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Abstract

Due to the ever-increasing size of sequence databases
it has become clear that faster techniques must be em-
ployed to effectively perform biological sequence analysis
in a reasonable amount of time. Exploiting the inherent
parallelism between sequences is a common strategy. In
this paper we enhance both the fine-grained and course-
grained parallelism within the HMMER [2] sequence anal-
ysis suite. Our strategies are complementary to one another
and, where necessary, can be used as drop-in replacements
to the strategies already provided within HMMER. We use
conventional processors (Intel Pentium IV Xeon) as well as
the freely available MPICH parallel programming environ-
ment [1]. Our results show that the MPICH implementation
greatly outperforms the PVM HMMER implementation, and
our SSE2 implementation also lends greater computational
power at no cost to the user.

1. Introduction

As the size of biological sequence databases continue to

outpace processor performance, techniques must be found

that can effectively process exponentially large databases.

One common technique is to utilize reconfigurable hard-

ware in order to accelerate the sequence analysis. De-

Cypher [15] is such a product. Another strategy that has

∗This research was supported in part by NSF IGERT grant 9987598

and the Institute for Scientific Computing at Wayne State University.

been used with success is to use multicore network proces-

sors for bioinformatics processing [18]. While these tech-

niques can be highly effective, they suffer from the fact that

they make use of non-standard hardware. In this paper,

we demonstrate that significant performance speedup can

be achieved by utilizing widely available, off-the-shelf pro-

cessors that are programmable via standard programming

toolchains.

We implement our techniques within the HMMER suite,

particularly the hmmsearch and hmmpfam programs. How-

ever, other sequence analysis options do exist. The Wise2

package specializes in comparing DNA sequences at the

protein translation level [3]. SAM [16] is a set of tools uti-

lizing linear hidden markov models, rather than the profile

hidden markov models used by HMMER, to perform se-

quence analysis. PSI-BLAST [10] builds a position specific

scoring matrix from each position in the alignment. The

scoring matrix can then be used in further BLAST iterations

and refined accordingly, resulting in greater sensitivity.

The remainder of this paper is organized as follows. In

section 2 we present a review of the related work. In sec-

tion 3 we give a brief overview of the HMMER sequence

analysis suite. In section 4 we discuss the hardware used

in our experiments. In section 5 we detail our SIMD/SSE2

implementation and in section 6 we discuss our MPICH/-

cluster implementation. Our conclusions are detailed in sec-

tion 7.
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2. Related Work

There have been several efforts to improve the speed and

scalability of HMMER using both conventional hardware as

well as porting the HMMER suite to more unique hardware

platforms. We briefly discussed DeCypher [15] and the use

of multicore network CPUs [18] in section 1. But other

techniques also exist. ClawHMMER [5] is a GPU-based

streaming Viterbi algorithm that purports to scale nearly lin-

early within a rendering cluster of Radeon 9800 Pro GPUs.

Erik Lindahl [9] has added an Altivec enhanced version

of the P7Viterbi algorithm to the current HMMER code

base. Lindahl makes use of the Altivec’s included SIMD

instructions to achieve speedup beyond that of the Intel Pen-

tium IV Xeon.

3. Background

Most homology searches perform alignments in ei-

ther a local or global fashion. The Smith/Waterman al-

gorithm [13], for instance, is intended for local align-

ments while the Needleman/Wunsch algorithm [12] per-

forms global alignments. The purpose of a global alignment

is to find the similarities between two entire strings without

regard to the specific similarities between substrings. A lo-

cal alignment search, however, assumes that the similarities

between two substrings may be greater than the similarities

between the entire strings. In practice, local alignments are

typically preferred.

Unlike typical homology searches, HMMER does not

perform local or global alignments. Instead, the HMM

model itself defines whether local or global alignment

searches are performed. Typically, alignments are per-

formed globally with respect to an HMM and locally with

respect to a sequence [2].

HMMER is actually is not a single program, but rather a

collection of several programs that perform different tasks

to facilitate protein sequence analysis. Among the func-

tionalities they provide are aligning sequences to an exist-

ing model, building a model from multiple sequence align-

ments, indexing an HMM database, searching an HMM

database for matches to a query sequence, or searching a se-

quence database for matches to an HMM. The last two func-

tionalities (i.e., the searches) are among the most frequently

used and often require long execution times, depending on

the input sequence or HMM and the size of database be-

ing searched against. These functionalities are provided by

hmmpfam and hmmsearch, respectively.

Most of our experiments are performed on hmmsearch
because it is more compute-bound than hmmpfam. That

said, the techniques we present here also enhance the per-

formance of hmmpfam as we demonstrate and discuss in

section 5.

4. Hardware/Software Configuration

The experiments in this paper were performed on a uni-

versity cluster. Each node is an SMP configuration consist-

ing of two 2.66 GHz Pentium 4 Xeon processors with 2.5

GB of total system memory per node. 100 Mbit ethernet

facilitates communication between each node. In addition,

each node contains one PCI-X based Myrinet M3F-PCIXD-

2 card with a data transfer rate of 2.12 Gbps.

Each node runs the Rocks v3.3.0 Linux cluster distribu-

tion. In addition, each node is loaded with both MPICH

version 1.2.6 [1][4] and PVM version 3.4.3 [14]. All nodes

are identical in every respect.

For testing purposes, most experiments were performed

using the nr sequence database compared against rrm.hmm
(rrm.hmm is included in the HMMER distribution). The

nr database is 900 MB in size. A smaller version of the

nr database was used to verify our results against smaller

databases. To demonstrate the applicability of our SSE2 op-

timizations in hmmpfam we also ran tests using the Pfam
database.

5. SSE2

The SSE2 [7] instructions are among a series of Intel

Single Instruction Multiple Data (SIMD) extensions to the

x86 Instruction Set Architecture (ISA). The first was the

MultiMedia eXtension (MMX) which appeared in the Pen-

tium MMX in 1997 [6]. MMX provides a series of packed

integer instructions that work on 64-bit data using eight

MMX 64-bit registers. MMX was followed by the Stream-
ing SIMD Extensions (SSE) which appeared with Pentium

III. SSE adds a series of packed and scalar single preci-

sion floating point operations, and some conversions be-

tween single precision floating point and integers. SSE

uses 128-bit registers in a new XMM register file, which

is distinct from the MMX register file. The Second Stream-
ing SIMD Extensions (SSE2) appeared with the Pentium IV.

SSE2 adds a series of packed and scalar double precision

floating point operations, operating on 128-bit register files.

SSE2 also adds a large number of data type conversion in-

structions. Finally, a third set of extensions, SSE3 [8], was

added to enable complex floating point arithmetic in sev-

eral data layouts. SSE3 also adds a small set of additional

permutes and some horizontal floating point adds and sub-

tracts.

As mentioned earlier, HMMER [2] is an implementation

of Profile hidden Markov models (profile HMMs) for pro-

tein sequence analysis. Profile HMMs are statistical models

of multiple sequence alignments. They capture position-

specific information about how conserved each column of

the alignment is, and which residues are likely. In general,

profile HMMs can be used to perform sensitive database
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searching using statistical descriptions of a sequence fam-

ily’s consensus.

Like other applications dealing with processing large ar-

rays of data, HMMER has a strong potential to benefit from

SIMD instructions by performing some of the time consum-

ing operations in parallel on multiple data sets. However,

re-implementing a relatively large application such as HM-

MER to take advantage of the newly added SIMD instruc-

tions is a costly and time consuming task. Further, mov-

ing from C (or any high level language) to assembly makes

the code architecture-dependent rather than portable, and

requires re-implementing the code for all supported plat-

forms.

The more reasonable alternative is to limit the re-

implementation to the smallest possible portion of code that

results in the greatest speedup. We profiled HMMER and

found that 15 lines of code consumed more than 50% of

the execution time when hmmpfam or hmmsearch are used

to perform a search. The 15-line section is simply a loop

that performs some additions and maximum value selection

over large arrays of 32-bit integers. SSE2, as described ear-

lier, computes on 128-bit data and enables the programmer

to perform several operations (e.g., addition) on four 32-bit

integers in parallel.

However, the task is not as simple as vectorizing the pre-

viously mentioned 15 lines. Since the idea of SIMD is to

perform an operation on 4 iterations (items) in parallel at

the same time, the first problem is inter-iteration dependen-
cies. That is, an operation in iteration i requires a result

from iteration i − 1 (or earlier iterations) to be performed.

To resolve inter-iteration dependencies in our 15-line loop

we had to split the loop into three loops. Each loop now

iterates only 25% of the number of iterations in the original

loop. We still achieve reasonable speedup, but not quite the

ideal case as described above.

Splitting the loop is not the only overhead that can af-

fect the overall reduction in execution time. We also en-

countered another problem: The lack of packed max/min

instructions that works on 32-bit integers, similar to PMAX-

UB/PMINUB and PMAXSW/PMINSW that work on 8-bit

and 16-bit data, respectively. Implementing a replacement

for that missing instruction costs five SSE2 instructions for

each occurrence. Assuming the data to be compared are

initially in registers XMM3 and XMM4, where each regis-

ter contains four integer items, and the maximum item of

each pair is required to be in register XMM3 by the end of

the task. If we have that ”desired instruction” (let us call

it PMAXD), the task can be performed simply by one in-

struction ”PMAXD XMM4, XMM3” the replacement code

is simply:

• MOVDQA XMM3, XMM5

copying the content of XMM3 into XMM5

• PCMPGTD XMM4, XMM5

Comparing contents of XMM4 and XMM5 and for
each pair, if the item in XMM4 is greater than that in
XMM5, the item in XMM5 is replaced with 0’s, oth-
erwise it is replaced by all 1’s. By the end of this
step, each of the four items in XMM5 will be either
0x00000000 or 0xFFFFFFFF. The original data in
XMM5 are lost and that is why we copied them in the
previous step.

• PAND XMM5, XMM3

Bitwise AND the content of the two registers and put
the results in XMM3. Since XMM3 has the same con-
tents as those of XMM5 before the previous step, this
step will keep only the maximum values in XMM3 and
replace those which are not the maximum in their pairs
by 0’s.

• PANDN XMM4, XMM5

Invert XMM5 (1’s complement) and AND it with
XMM4. That will have a similar result as in the pre-
vious step but the maximum numbers in XMM4 will be
stored in XMM5 this time.

• POR XMM5, XMM3

This will gather all the maximums in XMM5 and
XMM3 and store them in XMM3. The task is done.

Fortunately, even with these five instructions replac-

ing the desired instruction, we can still achieve reasonable

speedup over the non-SSE2 case. With no SIMD, the maxi-

mum selection consists of three instruction: compare, jump

on a condition, then a move instruction which will be exe-

cuted only if the condition fails. Assuming equal probabili-

ties for the fail and the success of the condition, that means

an average of 2.5 instructions for each pair of items. That is

10 instructions for four pairs compared to the five when the

SSE2 instructions are used.

We should note that the Altivec architecture provides

the needed instruction in the form of VMAXSW and

VMAXUW (vector max signed/unsigned max). This is

used in the Erik Lindahl [9] port to achieve excellent

speedup on the PowerPC architecture.

Finally, an additional overhead is shared, typically by

several SSE2 instructions: that is, data alignment and the

moving of data into the 128-bit XMM registers. How-

ever, once the data is in these registers, many SSE2 oper-

ations can be performed on them, assuming efficiently writ-

ten code and that the entire alignment and loading cost can

be shared. Even if this is not the case some speedup can still

be observed over the non SIMD case,
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5.1. SSE2 Evaluation

We begin our evaluation by noting that approximately

50% of the runtime of our code can be vectorized using the

SSE2 instructions. We can therefore use Amdahl’s law to

compute the theoretical maximum speedup possible given

50% parallelizable code. We start from Amdahl’s law:

Speedup =
1

(1 − P ) + P
N

(1)

From equation 1 we have P = the percentage of the code

that can be parallelized. 1−P is therefore the percentage of

code that must be executed serially. Finally, N from equa-

tion 1 represents the number of processors. In this case,

N actually represents the number of elements that can be

executed within a single SSE2 instruction, 4.

Theoretically, the expected speedup of those 15 lines is

4, This should therefore result in an expected speedup of

Speedup =
1.0

50% + 50%
4

= 1.6 (2)

In other words the overall reduction in execution time is

expected to be:

1 − 1
1.6

= 37.5% (3)

Our analysis shows a reduction in the execution time

even considering the overhead described in section 5. The

15 lines of code were re-implemented using the SSE2 in-

structions and hmmpfam and hmmsearch were used to com-

pare the results. Many samples were used in searches

against the Pfam and nr databases[17][11]. The Pfam

database is a large collection of multiple sequence align-

ments and hidden Markov models covering many com-

mon protein families. The nr database, is a non-redundant

database available from [11]. Each search was repeated sev-

eral times and the average was found for each search both

when the original code is used, and when the modified code

using SSE2 is used. The reduction in execution time varies

from around 18% up to 23% depending on the sample and

the percentage of time spent in the re-implemented code.

Table 1 shows the results for three samples. Samples 1
and 2 were taken from hmmpfam searches while sample 3
was taken from hmmsearch searches. The corresponding

speedups are from around 1.2 up to 1.3.

Implementing more code using SSE2 may have resulted

in greater speedup, but would have been a much more costly

task. The advantage to this speedup is that it’s cost free, no

new hardware is required, and no real development time is

needed. Only a small portion of the code needs to be re-

implemented and maintained over the original implementa-

tion.

Table 1. Effect of SSE2 on HMMER Execution
Time

Average Execution Time (seconds) Reduction in

Original Code with SSE2 Execution Time

Sample 1 1183 909 23.2%
Sample 2 272 221 18.8%
Sample 3 1919 1562 18.6%

6. Cluster/MPI Parallelism

In this section we describe our HMMER MPI implemen-

tation. Unlike the SIMD/SSE2 implementation, the MPI

implementation takes advantage of the parallelism between

multiple sequences, rather than the instruction level paral-

lelism used by the SSE2 technique. The advantage in this

case is that greater parallelism can be achieved by offload-

ing the entire P7Viterbi() function to compute nodes, rather

than simply vectorizing the 15 most time consuming lines.

6.1. Parallelizing the Database

Rather than the instruction-level parallelism described in

section 5, we now distribute individual sequences to cluster

nodes. Each cluster node then performs the majority of the

computation associated with its own sequence and returns

the results to the master node. This is the method by which

the original PVM implementation of HMMER performs the

distribution. It is also the basis from which we began our

MPI implementation. The important point to note is that a

single function, P7Viterbi(), accounts for greater than 90%

(see table 2) of the runtime. Therefore it is imperative that it

be executed on the worker nodes if any effective parallelism

is to be achieved.

6.2. Enhancing the Cluster Distribution

While the strategy demonstrated above does indeed yield

reasonable speedup, we found that the workers were spend-

ing too much time blocking for additional work. The so-

lution to this problem is twofold. The workers should

be using a non-blocking, double buffering strategy rather

than their simple blocking techniques. Second, the workers

can reduce the communication time by processing database

chunks rather than individual sequences.

Our double buffering strategy is to receive the next se-

quence from the master node while the current sequence

is being processed. The idea behind double buffering is

to overlap as much of the communication as possible with

the computation, hopefully hiding the communication alto-

gether.
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In keeping with the strategy used in the PVM implemen-

tation, the master does not also act as a client itself. Instead,

its job is to supply sequences as quickly as possible to the

workers as newly processed sequences arrive. Therefore, a

cluster of N nodes will actually have only N − 1 worker

nodes available with one node reserved as the master.

While double buffering alone improved the speedup im-

mensely, we also sought to reduce the communication time

in addition to masking it through double buffering. To this

end we simply bundled several sequences (12, in our ex-

periments) to each worker in each message. We settled

on 12 sequences by simply observing the performance of

hmmsearch for various chunk sizes. Sending 12 sequences

in each message maintained a reasonable message size and

also provided enough work to keep the workers busy while

the next batch of sequences was in transit.

6.3. MPI Results

Beginning from equation 1, we can derive a formula for

the expected speedup of hmmsearch for a given number of

CPUs. Table 2 lists our results of the profile.

Table 2. Profile results of hmmsearch
% of total

Function execution

P7Viterbi 97.72

P7ViterbiTrace 0.95

P7ReverseTrace 0.25

addseq 0.23

other 0.85

We notice that the P7Viterbi function accounts for nearly

all of the runtime of hmmsearch. Furthermore, of the func-

tions listed in table 2 the first 3 are all run on the worker

node. Therefore, our P from equation 1 can be reasonably

approximated as 98.92%. For two worker processors, this

leaves us with an expected speedup of 1.98 with an expected

decrease in execution time of 49%.

Table 3. Actual Speedup compared to Opti-
mal Speedup (non-SSE2)

N CPU Actual Speedup Optimal Speedup

1 1 1

2 1.62 1.98

4 3.09 3.87

8 6.44 7.44

16 11.10 13.77

From table 3 we can see that the actual speedup of 2

CPUs is 1.62 or approximately a 38% decrease in run time.

Considering that the implementation requires message pass-

ing over a network and that the messages and computation

cannot necessarily be overlapped entirely, we feel that the

actual speedup is reasonable.

Figure 1. Comparative timings of PVM, MPI,
MPI+SSE2 implementations

In figure 1 we provide our raw timings for hmmsearch,

comparing our MPI and MPI+SSE2 code against the PVM
code provided by the HMMER source distribution. In fig-

ure 2 we translate the numbers from figure 1 into their corre-

sponding speedups and compare them against one another.

Figure 2. Figure 1 translated into the corre-
sponding speedups

To verify that our techniques work in the case of smaller

databases, we also tested hmmsearch with a smaller (100

MB) version of the nr database. The smaller database was

created by simply taking the first 100 MB of nr. Our results

are summarized in table 4. From table 4 we can see that both

the MPI and the SSE2 techniques yield reasonable speedup

from even fairly small databases. By examining figure 2
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and table 4 we can also see that our speedup increases with

larger databases.

Table 4. Speedups of hmmsearch for 100 MB
database

# CPU PVM MPI MPI+SSE2

2 1.39 1.69 2.21

4 2.28 3.38 3.84

8 4.05 5.81 6.65

16 4.56 5.90 7.71

As can be seen in Figure 1, our MPI implementation

clearly outperforms the PVM implementation by a fairly

wide margin. As the number of of nodes increases, the MPI

implementation improves the runtime by nearly a factor of

two. And adding SSE2 improves upon the MPI implemen-

tation. Figure 2 clearly shows that our MPI implementation

scales much better than the current PVM implementation.

In addition, some of the speedup may be due, at least in

part, to the underlying differences between PVM and MPI.

We should also note that tests were run against the nr
database using the Myrinet interfaces on our cluster nodes.

In this case we saw no run time advantage to using the

Myrinet interfaces.

7. Conclusions

We have improved upon the HMMER sequence analy-

sis suite by implementing the core of the algorithm using

the Intel SSE2 instruction set. We have also demonstrated

large improvement in the clustered implementation of HM-
MER by porting the client and server to use MPI rather than

PVM. Furthermore, our MPI implementation utilized an ef-

fective double buffering and database chunking strategy to

provide performance increases beyond that which would be

achieved by directly porting the PVM code to MPI code.

Our results show excellent speedup over and above that

of the PVM implementation. Our implementation makes

use of standard hardware and thus can be used as a drop-

in replacement for anyone wishing to accelerate HMMER
searches on their own Pentium IV cluster.
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