
Adaptation Point Analysis for  
Computation Migration/Checkpointing 

Yanqing Ji 
Elec and Comp Eng Dept 
Wayne State University 
48201 Michigan, USA 

+01 3135770764 

yqji@wayne.edu 

Hai Jiang 
Dept of Computer Science 
Arkansas State University 

72467 Arkansas, USA 
+01 8706808164 

hjiang@csm.astate.edu 

Vipin Chaudhary 
Institute for Scientific Computing 

Wayne State University 
48201 Michigan, USA 

+01 3135775421 

vipin@wayne.edu 
 

ABSTRACT 
Finding the appropriate location of adaptation points for 
computation migration/checkpointing is critical since the distance 
between two consecutive adaptation points determines the 
migration/checkpointing scheme’s sensitivity and overheads. This 
paper proposes a heuristic adaptation point placement algorithm 
to improve the computation migration/checkpointing schemes’ 
performance in terms of sensitivity and flexibility. This heuristic 
algorithm enables automatic and transparent insertion of 
checkpoints in user’s source code.  

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – Distributed applications.  

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Adaptation points, checkpointing, process migration, thread 
migration. 

1. INTRODUCTION 
Thread/process migration and checkpointing can be used to 
achieve load balancing, idle cycle utilization, resource sharing, 
and fault tolerance [1][2]. To enable these schemes to work in 
heterogeneous environments, we have developed MigThread to 
abstract computation states at the language level for portability 
[2]. However, one needs to determine how to insert adaptation 
points for potential migration or checkpointing. 

An adaptation point is a location in a program where a 
thread/process can be correctly migrated or checkpointed. Since 
the overheads associated with constructing, transferring, and 
retrieving computation states are not negligible [3], finding 

appropriate adaptation points is essential. The distance between 
two consecutive adaptation points determines the migration 
algorithm’s sensitivity and overheads. If they are too far apart, the 
applications might be too insensitive to the dynamic situation. But 
if they are too close, the related overheads will slow down the 
actual computation. In this paper, we propose a heuristic 
adaptation point placement algorithm for application-level 
migration and checkpointing systems where the computation state 
can be constructed at the application level. 

2. HEURISTIC ALGORITHM FOR 
ADAPTATION POINTS 
Since MigThread is implemented at application-level, we have to 
insert certain code into user programs in order to enable migration 
or checkpointing. But finding proper insert locations in the source 
code is hard. Instead of selecting actual adaptation points, our 
solution is to aggressively insert a lot of potential adaptation 
points at compile time, as shown in figure 1. At run time, a 
scheduler dynamically collects load information from all related 
machines, and once it determines that a thread/process needs to be 
migrated to another machine, it sends a signal to MigThread.  The 
signal handler will set the migration flag (mth_flag), and the 
corresponding thread/process will be actually migrated or 
checkpointed at the next potential adaptation point. 

 

 

                 } 
 

 

                 Figure1. Potential adaptation points in a loop 

To insert potential adaptation points, the preprocessor has to 
analyze the structure and different components of user’s source 
code. Usually, programs consist of loops, common non-loop code 
blocks, function calls, and library calls. Besides, the preprocessor 
has to take care of some special statements such as return, exit, 
and so on. Next, we describe the heuristic rules for inserting 
potential adaptation points under different conditions. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA. 
Copyright 2005 ACM 1-58113-964-0/05/0003…$5.00. 
 

 for (i = 0; i < upperBound; i++) { 
         sum += func(i); 
         if (mth_flag == 1) {   
    checkpoint(); 
         } 
} 
printf(“%d”, sum);

potential_adaptation_point() 

750

2005 ACM Symposium on Applied Computing



2.1 Loops 
Taking care of loops in user’s source code is very important since 
they consume most of the execution time in a program. In general, 
we apply the following rules: 

• One potential adaptation point is inserted right after the 
last statement in each single loop.  

• In case of nested loop, potential adaptation points are 
inserted inside the innermost loop. 

• Within the same outer loop, if there are multiple nested 
loops sitting in parallel, one potential adaptation point 
needs to be inserted in each of them. 

• For systems using relaxed memory consistency models, 
potential adaptation points should be inserted with 
pseudo-barriers and barriers. 

 
The key idea is that we insert at least one potential adaptation 
point for each loop since we might not know the loop bounds at 
compile time.  

2.2 Non-Loop Code and Functions 
We argue that the non-loop code is never too long. Therefore, we 
can ignore non-loop code when looking for the proper places for 
potential adaptation points. However, recursive functions and 
nested calls must be considered since they could consume a long 
period of time. In summary, the following rules are applied: 

• Non-loop instructions including branch instructions will 
be ignored since they usually do not consume much 
time. 

• For each subroutine, at least one potential adaptation 
point is inserted. If no loop exists, we insert the 
potential adaptation point at the end of that subroutine. 

• To ensure at least one potential adaptation point for 
each execution path, we insert a potential adaptation 
point before any “break” or “return” statement. 

• For systems using relaxed memory consistency models, 
potential adaptation points should be inserted with 
pseudo-barriers and barriers. 

2.3 Library Call and I/O Operations 
Without the source code of libraries, the preprocessor cannot 
insert potential adaptation points into the library functions. 
However, to achieve better portability of the application-level 
approach, it is reasonable to give up the sensitivity during the 
third-party library call procedures. Luckily, the execution time of 
most library calls is relatively short. 

I/O operations also have the potential to bring long period of time 
between two consecutive potential adaptation points. The reason 
is that the cost of I/O operations depends on the data volume and 
external factors such as network bandwidth. The assumption is 
that I/O is not a proper time for migration/checkpointing. 

3. EXPERIMENTAL RESULTS 
To evaluate the overall overheads associated with our algorithm, 
Matrix Multiplication, Molecular Dynamics (MD) simulation and 

several applications from the SPLASH-2 application suite are 
chosen for experiments, as shown in Table 1. It shows that matrix 
multiplication is the only application whose overhead ratio is 
greater than 2% because it is a computation-intensive application 
with many small loops. For about half of the applications, their 
overheads are less than 1%. Therefore, the overhead introduced 
by our algorithm is acceptable. 

       Table 1. Potential adaptation points overhead 

Program Input size 

Exec. time 
without 
adaptation 
points (us) 

Exec. time 
with 
adaptation 
points (us) 

Over
head 
ratio 
(%) 

FFT 1,024 pts 3,574 3,620 1.287 

LU-c 512 x 512 2,270,464 2,293,040 0.994 

LU-n 128 x 128 40,135 40,754 1.542 

MatMult 128 x 128 146,810 149,883 2.093 

RADIX 262,144 keys 918,865 921,939 0.334 

MD 5,286 atoms 18,823,604 18,903,475 0.424 

 

The interval between two consecutive potential adaptation points 
determines the scheme’s response time. Thus, we also tested all 
the intervals in each application (not given because of the length 
limit). The results show that more than 99.99% intervals are less 
than 10 us, and none of them is greater than 104 us. Therefore, 
this experiment is consistent with our previous prediction: the 
non-loop code is never too long. 

4. CONCLUSIONS 
We have proposed a heuristic adaptation point placement 
algorithm which can be incorporated into application-level 
computation migration/checkpointing packages, such as 
MigThread, in heterogeneous environments. One of the major 
advantages of our scheme is that it is generic for both 
thread/process migration and checkpointing. Since it can tolerate 
more adaptation points, the applications can be more sensitive to 
their dynamic situations. Furthermore, our scheme has the 
potential to work with more complex schedulers, which could be 
very important for meta-computing or Grid computing. 

5. REFERENCES 
[1] D. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler and S. 

Zhou, "Process Migration", ACM Computing Surveys, 2000. 
[2] H.Jiang and V. Chaudhary, "Process/Thread Migration and 

Checkpointing in Heterogeneous Distributed Systems. '', In 
Proceedings of the 37th Hawaii International Conference on 
System Sciences, Hawaii, USA, January 2004. 

[3] H. Jiang, V. Chaudhary and J. P. Walters, "Data Conversion 
for Process/Thread Migration and Checkpointing'', In 
Proceedings of the International Conference on Parallel 
Processing (ICPP), Kaohsiung, Taiwan, October 6-9, 200

 

751


