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Abstract - Most of the semiconductor companies are targeting multi-core processor for high-end embedded 
systems. Programming such processors for performance is quite cumbersome without proper development tools. 
Conventional mapping algorithms fail to address the issues of tight resource constraint found in embedded 
applications running on these processors. We present resource constraint based application-mapping heuristics 
for high performance multi-core embedded architectures. Experimental results using synthetic tests and real 
programs such as MPEG-2 Audio Video Decoder (MAVD) confirm the superiority of the proposed heuristics over 
existing solutions. For validation we have considered Cradle Technologies’ MDSP as the target multi-core 
processor.  
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1.0 Introduction 
An interesting trend in today’s high-end 

embedded systems is the use of system-on-chip 
architectures.  Most of these systems use 
homogenous multiprocessors, while some use 
heterogeneous multiprocessors.  The 
heterogeneous multiprocessors use a 
combination of RISC and DSP, as most of the 
applications today require both to varying 
degrees. MDSP chip developed by Cradle 
Technologies is one such example of clustered 
heterogeneous multiprocessor. These multi-core 
chips provide very high raw computational 
power. To harness this power one requires 
specialized tools to map and schedule 
applications. Without appropriate tools, the 
system development task is cumbersome at best 
and impossible at worst. We’ll target the MDSP 
architecture for this research, as most of the 
multi-core heterogeneous systems have similar 
architectures. In MDSP, each cluster is made up 
of RISC and DSP processors. The main goal of 
such clustering is to reduce the bandwidth 
requirement of the processors. Each cluster has 
its own set of resources such as memory, 
semaphore, timers, etc. The access to a resource 
within the cluster takes less clock cycles as 
compared to any access outside the cluster, as the 
request has to be served through a shared global 
bus.  The desirable implementation on this 
system would be to reduce access outside the 
cluster in order to improve performance. When 
you have a small system with one or two cluster, 

with each cluster having 12 processors as in the 
case of MDSP, the task of mapping applications 
is manageable. One can identify the resource 
requirements manually and map the application 
appropriately. But as soon as the number of 
clusters increases, the complexity of mapping 
applications increases. Rather than struggling to 
find an optimum-mapping scheme, the 
programmer could spend more time on 
development of the applications and leave the 
details of mapping to the tools. 

A mapping problem can be transformed 
into a scheduling problem and there has been a 
lot of research in scheduling theory[1]. We have 
developed a new heuristic to map tasks on the 
MDSP chip and have found better results over 
the existing heuristics. 

Rest of the paper is organized as follows.  
Section 2 gives the problem definition; section 3 
presents related work in scheduling theory; 
section 4 discusses the heuristics developed; 
section 5 presents experimental results; and 
section 6 has the concluding remarks. 
                                
2.0 Problem Definition  

The MDSP is a heterogeneous multi-
core chip developed by Cradle Technologies [2]. 
The Cradle CRA2003 chip has a hierarchical 
architecture, with clusters within a chip. Each 
cluster or Quad consists of 4 RISC processors or 
PEs, 8 DSP co-processors or DSEs, 64 Kbytes of 
data memory, 4 channel DMA engines and other 
resources such as semaphores, and timers. Each 
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Fig. 1 MAVD System Resource Requirement Table 
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chip may have varying number of clusters from 1 
to 5. If one wants to design an MPEG-2[3] 
Audio Video Decoder (MAVD) system using the 
MDSP chip, one needs to decide on the resource 
requirements for each task. A typical MAVD 
system will consists of following tasks: Audio 
Decoder, Video Decoder, Audio Renderer, 
Video Renderer, TS Parser, System Controller, 
TS Feeder Simulator. The memory and processor 
requirement is given in the Fig. 11 

The above tasks are developed 
independently and need to be integrated.  Some 
of the tasks are independent, while others have 
inter-task communication. The first requirement 
would be to allocate all the processors for a 
given task in the same cluster, as most of the 
tasks will have more intra-task communication 
than inter-task communication. In addition to 
intra-task communication, the tasks will 
communicate with the allocated resources to 
varying degree. The resources in this case are 
memory, and co-processor. If there were more 

                                                 
1 The figures were obtained from the MPEG-2 AV 
decoder developed at Cradle Technologies. 

communication between co-processor and 
processor than inter-task communication, it 
would be better to allocate the co-processor 
from the same cluster in which the task is 
running, and then try to see if the two tasks 
involved in communication can be allocated to 
the same cluster. So one assigns weight to the 
amount of communication for each resource 
type. This forms the basis for our heuristics. 
The communication graph for the video 
decoder is depicted in Fig. 2. 

The solution to the MAVD system is 
presented at the end of this paper. 

The problem could be formally stated 
as follows: 
Given a  
a) List of tasks T = <t1, t2, ….. tn> 
b) Task priority P = <p1, p2, ……pn> 
c) Fixed Resource requirement Rik, where i is 

the task id and k is the resource id 

d) ∑∑
= =

≤
n

i

m

k

ik RR
1 1

'  where R’ is the total 

resource available in the System,   
e) and Communication Cij= {1,0}, where i and j 

are task ids, is 1 if there is inter-task 
communication, 0 otherwise 

Find a mapping to reduce inter-cluster 
communication. 
 
3.0 Related Work 

Considerable research has been done in the 
scheduling theory [4]. We would like to show 
why the solutions from various researches 
couldn’t be directly applied to solve this 
problem. There have been solutions to problem 
with malleable tasks [5] [18] [19]. Shachnai and 
Turek [6] consider architecture similar to the one 
we are using. But the applications that we 
consider are not malleable and have strict 

Fig. 2 MAVD System Communication 
Graph 



resource requirement. Shrivastav [14] gives a 
polynomial time algorithm for multi-resource 
constraint scheduling. But it considers the 
resource to be of unit size and renders it unusable 
to us in its original form. Authors from the 
following paper [7] [15] [16] and [17] propose 
few generalized mapping algorithm to schedule 
directed acylic graph and lack solution for 
resource constraint. Solutions from other areas of 
research such as bin-packing, graph coloring, 
and linear programming are used for solving this 
problem. The mapping problem under 
consideration is similar to bin-packing problem. 
The bin-packing problem can be stated as 
follows: 

A list L = <a1,  a2…an> of items must be 
packed into, i.e. partitioned among a 
minimum cardinality set of bins B1 B2 
subject to the constraint that the set of items 
in any bin fits within that bin’s capacity.  

Here the clusters are bins and the 
applications need to be packed into these bins. 
The above statement requires the task not to be 
split across bins, but we relax the constraints by 
splitting the tasks across bins at the cost of 
communication overhead. Bin-packing has been 
proved to be NP-hard [8]. There has been 
sufficient research to obtain good approximate 
solutions to this problem [9]. These heuristics 
fail to consider the resource constraint. In the 
basic version of this problem the constraint could 
just have been the number of processors in a 
cluster and the processor requirement of the 
application. Then one could have just used one 
of the existing solutions for offline bin packing 
and applied them to obtain a solution. Our 
problem has multiple constraints, i.e. processors, 
memory, semaphores, timers, communications, 
etc. Most of the multicapacity bin-packing 
algorithms [10] are extensions to the single 
capacity bin-packing algorithm. These heuristics 
in their original form do not satisfy our 
requirements. The same applies for d-capacity 
Best Fit, Next Fit or Any Fit heuristic. We relax 
the requirement of placing all the sub-items in 
the same bin. In our case processors can be in 
one cluster and resources can be in other at the 
cost of communication overhead.  The second 
reason is that the above classical algorithms do 
not deal with the affinity between items or tasks. 
In our case the inter-task communication 
requires some tasks to be in the same bin to 
improve performance. There are multi-capacity 

bin-packing algorithms [11], which improves 
over the classical algorithms. Inter-
communication between the tasks and allocated 
resources requires the tasks and the resources to 
reside in the same bin. This renders these 
algorithms useless for the kind of task-graph we 
were mapping. We relax our assumptions a bit 
by not considering hard real time system 
scheduling. There have been polynomial time 
approximation heuristics for resource 
constrained scheduling [12] [13].  They use first 
fit decreasing technique (FFD) and have shown 
it to be (s + 1/3)-factor approximate. Since it’s a 
simple and efficient heuristic we used it as the 
base line for our heuristic and have improved on 
it. 
 
4.0 Improved First Fit Decreasing 
Algorithm (IFFD) 

Our proposed heuristic improves on the 
existing First Fit Decreasing (FFD) algorithm 
[9]. Rather than starting at a random initial state, 
we use FFD to map the tasks and then use that as 
the initial state and input to our heuristic. The 
initial state of the mapping application on 
processor is important. If one changes the initial 
state the resulting output is completely different. 
Here the key for sorting is the processor 
requirement of the application. The other 
resources are excluded at this stage. Since we use 
a priority queue, if there are m clusters then this 
will require O(nlogn*m) time, where n is the 
number of tasks to be mapped. So, in worst case 
it would be O(n2logn), where the number of tasks 
is equal to the number of clusters in the chip. 
Once the tasks are mapped using FFD, we form 
the initial state for the processor graph Gp. The 
processor graph Gp is an undirected graph and is 
defined as follows: 
 

Gp = {(V, E) | <u, v> ∈ E iff the tasks v and 
u are allocated to the processors in the same 
cluster} 

 
In FFD, we allocate the processors to the 

tasks based on the priority of the tasks. We start 
with the highest priority task and try to fulfill its 
requirement by allocating the required number of 
processors. Assigning a higher priority to a task 
not only makes sure that the resource 
requirement of the task is fulfilled before any 
other task is considered but it also helps in 
breaking ties. The allocation of processors is 



done from the same cluster, as it reduces intra-
task communication delay. Once the initial state 
mapping is completed we apply our heuristic to 
improve on that mapping. A processor graph Gp 
is constructed for the initial mapping. In 
addition, for each class of resource Rk used by 
the application, we construct a constraint graph 
Gk. The constraint graph Gk is undirected graph 
and is defined as follows: 
 

Gk = {(V, E) | <u, v> ∈ E iff the two tasks v 
and u can reside in the same cluster}  

 
There are two types of constraints, the 

communication constraint and the resource 
constraint. In a graph, which represents the 
communication constraint, there is an edge 
between two nodes if there is communication 
between those two tasks. In case of a resource 
constraint graph, there is an edge between two 
nodes if the resource requirement for those two 
nodes satisfies the criteria of being able to be 
accommodated in the same cluster. In our 
example we have considered co-processor and 
local memory as resource constraints. One can 
include additional constraints. 

Two tasks can reside in the same cluster 
iff  

Rk  ≥  Ruk + Rvk  
Here, Rk = Total Resource of type k  

available in a given Cluster 
Rik = Resource requirement of task i 
Rjk = Resource requirement of task j 

But, in fulfilling any constraint we 
always try to fulfill the primary constraint where 
the processors for any given task will be 
confined to a single cluster. In other words, our 
heuristic tries to avoid splits within tasks over 
clusters.  

The user assigns weight Wi to the 
constraints for each task. The weight assigned 
depends on its importance in that node. To make 
this notion clear, consider the case when there is 
more communication with a co-processor than 
inter-task communication. In this case one 
assigns more weight to the co-processor 
constraint and less weight to the inter-task 
communication constraint. Each node in the 
processor graph is assigned a value based on the 
number of constraints satisfied for that node. The 
value of each node can be determined as follows: 

Wi = ∑
=

m

k

k SC
1

*  

Ck is the weight assigned for resource 
class Rk. So higher the value, the more important 
it is to satisfy that constraint. S is a Boolean 
value, which is either 1 or 0, as the resource 
requirement for some may not be present. 

Once we assign a weight to each node, 
we calculate the weight of the processor graph as 
follows: 
 

O = ∑
=

n

i

iW
1

 

 
O is the objective function for this 

heuristic and the main goal of the algorithm is to 
maximize this objective function. 

We present the pseudo code for our 
heuristics below: 
 
4.1 IFFD Algorithm 
AllocateProcessor() 
1. For each task ti based on its priority Pi 

(highest priority first) 
1.1. Check its neighbors in processor 

constraint graph G0 (not the same as 
Gp) 

1.2. For each neighbor tj based on its priority 
Pj  (lowest priority first) 

1.2.1. Initialize constraint count to zero 
1.2.2. For each constraint Rjk for that 

task tj 
1.2.2.1. If there is an edge <ti, tj> in the 

constraint graph Gk increase 
the constraint count  

1.2.3. If all the constraints are satisfied 
and task tj is not optimized, then 
task tj is the best match. 

1.2.4. Else increment j, goto 1.2.1 
1.2.5. Allocate task ti,  tj to the same 

cluster using pair-wise 
exchange.  

1.2.6. If allocation is successful, mark 
ti and tj as optimized, increment 
i, and goto 1.1. 

1.2.7. Else increment j. 
1.3. For each neighbor tj in decreasing 

order of constraints satisfied 
1.3.1. Allocate task to the same cluster 

using pair-wise exchange.  



Graph1: Comparison of Heuristic with Optimum
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1.3.2. If allocation is successful, 
increment i, goto 1.1. 

1.3.3. Else increment j. 
 

Let us elaborate on the pair-wise 
exchange. Suppose one wants to get task xa and 
yb to the same cluster. Let the processor 
requirements of the un-optimized tasks in the 

two clusters be represented by set X= { x1, 
x2……xk }and Y = {y1, y2…...ym }, where 

i

k

i

x∑
=1

 = p  

 j

m

i

y∑
=1

 = p 

and p is the number of processors in cluster. 
When we perform pair-wise exchange, the tasks 
in the two clusters under consideration are sorted 
in increasing order according to their processor 
requirement.  
 
4.2 Pair-wise Exchange Algorithm for IFFD 
Allocation of task to the same cluster (pair-wise 
exchange algorithm) 
1. Check if the two tasks xa, yb can co-exist in 

the same cluster, by checking their processor 
requirement. If not return false 

2. For each sum s from 1 to p 
2.1. Check if a subset sum s for two elements 

exists in X 
2.2. Check if the same subset sum s for two 

elements exists in Y 
2.3. If found swap 

3. Calculate the weight of the processor graph. 
If the value of the processor graph is reduced 
then revert the changes made and return 
false, else return true. 

Lemma 1 
The approximation factor of this heuristic is not 
less than that obtained by FFD heuristics. 
Proof 

The initial mapping is obtained using FFD. 
During the pair-wise mapping after each 
exchange we re-calculate the value of the 
objective function and if this value is less than 
the value obtained we revert the changes. In this 
way we make sure that we don’t degrade the 
approximation obtained by the FFD heuristic  
 
Lemma 2 
Given an input set S of integer and another 
integer x it takes O(nlogn) to determine whether 
there exists two elements in S whose sum is 
exactly x. 
Proof 
Sort the input set S using a O(nlogn) comparison 
sort algorithm. For each element yi in the set S, 



search for zi where zi = x-yi. The search can be 
done using binary search on sorted elements 
which takes O(logn) time. So the total time is 
O(nlogn) + O(logn) = O(nlogn) time. 
 
Therefore the total time required for pairwise 
exchange is O(pnlogn), where n is the max task 
on one of the two clusters in consideration and p 
is the number of processors in the cluster 
 

Till now, we have not discussed the case 
where the processor requirement of the task 
exceeds the processor availability in the cluster. 
The solution is to split the tasks and allocate it on 
separate clusters. Since the task is split it cannot 
be optimized easily. One solution we have 
implemented is that if the task is split into z1, 
z2… zn units then we try to optimize it on zi, 
which is the largest fragment of the task. The 
remaining fragments will always remain un-
optimized and can be squeezed into any available 
free segment. The MAVD system is a typical 
example where the requirement of 6 processors 
by the video decoder cannot be satisfied by one 
cluster. In this case we have z1 = 4 and z2 = 2. 
We considered z1 as the main task and optimize 
on z1. The fragment z2 can be squeezed into any 
available processor. The other solution will be to 
consider z1 and z2 as separate tasks and optimize 
the mapping on both the tasks. The 
communication constraint will have the highest 
priority for z1 and z2, in case there is heavy intra-
task communication. 
 
5.0 Experimental Results 

Graph 1 compares the object function 
value obtained for FDD, IFFD, the Optimum 
Algorithm and the Worst Case Algorithm. For 
testing the heuristics, we generated synthetic 
tasks graphs.  

The resource requirements for the set of 
tasks were generated using the pseudorandom 
function such that the sum of resources was 
always less than or equal to the sum of the 
resources available on the MDSP chip. We have 
modeled our testing on a five cluster MDSP 
chip, with each cluster consisting of four PEs, 
eight DSEs, and 64Kbytes of data memory. We 
calculate the objective function for mapping 
generated by our heuristics.  

We also calculated the objective function 
for the initial state obtained using FFD 
algorithm. In most of the cases our algorithm 

generated better results than FFD algorithm. For 
test results, higher value indicates better results.  

The objective function for an optimum 
mapping scheme was calculated and was found 
to be the best. In addition to this the worst-case 
objective function was also calculated. The result 
for the tests conducted is depicted in Graph 1. 

The objective function for an optimum 
mapping scheme was calculated and was found 
to be the best. In addition to this the worst-case 
objective function was also calculated.  
 
5.1 MAVD System 

In the previous section we had discussed 
the MAVD system developed by Cradle 
Technologies. We mapped the system using our 
IFFD algorithm and obtained the solution using 
our heuristics. It is shown in Fig. 3. 

In the MAVD system, the Video 
Decoder and Video Renderer has more 
communication, so they are placed within the 
same cluster. Similarly, Audio Decoder and 
Audio Renderer are placed in the same cluster. 
There is more communication between TS-PES 
Parser task and Audio Decoder task, so they have 
to be placed in the same cluster. Similarly, the 
System Controller has more communication with 
Audio Decoder due to higher rater of Audio ISR 
than Video ISR and needs to be placed in the 
same cluster. 

We compared this mapping obtained by 
our algorithm and the mapping done manually 
by experienced system designers from Cradle 
over the span of two years and found it to be 
same. The design had gone through multiple 
iterations before it was finalized, while we 
obtained it using our tool within the first 
iteration. 

 
 

6.0 Concluding Remarks 
We have presented a mapping heuristic 

in this paper. We conducted some tests using 
synthetic task graphs and a real system such as 
MAVD. The confidence levels for development 
of such heuristics was boosted when it was used 
on some existing systems and the results were 
comparable to those obtained manually and 
better than those obtained using plain FFD or BF 
heuristic. With more and more clustered multi-
core processors being introduced in the 
commodity processor market to cater to the 
increasing performance needs of the high-end 



media and networking applications, efficient 
heuristic to design such systems will facilitate 
the development thereby making these 
processors acceptable by general programming 
community. 
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