Available online at www.sciencedirect.com

FGCS
SCIENCE@DIRECT° OUTT

@®ENERATION
@OMPUTER
QYSTEMS

T = g
ELSEVIER Future Generation Computer Systems 22 (2006) 57—66

www.elsevier.com/locate/fgcs

Simulation tools to study a distributed shared memory
for clusters of symmetric multiprocessors

Darshan D. Thakér*, Vipin Chaudhary

& University of California, Davis, 2569 Wallace Street, Oakland, CA 94606, USA
b Wayne State University, Detroit, MI, USA

Available online 27 June 2005

Abstract

Distributed shared memory (DSM) systems have become popular as a means of utilizing clusters of computers for solving
large applications. We have developed a high-performance B38#gs. In addition, to improve the performance of our DSM,
a memory hierarchy simulator has been developed that allows us to compare various techniques very quickly and with much less
effort. This paper describes our simulator, DSM. We show that the simulator’s performance closely matches the real system
and demonstrate potential performance gains of up to 60% after adding optimization features to the simulator. The simulator
also accepts the same code as the software distributed shared memory.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction point of view, such machines could use tightly cou-
pled processors that access the same shared memory,
In recent years, single processor based comput- known as symmetrical multiprocessors (SMPs), or one
ers have evolved rapidly. Processor speeds are nowcould cluster multiple computing nodes with a high-
in excess of 2GHz. Yet, they are not able to solve performance interconnect. The latter approach has been
increasingly large and complex scientific and engi- extended by combining multiple SMPs to provide a
neering problems. Another trend is the decline in the scalable computing environment. Examples of this
number of specialized parallel machines being built important class of machinesinclude the IBM SP2, SUN
to solve such problems. Instead, many vendors of Enterprise and SUNFire Series and machines from
traditional workstations have adopted a design strat- HP.
egy wherein multiple state-of-the-art microprocessors These symmetrical multiprocessors (SMPs) are
are used to build high performance shared-memory then connected through high-speed networks or
parallel workstations. From a computer architecture switches to form a scalable computing cluster. A suit-
able runtime system should allow parallel programs
" * Corresponding author. to exploit fast shared memory when exchanging data
E-mail address: thaker@cs.ucdavis.edu (D.D. Thaker). within nodes and using the slower network only when

0167-739X/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2003.12.024

58 D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57—-66

necessary. Existing sequential application programs 2. Strings

can be automatically converted to run on a single SMP

node through the use of parallelizing compilers suchas The Strings distributed shared memory was derived
SUIF[1], etc. However, using multiple nodes requires from the publicly available Quarki8]. It consists of

the programmer to either write explicit message pass- a library that is linked with a shared memory parallel
ing programs, using libraries like ME3] or PVM [6], program. The system allows the creation of multiple
or to rewrite the code using a new language with par- application threads on a single node, thus increasing
allel constructs ex. OpenMB], HPF and Fortran 90. the concurrency level on an SMP cluster.

Message passing programs are cumbersome to write A program starts up and registers itself with the
and have to be tuned for each individual architecture to server. It then forks processes on remote machines.
get the best possible performance. Parallel languagesEach forked process in turn registers itself with the
work well with code that has regular data access serverandthen creates a DSM server thread, which lis-
patterns. In both cases, the programmer has to be inti-tens for requests from other nodes. The master process
mately familiar with the application program as well creates shared memory regions coordinated-ordinated
as the target architecture. The shared memory modelby the server in the program initialization phase. The
is easier to program since the programmer does notserver maintains a list of region identifiers and global
have to worry about the data layout and does not have virtual addresses. Each process translates these global
to explicitly send data from one process to another. addresses to local addresses using a page table. Appli-
However, hardware shared memory machines do notcation threads are created by sending requests to the
scale that well and/or are very expensive to build. appropriate remote DSM servers. Shared region iden-
Hence, an alternate approach to using these computingifiers and global synchronization primitives are sent as
clusters is to provide an illusion of logically shared partofthe thread create call. The newly created threads
memory over physically distributed memory, known obtain the global addresses from the server and map
as a distributed shared memory (DSM) or shared them to local memory. The virtual memory sub-system
virtual memory (SVM). Recent research projects with is used to enforce proper access to the globally shared
DSMs have shown good performance, for example regions.

IVY [9], TreadMarkd4], Quarkg[8] and CVM[10]. Shared memory in the system is implemented by
At Wayne State University, we developed a DSM using the UNIX mmap call to map a file to the bot-
called Strings. The Strings system consists of a library tom of the stack segment. The mprotect call is used
that is linked with a shared memory parallel program. to control access to the shared memory region. When
Strings is a page based DSM, that uses an update pro-a thread faults while accessing a page, a page handler
tocol for Release Consistency. The performance and is invoked to fetch the contents from the owning node.
capabilities of Strings are described in detail in previ- Strings currently supports sequential consistency using
ous work[1]. Currently, our effort is to enhance the an invalidate protocol, as well as release consistency

performance of Strings. This effort includes studying using an update protoc{], [14].

in detail how Strings manages memory and designing Allowing multiple application threads on a node
different methods to alleviate the areas that act as aleads to a peculiar problem with the DSM implemen-
drag on efficiency. Towards this end we have devel- tation. Once a page has been fetched from a remote
oped an execution driven memory hierarchy simulator node, its contents must be written to the corresponding
that closely mimics the behavior of Strings. The sim- memory region, so the protection has to be changed
ulator allows us to test different approaches and ideas to writable. At this time no other thread should be
quickly and at a cost far lesser than what we would able to access this page. User level threads can be
have incurred if we had modified Strings itself. In the scheduled to allow atomic updates to the region.
rest of this paper, we review some features of Strings in However, suspending all kernel level threads can
Section2. The following section describes the imple- potentially lead to a deadlock and would also reduce
mentation and features of our simulator. Thereafter is concurrency. The solution used in Strings is to map
a section on observed performance. We conclude in every shared region to two different addresses. It is
Sectionb. then possible to write to the secondary region, without

D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57—-66 59

changing the protection of the primary memory 3.2. Simulation system details
region.

Strings utilize the concepts ofins anddiffs to allow The simulator is based on Augmifit]. Nonethe-
multiple application threads on the same node. All less, it is portable and can also be used on SUN
shared regions are mapped to two different addressesmachines with UltraSparc Architectures (using ABSS
This makes it possible to write to the secondary [11]). Some of the features of the simulator are:
region, without changing the protection of the primary
region. The copy of the page that is mapped to the
secondary region is called mvin. The thread then
modifies therwin. When the pages have to be syn-
chronized, the difference between the original page *
and its twin is computed. These are called g,
which are then sent to the remote nodes that share®
the page. For further details, we invite you to refer to
a previous papefl] that discusses Strings in greater
detail.

e accurately mimics the behavior of Strings;

o it works with real applications that interact with the
environment;

applications that work on the simulator will work on
Strings;

provides ‘ease of use’ with respect to understanding
and modifying the simulation architecture;

e runs on both Intel and UltraSparc architectures;

e manages the scheduling of events;

e recognizes memory references.

The subsystems of the simulator are:
3. Simulator for Strings .
e Augmint Doctor—the x86 code augmenter;

Previous work has demonstrated the performance ® Simulation infrastructure (Augmint) - including
capabilities of Strings. Nonetheless, there exist various ~ €vent management, task scheduling and thread
areas where improvements and performance enhance- SWitching;
ments can be achieved. Some of these improvements® the distributed shared memory model under study;
can be in the area of networking, memory manage- ® applications—written using ANL m4 macros.
ment, etc. With regard to memory management there
are various approaches that can potentially change and3.3. Augmint
improve the manner in which Strings behaves.

Augmint is a software package on top of which
3.1. Motivation multiprocessor memory hierarchy simulators can be
constructed. Augmint consists of a front—end memory

To experiment with certain memory management €event generator and a simulation infrastructure which
functions in Strings would be time consuming. And damages the scheduling of events. The Augmint Doctor
consider that even after the change was accomplishedtakes an x86 assembly source file as input and ana-
there is no guarantee that this would positively effect lyzes it for memory references. Each instruction that
the outcome in terms of performance enhancement. It performs a memory reference causes additional code
is with this in mind that we decided to build a simulator to be added before or after that instruction. This code
for Strings. It would be easy to make a modification in handles details like saving state and setting up the sim-
the simulator and see the effects it would produce. Pro- ulation event structure.
vided the performance enhancement was satisfactory,
the changes could then be incorporated into Strings. 3.4. Simulator build and execution model
Thus, it would function as a test bed for nascent ideas
and design philosophies. DSMSim is an execution based simulator. The sim-

The simulator could also serve as a teaching tool, ulator build processHig. 1) creates an executable. The
in that it would allow a student unfamiliar with the build process is as follows—the source code of the
complexities of the distributed shared memory system, application under study is passed through the macro
to understand the underlying principles and reasons m4 preprocessor, where all the ANL like macros are
behind certain design decisions. expanded. (This is another advantage of the simulator

60 D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57—-66

main application thread on the time wheel. The pur-
Code pose of this task is to invoke a thread switch to the main
application thread to start runnimguin_envelope.
M4 macro To ensure that all operations are simulated in
- - Dreprocessor chronological order, Augmint provides support for cre-
' ating and scheduling arbitrary operations; each inde-
pendently schedulable operation is called a task. Each

l task has associated with it a time value, a priority and
a function pointer. Each task is executed at its spec-
ified time in order of priority. Tasks are executed by
! calling the function through the function pointer. The
X86 Code return value from this function controls thread execu-
'Doctor’ tion. Every event generated by a thread blocks that

> 2 thread and creates a new task. The function pointer for

nstrumented

%86 Code the task points to the simulator function corresponding
X86 ASM

Compiler

to the type of event. The task also contains a pointer to

the event structure and the process id.
Object Code

3.5. Implementation details

(e & | e——o 7 . .
Linker When developing DSI§im, the first goal was to
'

replicate the behavior of Strings as accurately as pos-

Executable sible. When running a simulation executable, the pro-
Sl grammer passes the simulator arguments and the appli-
cation arguments. At the start of execution, all the
Fig. 1. DSMSim build process for the Intel architecture. shared memory is allocated. The simulator uses hash

tables to keep track of the pages that reside on each

that all the applications that run on the simulator, run node. Thus every node in the simulation has a hash
on Strings. The same application source code can betable, the entries of which are the pages that reside on
used for both the simulator and Strings. The difference that node. The base address of the page is used when
is at the m4 preprocessor stage.) Following this, the C inserting into the tables. Every page is owned by one
compiler is run that converts the C code into assembler node. Page ownership is migratory at first fault.
code. The Augmint Doctor is then used to augmentthe ~ We use the concept of ownership for a page. A
assembler code. This is then lined with the simulation page is owned by a node that is participating in run-
libraries. The final result is an executable that contains ning the application. When the application requests for
the application code, the distributed shared memory shared pages, the simulator assigns an owner to each
system under study and the simulation infrastructure. page. Ownership of the page is migratory on first fault.
When running, this executable consists of several user The first node that faults on the page becomes the new
level threads that act as simulated processors and a simowner. Thereafter, the ownership does not change for
ulation thread that acts as the scheduler. that page. Initially the simulator assigns node zero as

When the executable is run, it first initializes the the owner for all pages. The page tables are initialized
environment. The command line arguments are parsedand the copy-set for each page is also initialized. For
by the architecture simulator and the application. every page, the owner has both read and write permis-
sim_init is then called. The address space and thread sions, whereas other nodes have neither.
structures are then initialized. The main application If the ownership of a page changes, i.e., on a first
thread is initialized and set to point to the function fault, then the copy-sets and page permissions are
main_envelope, which calls the application. The time updated. Since the simulator is not distributed across
wheel is initialized. An empty task is scheduled for the physically distinct machines, we can have a global table

D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57—-66 61

that all the nodes in the simulation have accessto. This Once the hash table lookup returns with a page table

reduces complexity. entry, the permissions for the page determine whether
we have a page hit or a page fault. If the permissions
3.6. Memory references are PAGEREAD or PAGEWRITE, then a memory

read can proceed. Returning a value cADVANCE

Every memory reference has to be analyzed. If a means that the executing thread can proceed. When
reference is accessing a shared memory location, thena page hit occurs, the statistics are updated and we
appropriate action has to be taken. During the simu- return with TADVANCE, thus allowing the simulation
lation, all memory references are intercepted by the to continue. If the access was a page fault, then the read
simulator front—end. An access may either be a read or or the write fault handler is called depending on the type
a write and may either be to a shared memory location of access.
or to one that is not shared. If the memory accessisto When a page fault handler is called, it means that
a non-shared location, then the execution of the appli- faulting node does not have a current copy of the
cation continues after the statistics are updated. If the page. The first thing that the read fault handler does,
access occurred on a shared region, then the simulatoiis send a request to the owner of the page for a copy
needs to look up the page related information for that of the page. When the page is received, the request-
memory location. In order to do this, the task pointer ing node changes its copy-set of the page to mirror
that is passed by the simulator to the:-read func- that of the copy-set sending node. Once the copy-set
tion is utilized. (The code is outlined iRig. 2) The is changed, the receiving node checks to see ifitis the
task pointer provides many details, like event associ- only one with a valid copy of the page, it if is, then it
ated with the task, task owner, next task in the queue, becomes the owner of the page. (This happens when
etc. We are mainly interested in the event that was asso-the page fault is the first fault that has occurred on
ciated with the task (in this case a memory access). the page.) Details on how the copy-set is used are fur-
The event structure gives details like event type, time ther ahead. Once the permission of the page is changed
atwhichitoccurred, size of data access, access addresso PAGEREAD, the read fault handler returns. The
etc. (For detailed description of each field in the task accompanying flowchart 3 describes a memory read
and event structures, please refefp) From the task operation.
pointer, we obtain the memory address that was being The write access to shared memory is handled in a
accessed. Thereafter, this address is converted to thevery similar manner. There are a few obvious differ-
base address of the page, to which that memory loca-ences. The permission on the page being accessed has
tion belongs. This has to be done because, the hashto be PAGEWRITE, else we have a write fault. The
table lookup needs the base address of the page, otherwrite fault handler sends a request for the page only if
wise it will not be able to return a valid match. It has the page permissions are PAGEONE. In that case, it
to be remembered that each node has its own separatevill behave just like the read fault handler. Upon receipt
page table and we have to access the correct one. of the page, the permission will be setto PAREAD.

pg *get_page_info(task_ptr ptask)
{

int node_id = NODE(ptask->pid);
unsigned int addr = ptask->pevent->paddr;
pg *pte;

PGROUND (addr) ;
pte = (struct pg *)hash_lookup(p_table[node_id],addr);
return pte;

}

Fig. 2. Getpageinfo() details.

62 D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57—-66

Following this, the write fault handler checks the copy- | Resd Momory hecess |

set of the page to see if the current node is the only one
Shared™~°
access

writing to the page. If it is not, then a twin of the page
Yes

is created, further writes are done on the twin.

It should be understood that upon a page fault, when
a node requests the required page from the owner, fre-
guently the request may not be immediately fulfilled. | Hash Table Lookup \
For example, let's assume that there are four nodes NO,
N1, N2 and N3 in a simulation. Initially the owner of
page P1 is NO. Therefore, all four nodes have NO as
the owner of P1 in their page tables. N2 faults on P1.

Page

Permissions Hit

It sends a request to NO for P1. The request is serviced lNo (Eault

and since this is thérst fault, there is a change of own- | SRR R S |

ership. The new owner of P1is N2. This is reflected in

the page tables of NO and N2 only. When N1 faults on | Update copyset, owner |

P1, it believes that NO is still the owner and hence sends

a page requestto NO. This page request is forwarded by R

NO to N2. N2 services the request. When N1 receives

the page, it checks the copy-set and updates its page Fig. 3. Flowchart for a memory read operation.

table accordingly. Thus, itis said that page requests are

sent to therobable owner. As stated earlier, the simulator can run on the Intel

and the SPARC platforms. In most cases, a single

CPU (600 MHz Pentium) with 192 MB RAM was used
4. Performance analysis for the runs. Strings on the other hand was run on

a cluster of SUN Enterprise 3500s each with four

Applications that are written for Strings using the UltraSparc Il processors at 330 MHz and with 512 MB
ANL m4 macros, can be run on the simulator fairly eas- of RAM. The following programs were utilized for
ily. The macro filec.m4.dsmsim should be used for the our experiments—LU-c, FFT, Radix, LU-n and matrix
simulator. Thisfileisusedto convert*.Cand*.Hfilesto multiplication. We judged our results by how closely
*.c and *.h, respectively. The usage can be understood the number of page faults in DSWi» matched that
from the sample applications that are available with the of the real system. Since every memory access was
simulator. It is derived from the Augmint macro file. trapped by DSMim, this gave us the ability to collect
We used applications from the Splasii2Z? Bench- great amounts of data that gave details of the behavior

mark Suite. FFT performs a transform mfcomplex of the different applications. We could collect details
data points and requires three all-to-all interprocessor on the number of hits, faults, types of accesses, etc.,
communication phases for a matrix transpose. The datafor each page, each thread and each node. In addition,
access is regular. LU-c and LU-n perform factoriza- we could calculate the number giffs that would be
tion of a dense matrix. The non-contiguous version has generated. It was also possible to see when, as a result
a single producer and multiple consumers. It suffers of the update protocol, a thread releasing a lock would
from considerable fragmentation and false sharing. The senddiffs to another thread that was no longer inter-
contiguous version uses an array of blocks to improve ested in them. The biggest advantage of gathering such
spatial locality. Radix performs an integer radix sort vast amounts of data is that it gives the application
and suffers from a high-degree of false sharing at page developer an idea of how to partition the data, to boost
granularity during a permutation phase. The matrix performanceKig. 3).
multiplication program uses a block-wise distribution Figs. 4 and Show the results comparing DSt
of the resultant matrix. Each application thread com- and Strings. It can be observed that most of the runs
putes a block of contiguous values; hence, there is no resulted in a negligible difference between Strings and
false sharing. DSMSim. The runs shown in the figure are 18128

D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57—-66 63

Matmult LU-n
120
110 1100,
100 10004
a0 900
80 800
70 7001
60 600
50 5004
40 4001
30 B 3001
20 200
10 , k [H 100
2x1 2x2 2x4 4x2 4x4 2x1 2x2 2x4 4x2
Nodes X Threads Nodes X Threads
[msTR-PFESM-PF (ISTRL mSML [1STA-B B STR-g] [WsTR-PF MsM-PF (ISTRL [1siML [STA-B ESMB]

Fig. 4. Comparison between Strings and the simulator.

matrix multiplication; FFT with 65536 complex dou- tiple processes that in turn spawn threads on multiple
bles, LU decomposition on a 532512 matrix with a machines. As a result, in Strings, if two threads on the
16 x 16 block size. We show the number of page faults same node access the same page (causing a fault) at
in the simulator (SIM-PF) and in Strings (STR-PF), the the same time, this is regarded as just one fault. How-
locks and barriers for the simulator (SIM-L and SIM- ever, in DSMim, this would be considered two faults.
B) and for Strings (STR-L and STR-B). In the legend, From our results we can deduce that DSM accu-
STRisforstrings and SIM is for DSEAm. The average rately mimics Strings.

difference in number of page faults is 1.2%, with the From the accompanyingigs. 4 and 5it can be
worst case being a difference of 12%. The difference in observed that most of the runs resulted in a negligi-
the page fault reading stems from the fact that D% ble difference between the Strings and the simulator.
runs as a single process, whereas Strings spawns mul-The runs shown in the figure are 12828 matrix for

1300
1200
1100
1000
900
800
700
600
500
400
300
200
100

FFT LU-¢
400

350
300
250
200
150
100

50

ox2 | oxd 4x2 4xd ox1 | 2x2 | 2x4 | 4x2 | 4xd
Nodes x Threads Nodes x Threads

W sTA-PF @ SIM-PF [1STRL [|SML []STRE @ SM-B W STRPFESIMPF []STRL [SIML [7]STRE B SM-B

Fig. 5. Comparison between Strings and the simulator.

64 D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57—-66

Radix Sort (1024) Matrix Mult (128x128)
110 120
100 110
90 100
80 20
w
70 = 80
@ 70
60 [N 60
®
50
S 50
40 & 40
30 30)
20 20
10 e N N ‘
0 i i] 0 1 7 i 7 7
Dy2 oxd 2x8 Ax2 Axd 2Xx2 2x4 2x8 4x2 4x4
Nodes x Threads Nodes x Threads
WOiig Winv [AU A '. Orig [l Inv [A1-U 7] A1l |

Fig. 6. Performance enhancements on the simulator.

matrix multiplication. For FFT 65536 complex dou- (Al-U) and invalidate (Al-1) protocols with a differ-
bles, for Lu512x 512 matrix and a 16& 16 block size. ent scheme of assigning data. It can be observed that
The messages measured are protocol messages. Meghe most effective feature added was the first one. For
sages that are sent as a result of UDP based networkingmatrix multiplication, there is a significant improve-
in Strings are not considered in the simulator. Thus, ment when we have more threads per node. The same
we could deduce that the simulator was behaving very trend is seen in radix, although the improvements are
much like Strings would. The next challenge was to add not so significant. It can be seen that the invalidate pro-
features to the simulator that would yield an increase tocol when compared to the update does not always
in performance. give an improvement in the number of faults.

The following features were added to the simula-

tor. We changed the relationship between the threads Matrd: Muli256x256)

and the nodes. Since the ownership of the pages is 10
based on the nodes, this changed the manner in which 100
the threads were accessing the pages. We included an 90
invalidate protocol. Another change was the manner in n %
which owners are assigned to pages. In Strings, pages E 70
are initially assigned to node zero; thereafter, on first L 60
fault the ownership changes hands. We kept this fea- & 50
ture and also assigned pages in a round robin fashion & 40
without changing ownership at first fault. The user can 30
select either of the new options or the original system 20
behavior by selecting the appropriate command line 10
arguments at runtiméigs. 6 and &how the effect of

2x2 2x4 2x8 4x2 4xd

the different features that were added. On thaxis’
Nodes x Threads

we plot the number of page faults (hormalized). The
original version uses an update protocol and release [MOrig Winv [A1-UL AL
consistency. The second column is an invalidate pro-

tocol and the last two columns are both the update Fig. 7. Performance enhancements on the simulator.

D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57—-66 65

4.1. Optimizations more threads per node. The same trend is seen in radix,
although the improvements are not so significant. It can
With the DSMSim accurately mimicking Strings, be seen that the invalidate protocol when compared to
we added features to DSWin that would potentially the update does not always give an improvement in the
improve the performance of Strings. The following fea- number of faults.
tures were added to the simulator:

e We changed the relationship between the threads
and the nodes. Since the ownership of the pages is
based on nodes, this changed the manner in which
the threads were accessing the pages. The thread%o
could be assigned in a block fashion or in a round
robin fashion.

e The default behavior of DSHIm follows Release
Consistency with an update protocol. We added an
invalidate protocol that guarantees sequential consis-
tency. Thus, when a thread releases a lock, instead
of sending/iffs to other nodes that share the page, it
invalidates those pages. Also after a barrier has been
acquired, only the owner shall have a valid page.

e Another change was the manner in which owners
are assigned to pages. In Strings, pages are initially
assigned to node zero; thereafter, the first node that
faults on a page becomes the new owner of that
page. This is the default behavior of the simulator.
In addition, the owners can be initially assigned in
a round robin fashion and the user can choose to
change the ownership at first-fault or leave the own-
ers unchanged.

5. Conclusions and future work

We developed a distributed shared memory simula-

r, DSMSim that effectively matches the behavior of
Strings. It also provides a portable platform for con-
ducting research in memory consistency models and
protocols. In addition, the simulator can be used as a
teaching tool to understand the complexities of a DSM.
DSMSim is portable across both SPARC and Intel plat-
forms. Various applications can easily be ported for
the simulator. It is also very modular and allows a
researcher to easily add features and change its behav-
ior. Its ability to run on a single CPU machine is invalu-
able, as one does not need expensive SMP machines to
study DSM characteristics.

Our future work includes incorporating changes that
we have observed as advantageous, into Strings. We
plan on adding features related to memory consistency
models and coherency protocols and comparing their
characteristics. In addition, features like data visualiza-
tion will be added in the future to effectively study and
understand the data that is generated by the simulator.

The user can choose to retain the original system
behavior or use any of the options previously men-
tioned. This can be done by selecting the appropriate References
command line arguments at runtime. In this manner, it
is possible to combine different options and observe the [1] S. Roy, V. Chaudharyirings: a high-performance distributed
results. Some features that we are currently working on shared memory for symmetrical multiprocessor clusters, in:

include allowing th izetob iable. b . Proceedings of the Seventh IEEE International Symposium on
Include allowing the pagsize to be a variable, by using High Performance Distributed Computing, Chicago, IL, July,

the concept of a pagelock, which may be one or more 1998, pp. 90-97.
pages. Its value could be different for different appli- [2] S.C. Woo, M. Ohara, E. Torri, J.P. Singh, A. Gupta, The
cationsFig. 7shows the effect of the different features SPLASH-2 programs: characterization and methodological

that were added. On the-axis’ we plot the number considerations, in: Proceedings of the International Symposium
) on Computer Architecture, June 1995, pp. 24-36.

of page faults (normalized). The orlgmal version uses [3] The OpenMP Forum. OpenMP: Simple, Portable, Scalable
an update protocol and release consistency. The sec- ~ smp Programmindattp://www.openmp.org/
ond column is an invalidate protocol and the last two [4] P.Keleher, A. Cox, S. Dwarkadas, W. Zwaenepoel, TreadMarks:
columns are both the update (A1-U) and invalidate (A1- distributed shared memory on standard workstations and oper-
1) protocols with a different scheme of assigning data. ating systems, in: Proceedings of the Winter 1994 USENIX
It can be observed from figure that the most effective Conference, 1994.

. 9 . o [5] Message Passing Interface (MPIl) Forum, MPI: a message-
feature added was the fIrSt one. For matrIX mU|tIp|Ica- passing interface standard’ Int. J. Super-COmput. App| 8 (3/4)
tion there is a significant improvement when we have (1994).

http://www.openmp.org/

66 D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57—-66

[6] V.S. Sunderam, PVM: a framework for parallel distributed [9] K. Li, IVY: a shared virtual memory system for parallel com-

computing, Concurrency: Pract. Experience 2 (4 (December)) puting, in: Proceedings of the 1988 International Conference on
(1990) 315-339. Parallel Processing, August 1988, pp. 94-101.

[7] A.-T. Nguyen, M. Michael, A. Sharma, J. Torrellas, The Aug- [10] H. Han, C.-W. Tseng, P. Keleher, Eliminating barrier synchro-
mint multiprocessor simulation toolkit for Intel x86 architec- nization for compiler-parallelized codes on software DSMs, Int.
tures, in: Proceedings of the 1996 IEEE International Confer- J. Parallel Programming (October) (1998).
ence on Computer Design (ICCD), October 1996. [11] D. Sunada, D. Glasco, M. Flynn, ABSS v2.0: a SPARC

[8] D. Khandekar. Quarks: Distributed shared memory as a basic simulator in, in: Proceedings of the eighth Workshop on
building block for complex parallel and distributed systems. Synthesis And System Integration of Mixed Technologies,

Technical Report, University of Utah, March 1996. 1998.

	Simulation tools to study a distributed shared memory for clusters of symmetric multiprocessors
	Introduction
	Strings
	Simulator for Strings
	Motivation
	Simulation system details
	Augmint
	Simulator build and execution model
	Implementation details
	Memory references

	Performance analysis
	Optimizations

	Conclusions and future work
	References

