
Mapping Resource Constrained Applications on Chip Multiprocessors
Anilkumar Nambiar

Dept of Computer Science,
Wayne State University

Detroit, MI, 48202

Vipin Chaudhary
Institute for Scientific Computing,

Wayne State University
Detroit, MI, 48202

Abstract - Most of the semiconductor companies are targeting multi-core processor for high-end embedded
systems. Programming such processors for performance is quite cumbersome without proper development tools.
Conventional mapping algorithms fail to address the issues of tight resource constraint found in embedded
applications running on these processors. We present resource constraint based application-mapping heuristics
for high performance multi-core embedded architectures. Experimental results using synthetic tests and real
programs such as MPEG-2 Audio Video Decoder (MAVD) confirm the superiority of the proposed heuristics over
existing solutions. For validation we have considered Cradle Technologies’ MDSP as the target multi-core
processor.

Keywords: Mapping, Scheduling, Chip-Multiprocessors, System-On-Chip, High-Performance
Embedded systems, System level Design.

1.0 Introduction
An interesting trend in today’s high-end

embedded systems is the use of system-on-chip
architectures. Most of these systems use
homogenous multiprocessors, while some use
heterogeneous multiprocessors. The
heterogeneous multiprocessors use a
combination of RISC and DSP, as most of the
applications today require both to varying
degrees. MDSP chip developed by Cradle
Technologies is one such example of clustered
heterogeneous multiprocessor. These multi-core
chips provide very high raw computational
power. To harness this power one requires
specialized tools to map and schedule
applications. Without appropriate tools, the
system development task is cumbersome at best
and impossible at worst. We’ll target the MDSP
architecture for this research, as most of the
multi-core heterogeneous systems have similar
architectures. In MDSP, each cluster is made up
of RISC and DSP processors. The main goal of
such clustering is to reduce the bandwidth
requirement of the processors. Each cluster has
its own set of resources such as memory,
semaphore, timers, etc. The access to a resource
within the cluster takes less clock cycles as
compared to any access outside the cluster, as the
request has to be served through a shared global
bus. The desirable implementation on this
system would be to reduce access outside the
cluster in order to improve performance. When
you have a small system with one or two cluster,

with each cluster having 12 processors as in the
case of MDSP, the task of mapping applications
is manageable. One can identify the resource
requirements manually and map the application
appropriately. But as soon as the number of
clusters increases, the complexity of mapping
applications increases. Rather than struggling to
find an optimum-mapping scheme, the
programmer could spend more time on
development of the applications and leave the
details of mapping to the tools.

A mapping problem can be transformed
into a scheduling problem and there has been a
lot of research in scheduling theory[1]. We have
developed a new heuristic to map tasks on the
MDSP chip and have found better results over
the existing heuristics.

Rest of the paper is organized as follows.
Section 2 gives the problem definition; section 3
presents related work in scheduling theory;
section 4 discusses the heuristics developed;
section 5 presents experimental results; and
section 6 has the concluding remarks.

2.0 Problem Definition

The MDSP is a heterogeneous multi-
core chip developed by Cradle Technologies [2].
The Cradle CRA2003 chip has a hierarchical
architecture, with clusters within a chip. Each
cluster or Quad consists of 4 RISC processors or
PEs, 8 DSP co-processors or DSEs, 64 Kbytes of
data memory, 4 channel DMA engines and other
resources such as semaphores, and timers. Each

Program and
its

Resources

Audio
Decoder

Audio
Renderer

Video
Decoder

Video
Renderer

TS
Parser

System
Controller

TS Feeder
Simulator

ISR
Simulator

Timer
Simulator

Computation

1 PE
1 DSE
(1 data
DSE)

1 PE
1 DSE

6 PE
12 DSE

1 PE
2 DSE

1 PE
1 DSE

1 PE

1 PE

1 DSE

1 DSE

Private Local
Memory

0x22D0

0xDD0

0xD68

0xBF8

0xED8

0x2F0

0x78

-

-

Shared Local
Memory

-

-

0x9C0

-

0x8

-

-

-

-

Fig. 1 MAVD System Resource Requirement Table

Audio
Decoder

Audio
Renderer

Video
Decoder

Video
Renderer

TS
Parser

System
Controller

TS
Feeder

chip may have varying number of clusters from 1
to 5. If one wants to design an MPEG-2[3]
Audio Video Decoder (MAVD) system using the
MDSP chip, one needs to decide on the resource
requirements for each task. A typical MAVD
system will consists of following tasks: Audio
Decoder, Video Decoder, Audio Renderer,
Video Renderer, TS Parser, System Controller,
TS Feeder Simulator. The memory and processor
requirement is given in the Fig. 11

The above tasks are developed
independently and need to be integrated. Some
of the tasks are independent, while others have
inter-task communication. The first requirement
would be to allocate all the processors for a
given task in the same cluster, as most of the
tasks will have more intra-task communication
than inter-task communication. In addition to
intra-task communication, the tasks will
communicate with the allocated resources to
varying degree. The resources in this case are
memory, and co-processor. If there were more

1 The figures were obtained from the MPEG-2 AV
decoder developed at Cradle Technologies.

communication between co-processor and
processor than inter-task communication, it
would be better to allocate the co-processor
from the same cluster in which the task is
running, and then try to see if the two tasks
involved in communication can be allocated to
the same cluster. So one assigns weight to the
amount of communication for each resource
type. This forms the basis for our heuristics.
The communication graph for the video
decoder is depicted in Fig. 2.

The solution to the MAVD system is
presented at the end of this paper.

The problem could be formally stated
as follows:
Given a
a) List of tasks T = <t1, t2, ….. tn>
b) Task priority P = <p1, p2, ……pn>
c) Fixed Resource requirement Rik, where i is

the task id and k is the resource id

d) ∑∑
= =

≤
n

i

m

k

ik RR
1 1

' where R’ is the total

resource available in the System,
e) and Communication Cij= {1,0}, where i and j

are task ids, is 1 if there is inter-task
communication, 0 otherwise

Find a mapping to reduce inter-cluster
communication.

3.0 Related Work

Considerable research has been done in the
scheduling theory [4]. We would like to show
why the solutions from various researches
couldn’t be directly applied to solve this
problem. There have been solutions to problem
with malleable tasks [5] [18] [19]. Shachnai and
Turek [6] consider architecture similar to the one
we are using. But the applications that we
consider are not malleable and have strict

Fig. 2 MAVD System Communication
Graph

resource requirement. Shrivastav [14] gives a
polynomial time algorithm for multi-resource
constraint scheduling. But it considers the
resource to be of unit size and renders it unusable
to us in its original form. Authors from the
following paper [7] [15] [16] and [17] propose
few generalized mapping algorithm to schedule
directed acylic graph and lack solution for
resource constraint. Solutions from other areas of
research such as bin-packing, graph coloring,
and linear programming are used for solving this
problem. The mapping problem under
consideration is similar to bin-packing problem.
The bin-packing problem can be stated as
follows:

A list L = <a1, a2…an> of items must be
packed into, i.e. partitioned among a
minimum cardinality set of bins B1 B2
subject to the constraint that the set of items
in any bin fits within that bin’s capacity.

Here the clusters are bins and the
applications need to be packed into these bins.
The above statement requires the task not to be
split across bins, but we relax the constraints by
splitting the tasks across bins at the cost of
communication overhead. Bin-packing has been
proved to be NP-hard [8]. There has been
sufficient research to obtain good approximate
solutions to this problem [9]. These heuristics
fail to consider the resource constraint. In the
basic version of this problem the constraint could
just have been the number of processors in a
cluster and the processor requirement of the
application. Then one could have just used one
of the existing solutions for offline bin packing
and applied them to obtain a solution. Our
problem has multiple constraints, i.e. processors,
memory, semaphores, timers, communications,
etc. Most of the multicapacity bin-packing
algorithms [10] are extensions to the single
capacity bin-packing algorithm. These heuristics
in their original form do not satisfy our
requirements. The same applies for d-capacity
Best Fit, Next Fit or Any Fit heuristic. We relax
the requirement of placing all the sub-items in
the same bin. In our case processors can be in
one cluster and resources can be in other at the
cost of communication overhead. The second
reason is that the above classical algorithms do
not deal with the affinity between items or tasks.
In our case the inter-task communication
requires some tasks to be in the same bin to
improve performance. There are multi-capacity

bin-packing algorithms [11], which improves
over the classical algorithms. Inter-
communication between the tasks and allocated
resources requires the tasks and the resources to
reside in the same bin. This renders these
algorithms useless for the kind of task-graph we
were mapping. We relax our assumptions a bit
by not considering hard real time system
scheduling. There have been polynomial time
approximation heuristics for resource
constrained scheduling [12] [13]. They use first
fit decreasing technique (FFD) and have shown
it to be (s + 1/3)-factor approximate. Since it’s a
simple and efficient heuristic we used it as the
base line for our heuristic and have improved on
it.

4.0 Improved First Fit Decreasing
Algorithm (IFFD)

Our proposed heuristic improves on the
existing First Fit Decreasing (FFD) algorithm
[9]. Rather than starting at a random initial state,
we use FFD to map the tasks and then use that as
the initial state and input to our heuristic. The
initial state of the mapping application on
processor is important. If one changes the initial
state the resulting output is completely different.
Here the key for sorting is the processor
requirement of the application. The other
resources are excluded at this stage. Since we use
a priority queue, if there are m clusters then this
will require O(nlogn*m) time, where n is the
number of tasks to be mapped. So, in worst case
it would be O(n2logn), where the number of tasks
is equal to the number of clusters in the chip.
Once the tasks are mapped using FFD, we form
the initial state for the processor graph Gp. The
processor graph Gp is an undirected graph and is
defined as follows:

Gp = {(V, E) | <u, v> ∈ E iff the tasks v and
u are allocated to the processors in the same
cluster}

In FFD, we allocate the processors to the

tasks based on the priority of the tasks. We start
with the highest priority task and try to fulfill its
requirement by allocating the required number of
processors. Assigning a higher priority to a task
not only makes sure that the resource
requirement of the task is fulfilled before any
other task is considered but it also helps in
breaking ties. The allocation of processors is

done from the same cluster, as it reduces intra-
task communication delay. Once the initial state
mapping is completed we apply our heuristic to
improve on that mapping. A processor graph Gp
is constructed for the initial mapping. In
addition, for each class of resource Rk used by
the application, we construct a constraint graph
Gk. The constraint graph Gk is undirected graph
and is defined as follows:

Gk = {(V, E) | <u, v> ∈ E iff the two tasks v
and u can reside in the same cluster}

There are two types of constraints, the

communication constraint and the resource
constraint. In a graph, which represents the
communication constraint, there is an edge
between two nodes if there is communication
between those two tasks. In case of a resource
constraint graph, there is an edge between two
nodes if the resource requirement for those two
nodes satisfies the criteria of being able to be
accommodated in the same cluster. In our
example we have considered co-processor and
local memory as resource constraints. One can
include additional constraints.

Two tasks can reside in the same cluster
iff

Rk ≥ Ruk + Rvk
Here, Rk = Total Resource of type k

available in a given Cluster
Rik = Resource requirement of task i
Rjk = Resource requirement of task j

But, in fulfilling any constraint we
always try to fulfill the primary constraint where
the processors for any given task will be
confined to a single cluster. In other words, our
heuristic tries to avoid splits within tasks over
clusters.

The user assigns weight Wi to the
constraints for each task. The weight assigned
depends on its importance in that node. To make
this notion clear, consider the case when there is
more communication with a co-processor than
inter-task communication. In this case one
assigns more weight to the co-processor
constraint and less weight to the inter-task
communication constraint. Each node in the
processor graph is assigned a value based on the
number of constraints satisfied for that node. The
value of each node can be determined as follows:

Wi = ∑
=

m

k

k SC
1

*

Ck is the weight assigned for resource
class Rk. So higher the value, the more important
it is to satisfy that constraint. S is a Boolean
value, which is either 1 or 0, as the resource
requirement for some may not be present.

Once we assign a weight to each node,
we calculate the weight of the processor graph as
follows:

O = ∑
=

n

i

iW
1

O is the objective function for this

heuristic and the main goal of the algorithm is to
maximize this objective function.

We present the pseudo code for our
heuristics below:

4.1 IFFD Algorithm
AllocateProcessor()
1. For each task ti based on its priority Pi

(highest priority first)
1.1. Check its neighbors in processor

constraint graph G0 (not the same as
Gp)

1.2. For each neighbor tj based on its priority
Pj (lowest priority first)

1.2.1. Initialize constraint count to zero
1.2.2. For each constraint Rjk for that

task tj
1.2.2.1. If there is an edge <ti, tj> in the

constraint graph Gk increase
the constraint count

1.2.3. If all the constraints are satisfied
and task tj is not optimized, then
task tj is the best match.

1.2.4. Else increment j, goto 1.2.1
1.2.5. Allocate task ti, tj to the same

cluster using pair-wise
exchange.

1.2.6. If allocation is successful, mark
ti and tj as optimized, increment
i, and goto 1.1.

1.2.7. Else increment j.
1.3. For each neighbor tj in decreasing

order of constraints satisfied
1.3.1. Allocate task to the same cluster

using pair-wise exchange.

Graph1: Comparison of Heuristic with Optimum

0

50

100

150

200

1 2 3 4 5 6 7 8 9

Task List ID

O
b

je
ct

iv
e

F
u

n
ct

io
n

FFD

IFFD

Optimum

Worst Case

 X

X

 PE
0

PE
1

PE
2

PE
3

PE
0

PE
1

PE
2

PE
3

 PE
0

PE
1

PE
2

PE
3

Audio Decoder

TS-PES
Parser

PLL processor

Controllers
(System,

Audio, Video)

Audio

Renderer

Quad 0

Video Decoder

Video Decoder

Video Decoder

Quad 2

Video Decoder

TS-Feeder

Video Decoder

Video

Renderer

Quad 1

Video Decoder

Audio
Decoder For Audio

Decoder

Audio
Renderer X

CRC
Check

 X

Timer
Simulator Audio

Video ISR

Video
Decoder Video

Decoder

Video
Decoder Video

Decoder

Video
Decoder Video

Decoder

Video
Decoder Video

Decoder

Video
Renderer Video

Renderer

Video
Decoder Video

Decoder

Video
Decoder Video

Decoder

Fig. 3 MAVD Solution for MDSP Chip

1.3.2. If allocation is successful,
increment i, goto 1.1.

1.3.3. Else increment j.

Let us elaborate on the pair-wise
exchange. Suppose one wants to get task xa and
yb to the same cluster. Let the processor
requirements of the un-optimized tasks in the

two clusters be represented by set X= { x1,
x2……xk }and Y = {y1, y2…...ym }, where

i

k

i

x∑
=1

 = p

 j

m

i

y∑
=1

 = p

and p is the number of processors in cluster.
When we perform pair-wise exchange, the tasks
in the two clusters under consideration are sorted
in increasing order according to their processor
requirement.

4.2 Pair-wise Exchange Algorithm for IFFD
Allocation of task to the same cluster (pair-wise
exchange algorithm)
1. Check if the two tasks xa, yb can co-exist in

the same cluster, by checking their processor
requirement. If not return false

2. For each sum s from 1 to p
2.1. Check if a subset sum s for two elements

exists in X
2.2. Check if the same subset sum s for two

elements exists in Y
2.3. If found swap

3. Calculate the weight of the processor graph.
If the value of the processor graph is reduced
then revert the changes made and return
false, else return true.

Lemma 1
The approximation factor of this heuristic is not
less than that obtained by FFD heuristics.
Proof

The initial mapping is obtained using FFD.
During the pair-wise mapping after each
exchange we re-calculate the value of the
objective function and if this value is less than
the value obtained we revert the changes. In this
way we make sure that we don’t degrade the
approximation obtained by the FFD heuristic

Lemma 2
Given an input set S of integer and another
integer x it takes O(nlogn) to determine whether
there exists two elements in S whose sum is
exactly x.
Proof
Sort the input set S using a O(nlogn) comparison
sort algorithm. For each element yi in the set S,

search for zi where zi = x-yi. The search can be
done using binary search on sorted elements
which takes O(logn) time. So the total time is
O(nlogn) + O(logn) = O(nlogn) time.

Therefore the total time required for pairwise
exchange is O(pnlogn), where n is the max task
on one of the two clusters in consideration and p
is the number of processors in the cluster

Till now, we have not discussed the case
where the processor requirement of the task
exceeds the processor availability in the cluster.
The solution is to split the tasks and allocate it on
separate clusters. Since the task is split it cannot
be optimized easily. One solution we have
implemented is that if the task is split into z1,
z2… zn units then we try to optimize it on zi,
which is the largest fragment of the task. The
remaining fragments will always remain un-
optimized and can be squeezed into any available
free segment. The MAVD system is a typical
example where the requirement of 6 processors
by the video decoder cannot be satisfied by one
cluster. In this case we have z1 = 4 and z2 = 2.
We considered z1 as the main task and optimize
on z1. The fragment z2 can be squeezed into any
available processor. The other solution will be to
consider z1 and z2 as separate tasks and optimize
the mapping on both the tasks. The
communication constraint will have the highest
priority for z1 and z2, in case there is heavy intra-
task communication.

5.0 Experimental Results

Graph 1 compares the object function
value obtained for FDD, IFFD, the Optimum
Algorithm and the Worst Case Algorithm. For
testing the heuristics, we generated synthetic
tasks graphs.

The resource requirements for the set of
tasks were generated using the pseudorandom
function such that the sum of resources was
always less than or equal to the sum of the
resources available on the MDSP chip. We have
modeled our testing on a five cluster MDSP
chip, with each cluster consisting of four PEs,
eight DSEs, and 64Kbytes of data memory. We
calculate the objective function for mapping
generated by our heuristics.

We also calculated the objective function
for the initial state obtained using FFD
algorithm. In most of the cases our algorithm

generated better results than FFD algorithm. For
test results, higher value indicates better results.

The objective function for an optimum
mapping scheme was calculated and was found
to be the best. In addition to this the worst-case
objective function was also calculated. The result
for the tests conducted is depicted in Graph 1.

The objective function for an optimum
mapping scheme was calculated and was found
to be the best. In addition to this the worst-case
objective function was also calculated.

5.1 MAVD System

In the previous section we had discussed
the MAVD system developed by Cradle
Technologies. We mapped the system using our
IFFD algorithm and obtained the solution using
our heuristics. It is shown in Fig. 3.

In the MAVD system, the Video
Decoder and Video Renderer has more
communication, so they are placed within the
same cluster. Similarly, Audio Decoder and
Audio Renderer are placed in the same cluster.
There is more communication between TS-PES
Parser task and Audio Decoder task, so they have
to be placed in the same cluster. Similarly, the
System Controller has more communication with
Audio Decoder due to higher rater of Audio ISR
than Video ISR and needs to be placed in the
same cluster.

We compared this mapping obtained by
our algorithm and the mapping done manually
by experienced system designers from Cradle
over the span of two years and found it to be
same. The design had gone through multiple
iterations before it was finalized, while we
obtained it using our tool within the first
iteration.

6.0 Concluding Remarks
We have presented a mapping heuristic

in this paper. We conducted some tests using
synthetic task graphs and a real system such as
MAVD. The confidence levels for development
of such heuristics was boosted when it was used
on some existing systems and the results were
comparable to those obtained manually and
better than those obtained using plain FFD or BF
heuristic. With more and more clustered multi-
core processors being introduced in the
commodity processor market to cater to the
increasing performance needs of the high-end

media and networking applications, efficient
heuristic to design such systems will facilitate
the development thereby making these
processors acceptable by general programming
community.

7.0 References
[1] Chretienne, Ph., Coffman, E.G., Jr., Lenstra,
J.K., and Liu, Z. (Editors), “Scheduling Theory
and Its Applications”, Wiley, Chichester,
England (1995).

[2] “3400 Hardware Architecture Reference”,
Cradle Technologies, www.cradle.com.

[3] ISO/IEC 13818: “Generic coding of moving
pictures and associated audio (MPEG-2)”

[4] D. G. Feitelson, L. Rudolph, U.
Schwiegelshohn, and K. C. Sevcik. “Theory and
Practice in Parallel Job Scheduling.” Lecture
Notes in Computer Science, 1291:1--34, 1997.

[5] Renaud Lepère, Denis Trystram, Gerhard J.
Woeginger: “Approximation Algorithms for
Scheduling Malleable Tasks Under Precedence
Constraints.” Int. J. Found. Comput. Sci. 13(4):
613-627 (2002)

[6] H. Shachnai, J. Turek, “Multiresource
Malleable Task Scheduling”, in IPL, vol. 70,
1999, pp. 47—52

[7] V. Chaudhary and J. K. Aggarwal, “A
generalized scheme for mapping parallel
algorithms”, in IEEE Trans. on Parallel and
Distributed Systems, Mar '93, pp. 328 - 346.

[8] Garey, Johnson, “Computers and
Intractability: A guide to the theory of NP-
Completeness”, W.H Freeman and Company
(1979)

[9] E. G. Coffman, M. R. Garey, D. S. Johnson
“Approximation algorithm for Bin Packing: A
Survey, Appears in Approximation Algorithms
for NP-Hard Problems”, D. Hochbaum(ed) PWS
Publishing(1996)

[10] K.Maruyama, S. K. Chang, and D. T.
Tang. “A general packing algorithm for
multidimensional resource requirements.” Intl.

J.of Comput. and Inf. Sci., 6(2):131–149, May
1976.

[11] W. Leinberger, G. Karypis, and V. Kumar.
“Multi-Capacity Bin Packing Algorithms with
Applications to Job Scheduling under Multiple
Constraints.” In Proceedings of the 1999
International Conference On Parallel
Processing, 1999.

[12] D. S. Johnson, A. Demers, J. D. Ullman, M.
R. Garey and R. L. Graham. “Worst Case bounds
for simple one dimensional packing algorithms.”
SIAM Journal on computing, 3:299—325, 1974.

[13] H. Rock, G. Schmidt; “Machine aggregation
heuristics in shop scheduling” Math Oper Res.
45 (1983) 303-314

[14] Anand Srivastav, Peter Stangier: “Tight
Approximations for Resource Constrained
Scheduling and Bin Packing.” Discrete Applied
Mathematics 79(1-3): 223-245 (1997)

[15] Y.-K. Kwok, I. Ahmad. “Dynamic critical-
path scheduling: An effective technique for
allocating task graphs to multiprocessors.” IEEE
Trans. on Parallel and Distributed Systems,
vol.7, pages 506--521, March 1996

[16] A Feldman, M Kao, J Sgall, S Teng,
Optimal online scheduling of parallel jobs with
dependencies, Proceedings of the twenty-fifth
annual ACM symposium on Theory of
computing, p.642-651, May 16-18, 1993

[17] A Feldmann, J Sgall ,S Teng Dynamic
scheduling on parallel machines, Proceedings of
the 32nd annual symposium on Foundations of
computer science, pp 111 - 120, 1991

[18] H. Shachnai, J. Turek, “ Multiresource
Malleable Task Scheduling”, in IPL, vol. 70,
1999, pp. 47—52

[19] Klaus Jansen, Lorant Porkolab, “Linear-
time approximation schemes for scheduling
malleable parallel tasks.” Symposium on Discrete
Algorithms, Proceedings of the tenth annual
ACM-SIAM symposium on Discrete algorithms,
pp. 490 - 498, 1999

