILAN paradigm.

Once a primitive component is defined, it needs to be mapped onto one type of
processor. But before we map onto processor, we need to model these processors.
This is done using the Resource Modeling paradigm in MILAN. MILAN provides
support for resource modeling to model various architecture capabilities that can be
exploited to perform design space exploration and drive a set of widely used energy
and latency simulators from a single model. The Resource Modeling provides
support for modeling of various architectural components such as CPU, BUS,
Memory, IO. One can even specify the type of cache used in the architecture. For
each component one can specify what is the throughput, energy estimate, latency
estimate and various other parameters. To specify that the current primitive module is
going to run on a particular processor, one has to provide a reference to the processor
in the primitive module in the mapping aspect.

Figure 6 shows the final mappin. In the MAVD system, the Video Decoder and
Video Renderer has more communication, so they are placed within the same cluster.
Similarly, Audio Decoder and Audio Renderer are placed in the same cluster. There is
more communication between TS-PES Parser task and Audio Decoder task, so they
have to be placed in the same cluster. Similarly, the System Controller has more
communication with Audio Decoder due to higher rater of Audio ISR than Video ISR
and needs to be placed in the same cluster.

We compared the mapping obtained by our algorithm and the mapping done
manually by experienced system designers from Cradle over the span of two years
and found it to be same. The design had gone through multiple iterations before it was
finalized, while we obtained it using our tool within the first iteration.

5 Related Work

One of the most popular hardware/software co-design tools is Ptolemy. It provides an
environment for design, modeling, and simulation of concurrent heterogeneous
embedded systems. Though Ptolemy provides different models of computation, the
main problem with it is, it does not provide mechanisms for integration of external
simulators.

Writing simulators of complex multiprocessor systems for the modeling
environment is not a trivial task. Instead, one can use the existing simulators provided
with these processors and use them in the modeling environment. This is precisely

 On Tools for Modeling High-Performance Embedded Systems 369

what MILAN offers. Easy integration of existing simulators, ease in modification of
the paradigm to suit the underlying architecture.

There are other co-design or modeling projects for embedded system. Some of
them are Polis [8], which uses finite state machine model for hardware/software co-
design, Chinook [8], which focuses on IP composition, communication synthesis and
rapid evaluation. In Chinook, one has to provide behavioral description of the
application, target description and mapping function in order to synthesize the system.
But none of these tools could suffice our need of simulator integration. The
mechanism for mapping application onto the architecture was not present in Chinook.
Instead, the user has to provide the allocation function. Though Polis provides
mapping mechanism, it was not for clustered architecture like the one we are
considering.

MILAN incorporates an optimal mapping algorithm for linear array of tasks [13].
But it requires the tasks to be executed in linear order, whereas in our case, the tasks
are executed concurrently on different processors. Hence it cannot be used for our
problem domain. There has been lot of research in scheduling theory for various types
of problems [17] [18][19][20]. The solutions from these researches could not be
directly applied to the problem under consideration.

6 Conclusions

In this paper we have presented tools to model complex high-performance embedded
systems. We have validated our techniques by modeling a complex application using
a multi-core processor. The same techniques can be used to model complex
applications on multi-chip boards.

The tools still require man-in-loop process to provide feedback to the modeling
environment after simulation, based on the profiling results. The future direction of
the research would be to automate this process, so that given a system, the tools
would optimize the design automatically without much human intervention.

References

1. Arm Corporation, www.arm.com
2. Cradle Technologies, www.cradle.com
3. Azul Systems, www.azulsystems.com
4. Kestral Multiprocessor, http://www.soe.ucsc.edu/research/kestrel/
5. Orion Multisystems, www.orionmulti.com
6. ClearSpeed, www.clearspeed.com
7. Davis J. et al. , Overview of the Ptolemy project, ERL Technical Report CB/ERL No.

M99/37, Dept EECS, University of California Berkeley, July 1999
8. Balarin F. et. al. : Hardware-Software Co-Design of embedded Systems: The POLIS

Approach, Kluwer Academic Publisher 1997
9. Chou P. et. al.: IPChinook: An integrated IP-based design framework for Distributed

Embedded Systems, DAC 1999
10. SystemC user Guide, http://www.systemc.org

370 A. Nambiar and V. Chaudhary

11. “MILAN: A Model Based Integrated Simulation Framework for Design of Embedded
Systems”, Agrawal A., Bakshi A., Davis J., Eames B., Ledeczi A., Mohanty S., Mathur V.,
Neema S., Nordstrom G., Prasanna V., Raghavendra, C., Singh M. Workshop on
Languages, Compilers, and Tools for Embedded Systems (LCTES 2001), Snowbird, Utah,
June 2001

12. “3400 Hardware Architecture Reference”, Cradle Technologies, www.cradle.com.
13. Milan Manual, http://milan.usc.edu
14. Ledeczi A., et.al., The Generic Modeling Environment, Workshop on Intelligent Signal

Processing , Budapest, Hungary, May 17, 2001
15. A. Nambiar and V. Chaudhary, “Mapping Resource Constrained Applications on Chip

Multiprocessors”, Proceedings of the 2005 International Conference on Embedded
Systems & Applications (ESA'05), Las Vegas, Nevada, June 2005.

16. E. G. Coffman, M. R. Garey, D. S. Johnson “Approximation algorithm for Bin Packing: A
Survey, Appears in Approximation Algorithms for NP-Hard Problems”, D. Hochbaum(ed)
PWS Publishing(1996)

17. V. Chaudhary and J. K. Aggarwal, ``A generalized scheme for mapping parallel
algorithms'', in IEEE Trans. on Parallel and Distributed Systems, Mar '93, pp. 328 - 346.

18. D. G. Feitelson and L. Rudolph, “Distributed hierarchical control for parallel processing.”
Computer 23(5), pp. 65-77 , May 1990

19. Dror G. Feitelson, “Packing Schemes for Gang Scheduling”, Job Scheduling Strategies for
Parallel Processing -- Proceedings of the IPPS'96 Workshop (1996)

20. Y.-K. Kwok, I. Ahmad. “Dynamic critical-path scheduling: An effective technique for
allocating task graphs to multiprocessors.” IEEE Trans. on Parallel and Distributed
Systems, vol.7, pages 506--521, March 1996

	Introduction
	Problem Definition
	Model Interpreter
	Model Parser
	Mapping Heuristic
	Code Generation Module

	MAVD Modeling
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

