
Future Generation Computer Systems 22 (2006) 57–66

Simulation tools to study a distributed shared memory
for clusters of symmetric multiprocessors

Darshan D. Thakera,∗, Vipin Chaudharyb

a University of California, Davis, 2569 Wallace Street, Oakland, CA 94606, USA
b Wayne State University, Detroit, MI, USA

Available online 27 June 2005

Abstract

Distributed shared memory (DSM) systems have become popular as a means of utilizing clusters of computers for solving
large applications. We have developed a high-performance DSM,Strings. In addition, to improve the performance of our DSM,
a memory hierarchy simulator has been developed that allows us to compare various techniques very quickly and with much less
effort. This paper describes our simulator, DSMSim. We show that the simulator’s performance closely matches the real system
and demonstrate potential performance gains of up to 60% after adding optimization features to the simulator. The simulator
a
©

1

e
i
i
n
n
t
t
e
a
p

ou-
mory,
one

gh-
been
e a
this
UN

from

are
or

uit-
ms

data
hen

0

lso accepts the same code as the software distributed shared memory.
2004 Elsevier B.V. All rights reserved.

. Introduction

In recent years, single processor based comput-
rs have evolved rapidly. Processor speeds are now

n excess of 2 GHz. Yet, they are not able to solve
ncreasingly large and complex scientific and engi-
eering problems. Another trend is the decline in the
umber of specialized parallel machines being built

o solve such problems. Instead, many vendors of
raditional workstations have adopted a design strat-
gy wherein multiple state-of-the-art microprocessors
re used to build high performance shared-memory
arallel workstations. From a computer architecture

∗ Corresponding author.
E-mail address: thaker@cs.ucdavis.edu (D.D. Thaker).

point of view, such machines could use tightly c
pled processors that access the same shared me
known as symmetrical multiprocessors (SMPs), or
could cluster multiple computing nodes with a hi
performance interconnect. The latter approach has
extended by combining multiple SMPs to provid
scalable computing environment. Examples of
important class of machines include the IBM SP2, S
Enterprise and SUNFire Series and machines
HP.

These symmetrical multiprocessors (SMPs)
then connected through high-speed networks
switches to form a scalable computing cluster. A s
able runtime system should allow parallel progra
to exploit fast shared memory when exchanging
within nodes and using the slower network only w

167-739X/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2003.12.024



58 D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57–66

necessary. Existing sequential application programs
can be automatically converted to run on a single SMP
node through the use of parallelizing compilers such as
SUIF [1], etc. However, using multiple nodes requires
the programmer to either write explicit message pass-
ing programs, using libraries like MPI[5] or PVM [6],
or to rewrite the code using a new language with par-
allel constructs ex. OpenMP[3], HPF and Fortran 90.
Message passing programs are cumbersome to write
and have to be tuned for each individual architecture to
get the best possible performance. Parallel languages
work well with code that has regular data access
patterns. In both cases, the programmer has to be inti-
mately familiar with the application program as well
as the target architecture. The shared memory model
is easier to program since the programmer does not
have to worry about the data layout and does not have
to explicitly send data from one process to another.
However, hardware shared memory machines do not
scale that well and/or are very expensive to build.
Hence, an alternate approach to using these computing
clusters is to provide an illusion of logically shared
memory over physically distributed memory, known
as a distributed shared memory (DSM) or shared
virtual memory (SVM). Recent research projects with
DSMs have shown good performance, for example

SM
rary
am.

pro-
and

evi-
he
ing
ning
as a
vel-

lator
im-
deas
uld

the
gs in
le-
er is
e in

2. Strings

The Strings distributed shared memory was derived
from the publicly available Quarks[8]. It consists of
a library that is linked with a shared memory parallel
program. The system allows the creation of multiple
application threads on a single node, thus increasing
the concurrency level on an SMP cluster.

A program starts up and registers itself with the
server. It then forks processes on remote machines.
Each forked process in turn registers itself with the
server and then creates a DSM server thread, which lis-
tens for requests from other nodes. The master process
creates shared memory regions coordinated-ordinated
by the server in the program initialization phase. The
server maintains a list of region identifiers and global
virtual addresses. Each process translates these global
addresses to local addresses using a page table. Appli-
cation threads are created by sending requests to the
appropriate remote DSM servers. Shared region iden-
tifiers and global synchronization primitives are sent as
part of the thread create call. The newly created threads
obtain the global addresses from the server and map
them to local memory. The virtual memory sub-system
is used to enforce proper access to the globally shared
regions.

by
ot-
sed
hen
ndler
de.
sing

ency

de
en-
mote
ding
ged
be
n be
ion.
can
uce
ap

It is
out
IVY [9], TreadMarks[4], Quarks[8] and CVM[10].
At Wayne State University, we developed a D

called Strings. The Strings system consists of a lib
that is linked with a shared memory parallel progr
Strings is a page based DSM, that uses an update
tocol for Release Consistency. The performance
capabilities of Strings are described in detail in pr
ous work[1]. Currently, our effort is to enhance t
performance of Strings. This effort includes study
in detail how Strings manages memory and desig
different methods to alleviate the areas that act
drag on efficiency. Towards this end we have de
oped an execution driven memory hierarchy simu
that closely mimics the behavior of Strings. The s
ulator allows us to test different approaches and i
quickly and at a cost far lesser than what we wo
have incurred if we had modified Strings itself. In
rest of this paper, we review some features of Strin
Section2. The following section describes the imp
mentation and features of our simulator. Thereaft
a section on observed performance. We conclud
Section5.
Shared memory in the system is implemented
using the UNIX mmap call to map a file to the b
tom of the stack segment. The mprotect call is u
to control access to the shared memory region. W
a thread faults while accessing a page, a page ha
is invoked to fetch the contents from the owning no
Strings currently supports sequential consistency u
an invalidate protocol, as well as release consist
using an update protocol[5], [14].

Allowing multiple application threads on a no
leads to a peculiar problem with the DSM implem
tation. Once a page has been fetched from a re
node, its contents must be written to the correspon
memory region, so the protection has to be chan
to writable. At this time no other thread should
able to access this page. User level threads ca
scheduled to allow atomic updates to the reg
However, suspending all kernel level threads
potentially lead to a deadlock and would also red
concurrency. The solution used in Strings is to m
every shared region to two different addresses.
then possible to write to the secondary region, with



D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57–66 59

changing the protection of the primary memory
region.

Strings utilize the concepts oftwins anddiffs to allow
multiple application threads on the same node. All
shared regions are mapped to two different addresses.
This makes it possible to write to the secondary
region, without changing the protection of the primary
region. The copy of the page that is mapped to the
secondary region is called atwin. The thread then
modifies thetwin. When the pages have to be syn-
chronized, the difference between the original page
and its twin is computed. These are called thediffs,
which are then sent to the remote nodes that share
the page. For further details, we invite you to refer to
a previous paper[1] that discusses Strings in greater
detail.

3. Simulator for Strings

Previous work has demonstrated the performance
capabilities of Strings. Nonetheless, there exist various
areas where improvements and performance enhance-
ments can be achieved. Some of these improvements
can be in the area of networking, memory manage-
ment, etc. With regard to memory management there
a e and
i

3

ent
f nd
c ished
t fect
t nt. It
i tor
f n in
t Pro-
v ctory,
t ings.
T eas
a

tool,
i he
c tem,
t sons
b

3.2. Simulation system details

The simulator is based on Augmint[7]. Nonethe-
less, it is portable and can also be used on SUN
machines with UltraSparc Architectures (using ABSS
[11]). Some of the features of the simulator are:

• accurately mimics the behavior of Strings;
• it works with real applications that interact with the

environment;
• applications that work on the simulator will work on

Strings;
• provides ‘ease of use’ with respect to understanding

and modifying the simulation architecture;
• runs on both Intel and UltraSparc architectures;
• manages the scheduling of events;
• recognizes memory references.

The subsystems of the simulator are:

• Augmint Doctor—the x86 code augmenter;
• simulation infrastructure (Augmint) - including

event management, task scheduling and thread
switching;

• the distributed shared memory model under study;
• applications—written using ANL m4 macros.

ich
be

ory
hich
ctor
ana-
that
code
ode
sim-

im-
he
the
acro
are
lator
re various approaches that can potentially chang
mprove the manner in which Strings behaves.

.1. Motivation

To experiment with certain memory managem
unctions in Strings would be time consuming. A
onsider that even after the change was accompl
here is no guarantee that this would positively ef
he outcome in terms of performance enhanceme
s with this in mind that we decided to build a simula
or Strings. It would be easy to make a modificatio
he simulator and see the effects it would produce.
ided the performance enhancement was satisfa
he changes could then be incorporated into Str
hus, it would function as a test bed for nascent id
nd design philosophies.

The simulator could also serve as a teaching
n that it would allow a student unfamiliar with t
omplexities of the distributed shared memory sys
o understand the underlying principles and rea
ehind certain design decisions.
3.3. Augmint

Augmint is a software package on top of wh
multiprocessor memory hierarchy simulators can
constructed. Augmint consists of a front–end mem
event generator and a simulation infrastructure w
damages the scheduling of events. The Augmint Do
takes an x86 assembly source file as input and
lyzes it for memory references. Each instruction
performs a memory reference causes additional
to be added before or after that instruction. This c
handles details like saving state and setting up the
ulation event structure.

3.4. Simulator build and execution model

DSMSim is an execution based simulator. The s
ulator build process (Fig. 1) creates an executable. T
build process is as follows—the source code of
application under study is passed through the m
m4 preprocessor, where all the ANL like macros
expanded. (This is another advantage of the simu



60 D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57–66

Fig. 1. DSMSim build process for the Intel architecture.

that all the applications that run on the simulator, run
on Strings. The same application source code can be
used for both the simulator and Strings. The difference
is at the m4 preprocessor stage.) Following this, the C
compiler is run that converts the C code into assembler
code. The Augmint Doctor is then used to augment the
assembler code. This is then lined with the simulation
libraries. The final result is an executable that contains
the application code, the distributed shared memory
system under study and the simulation infrastructure.
When running, this executable consists of several user
level threads that act as simulated processors and a sim-
ulation thread that acts as the scheduler.

When the executable is run, it first initializes the
environment. The command line arguments are parsed
by the architecture simulator and the application.
sim init is then called. The address space and thread
structures are then initialized. The main application
thread is initialized and set to point to the function
main envelope, which calls the application. The time
wheel is initialized. An empty task is scheduled for the

main application thread on the time wheel. The pur-
pose of this task is to invoke a thread switch to the main
application thread to start runningmain envelope.

To ensure that all operations are simulated in
chronological order, Augmint provides support for cre-
ating and scheduling arbitrary operations; each inde-
pendently schedulable operation is called a task. Each
task has associated with it a time value, a priority and
a function pointer. Each task is executed at its spec-
ified time in order of priority. Tasks are executed by
calling the function through the function pointer. The
return value from this function controls thread execu-
tion. Every event generated by a thread blocks that
thread and creates a new task. The function pointer for
the task points to the simulator function corresponding
to the type of event. The task also contains a pointer to
the event structure and the process id.

3.5. Implementation details

When developing DSMSim, the first goal was to
replicate the behavior of Strings as accurately as pos-
sible. When running a simulation executable, the pro-
grammer passes the simulator arguments and the appli-
cation arguments. At the start of execution, all the
shared memory is allocated. The simulator uses hash

each
ash
e on
when
one

. A
un-

s for
each
ult.
new

e for
o as
ized
For
mis-

first
are

ross
able
tables to keep track of the pages that reside on
node. Thus every node in the simulation has a h
table, the entries of which are the pages that resid
that node. The base address of the page is used
inserting into the tables. Every page is owned by
node. Page ownership is migratory at first fault.

We use the concept of ownership for a page
page is owned by a node that is participating in r
ning the application. When the application request
shared pages, the simulator assigns an owner to
page. Ownership of the page is migratory on first fa
The first node that faults on the page becomes the
owner. Thereafter, the ownership does not chang
that page. Initially the simulator assigns node zer
the owner for all pages. The page tables are initial
and the copy-set for each page is also initialized.
every page, the owner has both read and write per
sions, whereas other nodes have neither.

If the ownership of a page changes, i.e., on a
fault, then the copy-sets and page permissions
updated. Since the simulator is not distributed ac
physically distinct machines, we can have a global t



D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57–66 61

that all the nodes in the simulation have access to. This
reduces complexity.

3.6. Memory references

Every memory reference has to be analyzed. If a
reference is accessing a shared memory location, then
appropriate action has to be taken. During the simu-
lation, all memory references are intercepted by the
simulator front–end. An access may either be a read or
a write and may either be to a shared memory location
or to one that is not shared. If the memory access is to
a non-shared location, then the execution of the appli-
cation continues after the statistics are updated. If the
access occurred on a shared region, then the simulator
needs to look up the page related information for that
memory location. In order to do this, the task pointer
that is passed by the simulator to thesim-read func-
tion is utilized. (The code is outlined inFig. 2.) The
task pointer provides many details, like event associ-
ated with the task, task owner, next task in the queue,
etc. We are mainly interested in the event that was asso-
ciated with the task (in this case a memory access).
The event structure gives details like event type, time
at which it occurred, size of data access, access address,
etc. (For detailed description of each field in the task
a k
p eing
a to the
b loca-
t hash
t other-
w as
t arate
p .

Once the hash table lookup returns with a page table
entry, the permissions for the page determine whether
we have a page hit or a page fault. If the permissions
are PAGEREAD or PAGEWRITE, then a memory
read can proceed. Returning a value of TADVANCE
means that the executing thread can proceed. When
a page hit occurs, the statistics are updated and we
return with TADVANCE, thus allowing the simulation
to continue. If the access was a page fault, then the read
or the write fault handler is called depending on the type
of access.

When a page fault handler is called, it means that
faulting node does not have a current copy of the
page. The first thing that the read fault handler does,
is send a request to the owner of the page for a copy
of the page. When the page is received, the request-
ing node changes its copy-set of the page to mirror
that of the copy-set sending node. Once the copy-set
is changed, the receiving node checks to see if it is the
only one with a valid copy of the page, it if is, then it
becomes the owner of the page. (This happens when
the page fault is the first fault that has occurred on
the page.) Details on how the copy-set is used are fur-
ther ahead. Once the permission of the page is changed
to PAGEREAD, the read fault handler returns. The
accompanying flowchart 3 describes a memory read

in a
fer-
d has

he
ly if
it
eipt

pagein
nd event structures, please refer to[7].) From the tas
ointer, we obtain the memory address that was b
ccessed. Thereafter, this address is converted
ase address of the page, to which that memory

ion belongs. This has to be done because, the
able lookup needs the base address of the page,
ise it will not be able to return a valid match. It h

o be remembered that each node has its own sep
age table and we have to access the correct one

Fig. 2. Get
operation.
The write access to shared memory is handled

very similar manner. There are a few obvious dif
ences. The permission on the page being accesse
to be PAGEWRITE, else we have a write fault. T
write fault handler sends a request for the page on
the page permissions are PAGENONE. In that case,
will behave just like the read fault handler. Upon rec
of the page, the permission will be set to PAGEREAD.

fo() details.



62 D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57–66

Following this, the write fault handler checks the copy-
set of the page to see if the current node is the only one
writing to the page. If it is not, then a twin of the page
is created, further writes are done on the twin.

It should be understood that upon a page fault, when
a node requests the required page from the owner, fre-
quently the request may not be immediately fulfilled.
For example, let’s assume that there are four nodes N0,
N1, N2 and N3 in a simulation. Initially the owner of
page P1 is N0. Therefore, all four nodes have N0 as
the owner of P1 in their page tables. N2 faults on P1.
It sends a request to N0 for P1. The request is serviced
and since this is thefirst fault, there is a change of own-
ership. The new owner of P1 is N2. This is reflected in
the page tables of N0 and N2 only. When N1 faults on
P1, it believes that N0 is still the owner and hence sends
a page request to N0. This page request is forwarded by
N0 to N2. N2 services the request. When N1 receives
the page, it checks the copy-set and updates its page
table accordingly. Thus, it is said that page requests are
sent to theprobable owner.

4. Performance analysis

Applications that are written for Strings using the
as-
e
to

tood
the
.

ssor
data

iza-
has

ffers
. The
rove
ort

page
trix
ion
om-
is no

Fig. 3. Flowchart for a memory read operation.

As stated earlier, the simulator can run on the Intel
and the SPARC platforms. In most cases, a single
CPU (600 MHz Pentium) with 192 MB RAM was used
for the runs. Strings on the other hand was run on
a cluster of SUN Enterprise 3500s each with four
UltraSparc II processors at 330 MHz and with 512 MB
of RAM. The following programs were utilized for
our experiments—LU-c, FFT, Radix, LU-n and matrix
multiplication. We judged our results by how closely
the number of page faults in DSMSim matched that
of the real system. Since every memory access was
trapped by DSMSim, this gave us the ability to collect
great amounts of data that gave details of the behavior
of the different applications. We could collect details
on the number of hits, faults, types of accesses, etc.,
for each page, each thread and each node. In addition,
we could calculate the number ofdiffs that would be
generated. It was also possible to see when, as a result
of the update protocol, a thread releasing a lock would
senddiffs to another thread that was no longer inter-
ested in them. The biggest advantage of gathering such
vast amounts of data is that it gives the application
developer an idea of how to partition the data, to boost
performance (Fig. 3).

Figs. 4 and 5show the results comparing DSMSim
and Strings. It can be observed that most of the runs

and
ANL m4 macros, can be run on the simulator fairly e
ily. The macro filec.m4.dsmsim should be used for th
simulator. This file is used to convert *.C and *.H files
*.c and *.h, respectively. The usage can be unders
from the sample applications that are available with
simulator. It is derived from the Augmint macro file

We used applications from the Splash-2[2] Bench-
mark Suite. FFT performs a transform ofn complex
data points and requires three all-to-all interproce
communication phases for a matrix transpose. The
access is regular. LU-c and LU-n perform factor
tion of a dense matrix. The non-contiguous version
a single producer and multiple consumers. It su
from considerable fragmentation and false sharing
contiguous version uses an array of blocks to imp
spatial locality. Radix performs an integer radix s
and suffers from a high-degree of false sharing at
granularity during a permutation phase. The ma
multiplication program uses a block-wise distribut
of the resultant matrix. Each application thread c
putes a block of contiguous values; hence, there
false sharing.
resulted in a negligible difference between Strings
DSMSim. The runs shown in the figure are 128× 128



D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57–66 63

Fig. 4. Comparison between Strings and the simulator.

matrix multiplication; FFT with 65536 complex dou-
bles, LU decomposition on a 512× 512 matrix with a
16× 16 block size. We show the number of page faults
in the simulator (SIM-PF) and in Strings (STR-PF), the
locks and barriers for the simulator (SIM-L and SIM-
B) and for Strings (STR-L and STR-B). In the legend,
STR is for strings and SIM is for DSMSim. The average
difference in number of page faults is 1.2%, with the
worst case being a difference of 12%. The difference in
the page fault reading stems from the fact that DSMSim
runs as a single process, whereas Strings spawns mul-

tiple processes that in turn spawn threads on multiple
machines. As a result, in Strings, if two threads on the
same node access the same page (causing a fault) at
the same time, this is regarded as just one fault. How-
ever, in DSMSim, this would be considered two faults.
From our results we can deduce that DSMSim accu-
rately mimics Strings.

From the accompanyingFigs. 4 and 5, it can be
observed that most of the runs resulted in a negligi-
ble difference between the Strings and the simulator.
The runs shown in the figure are 128× 128 matrix for

tween
Fig. 5. Comparison be
 Strings and the simulator.



64 D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57–66

Fig. 6. Performance enhancements on the simulator.

matrix multiplication. For FFT 65536 complex dou-
bles, for Lu 512× 512 matrix and a 16× 16 block size.
The messages measured are protocol messages. Mes-
sages that are sent as a result of UDP based networking
in Strings are not considered in the simulator. Thus,
we could deduce that the simulator was behaving very
much like Strings would. The next challenge was to add
features to the simulator that would yield an increase
in performance.

The following features were added to the simula-
tor. We changed the relationship between the threads
and the nodes. Since the ownership of the pages is
based on the nodes, this changed the manner in which
the threads were accessing the pages. We included an
invalidate protocol. Another change was the manner in
which owners are assigned to pages. In Strings, pages
are initially assigned to node zero; thereafter, on first
fault the ownership changes hands. We kept this fea-
ture and also assigned pages in a round robin fashion
without changing ownership at first fault. The user can
select either of the new options or the original system
behavior by selecting the appropriate command line
arguments at runtime.Figs. 6 and 7show the effect of
the different features that were added. On the ‘y-axis’
we plot the number of page faults (normalized). The
original version uses an update protocol and release

pro-
date

(A1-U) and invalidate (A1-I) protocols with a differ-
ent scheme of assigning data. It can be observed that
the most effective feature added was the first one. For
matrix multiplication, there is a significant improve-
ment when we have more threads per node. The same
trend is seen in radix, although the improvements are
not so significant. It can be seen that the invalidate pro-
tocol when compared to the update does not always
give an improvement in the number of faults.
consistency. The second column is an invalidate
tocol and the last two columns are both the up
 Fig. 7. Performance enhancements on the simulator.



D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57–66 65

4.1. Optimizations

With the DSMSim accurately mimicking Strings,
we added features to DSMSim that would potentially
improve the performance of Strings. The following fea-
tures were added to the simulator:

• We changed the relationship between the threads
and the nodes. Since the ownership of the pages is
based on nodes, this changed the manner in which
the threads were accessing the pages. The threads
could be assigned in a block fashion or in a round
robin fashion.

• The default behavior of DSMSim follows Release
Consistency with an update protocol. We added an
invalidate protocol that guarantees sequential consis-
tency. Thus, when a thread releases a lock, instead
of sendingdiffs to other nodes that share the page, it
invalidates those pages. Also after a barrier has been
acquired, only the owner shall have a valid page.

• Another change was the manner in which owners
are assigned to pages. In Strings, pages are initially
assigned to node zero; thereafter, the first node that
faults on a page becomes the new owner of that
page. This is the default behavior of the simulator.
In addition, the owners can be initially assigned in

e to
wn-

tem
b en-
t riate
c er, it
i e the
r g on
i ng
t re
p pli-
c res
t r
o ses
a sec-
o two
c A1-
I ata.
I tive
f ica-
t ave

more threads per node. The same trend is seen in radix,
although the improvements are not so significant. It can
be seen that the invalidate protocol when compared to
the update does not always give an improvement in the
number of faults.

5. Conclusions and future work

We developed a distributed shared memory simula-
tor, DSMSim that effectively matches the behavior of
Strings. It also provides a portable platform for con-
ducting research in memory consistency models and
protocols. In addition, the simulator can be used as a
teaching tool to understand the complexities of a DSM.
DSMSim is portable across both SPARC and Intel plat-
forms. Various applications can easily be ported for
the simulator. It is also very modular and allows a
researcher to easily add features and change its behav-
ior. Its ability to run on a single CPU machine is invalu-
able, as one does not need expensive SMP machines to
study DSM characteristics.

Our future work includes incorporating changes that
we have observed as advantageous, into Strings. We
plan on adding features related to memory consistency
models and coherency protocols and comparing their

liza-
nd
lator.

ed
, in:
m on
uly,

The
gical
sium

lable

arks:
oper-
NIX

age-
(3/4)
a round robin fashion and the user can choos
change the ownership at first-fault or leave the o
ers unchanged.

The user can choose to retain the original sys
ehavior or use any of the options previously m

ioned. This can be done by selecting the approp
ommand line arguments at runtime. In this mann
s possible to combine different options and observ
esults. Some features that we are currently workin
nclude allowing the pagesize to be a variable, by usi
he concept of a pageblock, which may be one or mo
ages. Its value could be different for different ap
ations.Fig. 7shows the effect of the different featu
hat were added. On the ‘y-axis’ we plot the numbe
f page faults (normalized). The original version u
n update protocol and release consistency. The
nd column is an invalidate protocol and the last
olumns are both the update (A1-U) and invalidate (
) protocols with a different scheme of assigning d
t can be observed from figure that the most effec
eature added was the first one. For matrix multipl
ion there is a significant improvement when we h
characteristics. In addition, features like data visua
tion will be added in the future to effectively study a
understand the data that is generated by the simu

References

[1] S. Roy, V. Chaudhary,Strings: a high-performance distribut
shared memory for symmetrical multiprocessor clusters
Proceedings of the Seventh IEEE International Symposiu
High Performance Distributed Computing, Chicago, IL, J
1998, pp. 90–97.

[2] S.C. Woo, M. Ohara, E. Torri, J.P. Singh, A. Gupta,
SPLASH-2 programs: characterization and methodolo
considerations, in: Proceedings of the International Sympo
on Computer Architecture, June 1995, pp. 24–36.

[3] The OpenMP Forum. OpenMP: Simple, Portable, Sca
SMP Programming.http://www.openmp.org/.

[4] P. Keleher, A. Cox, S. Dwarkadas, W. Zwaenepoel, TreadM
distributed shared memory on standard workstations and
ating systems, in: Proceedings of the Winter 1994 USE
Conference, 1994.

[5] Message Passing Interface (MPI) Forum, MPI: a mess
passing interface standard, Int. J. Super-Comput. Appl. 8
(1994).

http://www.openmp.org/


66 D.D. Thaker, V. Chaudhary / Future Generation Computer Systems 22 (2006) 57–66

[6] V.S. Sunderam, PVM: a framework for parallel distributed
computing, Concurrency: Pract. Experience 2 (4 (December))
(1990) 315–339.

[7] A.-T. Nguyen, M. Michael, A. Sharma, J. Torrellas, The Aug-
mint multiprocessor simulation toolkit for Intel x86 architec-
tures, in: Proceedings of the 1996 IEEE International Confer-
ence on Computer Design (ICCD), October 1996.

[8] D. Khandekar. Quarks: Distributed shared memory as a basic
building block for complex parallel and distributed systems.
Technical Report, University of Utah, March 1996.

[9] K. Li, IVY: a shared virtual memory system for parallel com-
puting, in: Proceedings of the 1988 International Conference on
Parallel Processing, August 1988, pp. 94–101.

[10] H. Han, C.-W. Tseng, P. Keleher, Eliminating barrier synchro-
nization for compiler-parallelized codes on software DSMs, Int.
J. Parallel Programming (October) (1998).

[11] D. Sunada, D. Glasco, M. Flynn, ABSS v2.0: a SPARC
simulator in, in: Proceedings of the eighth Workshop on
Synthesis And System Integration of Mixed Technologies,
1998.


	Simulation tools to study a distributed shared memory for clusters of symmetric multiprocessors
	Introduction
	Strings
	Simulator for Strings
	Motivation
	Simulation system details
	Augmint
	Simulator build and execution model
	Implementation details
	Memory references

	Performance analysis
	Optimizations

	Conclusions and future work
	References


