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Abstract—As computational clusters increase in size, their mean-time-to-failure reduces drastically. Typically, checkpointing is used to
minimize the loss of computation. Most checkpointing techniques, however, require central storage for storing checkpoints. This results
in a bottleneck and severely limits the scalability of checkpointing, while also proving to be too expensive for dedicated checkpointing
networks and storage systems.
We propose a scalable replication-based MPI checkpointing facility. Our reference implementation is based on LAM/MPI, however,
it is directly applicable to any MPI implementation. We extend the existing state of fault-tolerant MPI with asynchronous replication,
eliminating the need for central or network storage. We evaluate centralized storage, a Sun X4500-based solution, an EMC SAN,
and the Ibrix commercial parallel file system and show that they are not scalable, particularly after 64 CPUs. We demonstrate the
low overhead of our checkpointing and replication scheme with the NAS Parallel Benchmarks and the High Performance LINPACK
benchmark with tests up to 256 nodes while demonstrating that checkpointing and replication can be achieved with much lower
overhead than that provided by current techniques. Finally, we show that the monetary cost of our solution is as low as 25% of that of
a typical SAN/parallel file system-equipped storage system.

Index Terms—fault-tolerance, checkpointing, MPI, file systems.
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1 INTRODUCTION

COMPUTATIONAL clusters with hundreds or thousands
of processors are fast-becoming ubiquitous in large-

scale scientific computing. This is leading to lower mean-
time-to-failure and forces the system software to deal with
the possibility of arbitrary and unexpected node failure.
Since MPI [1] provides no mechanism to recover from such
failures, a single node failure will halt the execution of
the entire computation. Thus, there exists great interest
in the research community for a truly fault-tolerant MPI
implementation.

Several groups have included checkpointing within var-
ious MPI implementations. MVAPICH2 now includes sup-
port for kernel-level checkpointing of InfiniBand MPI pro-
cesses [2]. Sankaran et al. also describe a kernel-level check-
pointing strategy within LAM/MPI [3], [4].

However, such implementations suffer from a major
drawback: a reliance on a common network file system or
dedicated checkpoint servers. We consider the reliance on
network file systems, parallel file systems, and/or check-
point servers to be a fundamental limitation of existing
checkpoint systems. While SAN’s and network file sys-
tems are certainly useful for general computation, writing
checkpoints directly to network storage incurs too great an
overhead. Using dedicated checkpoint servers saturates the
network links of a few machines, resulting in degraded per-
formance. Even parallel file systems are easily saturated. In
this article we focus specifically on reducing checkpointing
overhead by eliminating the reliance on shared storage.
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For completeness we develop a user-level checkpointing
solution within the LAM MPI implementation. With our
user-level checkpointing solution, initially described in our
previous work [5], we investigate several existing check-
point storage solutions and demonstrate the low overhead
of our proposed replication-based approach.

Because most checkpointing implementations shown in
the literature consider clusters of inadequate size (typically
fewer than 64 nodes, more often 8-16 nodes) or inade-
quately small benchmarks (class B sizes of the NAS Parallel
Benchmarks [6]) scalability issues regarding checkpointing
are rarely considered. We specifically test the scalability
of our implementation with class D versions of the NAS
Parallel Benchmark suite. Further, we provide performance
results for the HPL benchmark with up to 256 nodes and
individual node memory footprints of up to 1 GB each.

We show that the overhead of checkpointing to net-
work storage, parallel file systems, or dedicated checkpoint
servers is too severe for even moderately sized computa-
tional clusters. As such, we make the following contribu-
tions in this article:

1. We propose and implement a checkpoint replication
system, that distributes the overhead of checkpointing
evenly over all nodes participating in the computation.
This significantly reduces the impact of heavy I/O on
network storage.

2. We show that common existing strategies including the
use of dedicated checkpoint servers, storage area net-
works (SANs), and parallel file systems are inadequate
for even moderately-sized computations. In addition,
our solution is significantly less expensive, costing as
little as 25% of the cost of a dedicated checkpointing
SAN.
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The remainder of this article is outlined as follows: in
Section 2 we provide a brief introduction to LAM/MPI and
checkpointing. In Section 3 we describe the work related
to this project. In Section 4 we discuss existing LAM/MPI
checkpointing strategies. In Section 5 we compare existing
checkpoint storage strategies and evaluate our proposed
replication technique. Finally, in Section 6 we present our
conclusions.

2 BACKGROUND

2.1 LAM/MPI

LAM/MPI [3] is a research implementation of the MPI-
1.2 standard [1] with portions of the MPI-2 standard. LAM
uses a layered software approach in its construction [7]. In
doing so, various modules are available to the programmer
that tune LAM/MPI’s runtime functionality including TCP,
InfiniBand [8], Myrinet [9], and shared memory communi-
cation.

The most commonly used module, however, is the TCP
module which provides basic TCP communication between
LAM processes. A modification of this module, CRTCP,
provides a bookmark mechanism for checkpointing li-
braries to ensure that a message channel is clear. LAM uses
the CRTCP module for its built-in checkpointing capabili-
ties.

More recently, checkpoint/restart support has been
added to the Open MPI implementation [10]. Its imple-
mentation mirrors the kernel-level checkpoint/restart work
already present in LAM/MPI. For our work we chose LAM
over Open MPI due to LAM’s maturity and widespread
academic use. However, this work is directly applicable to
any MPI implementation as the replication work itself is
implementation-neutral.

2.2 Checkpointing Distributed Systems

Checkpointing is commonly performed at one of three
levels: the kernel-level, user-level, and application-level
(others, including language-level, hardware-level and vir-
tual machine-level also exist). In kernel-level checkpoint-
ing, the checkpointer is implemented as a kernel module,
making checkpointing fairly straightforward. However, the
checkpoint itself is heavily reliant on the operating system
(kernel version, process IDs, etc.). User-level checkpointing
performs checkpointing at the library level, enabling a
more portable checkpointing implementation at the cost of
limited access to kernel-specific attributes (e.g. user-level
checkpointers cannot restore process IDs).

At the highest level is application-level checkpointing
where code is instrumented with checkpointing primi-
tives. The advantage to this approach is that checkpoints
can often be restored to arbitrary architectures. However,
application-level checkpointers require access to a user’s
source code and do not support arbitrary checkpointing.
Thus, a user’s code must be instrumented with checkpoint
locations (often inserted by hand by the programmer) after
which a preprocessor adds in portable code to save the

application’s state. Thus, in order for a checkpoint to be
taken a checkpoint location must first be reached. Such is
not the case with kernel-level or user-level strategies.

There are two major checkpointing/rollback recovery
techniques: coordinated checkpointing and message log-
ging. Coordinated checkpointing requires that all processes
come to an agreement on a consistent state before a check-
point is taken. Upon failure, all processes are rolled back
to the most recent checkpoint/consistent state.

Message logging requires distributed systems to keep
track of interprocess messages in order to bring a check-
point up-to-date. Checkpoints can be taken in a non-
coordinated manner, but the overhead of logging the in-
terprocess messages can limit its utility. Elnozahy et al.
provide a detailed survey of the various rollback recovery
protocols that are in use today [11].

Regardless of the level at which a checkpoint is taken
(user-level, kernel-level, or application-level) and the mech-
anism used to achieve a consistent state (message-logging,
or coordination) a checkpoint must ultimately be stored
such that it can be retrieved in the event of a node failure.
Checkpoints may be stored in memory or directly to disk.
The most common strategy is to store checkpoints directly
to stable storage, such as a SAN or parallel file system.
This has advantages in terms of simplicity and ease of
implementation, but largely ignores the overhead created
by such an approach. Our focus in this article is to reduce
the overhead of checkpointing through the use of local disk
replication.

3 RELATED WORK

Checkpointing at both the user-level and kernel-level has
been extensively studied [12]–[14]. The official LAM/MPI
implementation includes support for checkpointing using
the BLCR kernel-level checkpointing library [4]. An imple-
mentation by Zhang et al. duplicates the functionality of
LAM’s checkpointing, but implements the checkpointing
at the user-level [15]. As described earlier, Open MPI also
includes support for LAM-like BLCR checkpointing [10].
All current LAM and Open MPI implementations rely on
network storage.

Scheduling-based approaches have been used to help
alleviate the impact of saving checkpoints to centralized
storage. Wang et al. have implemented pause/restart func-
tionality in LAM [16] that moves checkpoint data to cen-
tralized storage in smaller groups. However, their results
are limited to 16 nodes, making the scalability of their so-
lution unknown. Similarly MPICH-GM, a Myrinet-specific
implementation of MPICH, has been extended by Jung et
al. to support user-level checkpointing [17]. They show
that the overhead of SAN-based checkpoint storage may
be partially mitigated by first storing checkpoints locally
before serializing their transfer to a SAN. We repeat and
compare against their solution in Section 5.5.

Gao et al. demonstrate a kernel-level checkpointing
scheme for InfiniBand on MVAPICH2 that is based on the
BLCR kernel module [2]. To help improve the performance
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of checkpointing, particularly the checkpointing delay due
to shared storage, they propose a group-based checkpoint-
ing solution that divides the MPI processes into multiple
(smaller) checkpointing groups. Each group checkpoints in-
dividually in an effort to reduce checkpointing overhead. In
order to achieve low overhead, however, their solution re-
quires that non-checkpointing groups make computational
progress during other groups’ checkpoints. This requires
that the MPI processes be divided into groups according
to their communication patterns, which in turn requires
information from the user. Further, their tests are limited to
32 nodes, making the scalability of their system unknown.

Using Charm++ [18] and Adaptive-MPI [19], Chakra-
vorty et al. add fault tolerance via task migration to the
Adaptive-MPI system [20], [21]. Their system relies on
processor virtualization to achieve migration transparency.
Zheng et al. discuss a minimal replication strategy within
Charm++ to save each checkpoint to two “buddy” proces-
sors [22]. Their work, however, is limited in that it provides
a minimal amount of resiliency and may only recover from
a single node failure.

Coding strategies have recently reappeared as a common
technique for providing fault-tolerance to checkpoint data.
While RAID-like coding strategies have been previously de-
scribed for parallel systems [23], [24], the massive amounts
of data generated in today’s checkpoints is necessitating a
reexamination of such techniques. Plank investigated the
performance implications of centralized storage with the
use of RAID-like checkpointing [23]. His work, however,
does not account for the use of SANs or parallel file
systems, but instead relies on a traditional NFS server for
checkpoint storage. Ren et al. use information dispersal
algorithms [25] along with checkpoint storage repositories
in a fine-grained cycle sharing system [26]. Chen et al.
similarly discuss a coding approach to checkpoint storage
in FT-MPI that requires users to insert the coding scheme
directly into their self-written checkpointing code [27].

Nath et al. describe a content addressable storage-based
(CAS) solution that may be used to reduce the impact of
checkpointing on storage systems (either shared or local
storage). Their approach reduces or eliminates duplication
of data within the CAS file system by storing common
data once and referencing it as-needed [28]. Any common
data that exists from one checkpoint period to the next can
be stored once, thereby reducing disk IO and disk space
consumed. However, this approach introduces a single
point of failure in that corruption of highly common data
chunks may result in unreadable checkpoints spanning
multiple checkpoint periods. Nath et al. suggest that a
replication system may be used to alleviate this single point
of failure [28].

Our work differs from the previous work in checkpoint
storage in that we handle checkpoint redundancy for added
resiliency in the presence of multiple simultaneous node
failures. Our checkpointing solution does not rely on the
existence of network storage for checkpointing. The absence
of network storage allows for improved scalability and also
shorter checkpoint intervals (where desired). This work

may be used in conjunction with a coding or CAS-based
approach, as both may decrease the size of checkpoint frag-
ments while providing fault-tolerance. Combining these
strategies with checkpoint replication may yield further
improvements over the replication-only results we present
in this article. However, the overhead of encoding and de-
coding large checkpoints is a concern that we are currently
investigating.

4 LAM/MPI CHECKPOINTING

We are not the first group to implement checkpointing
within the LAM/MPI system. Three others [4], [15], [16]
have added basic checkpoint/restart support. Because of
the previous work in LAM/MPI checkpointing, the basic
checkpointing/restart building blocks were already present
within LAM’s source code. This provided an ideal environ-
ment for testing our replication strategy. We begin with a
brief overview of checkpointing with LAM/MPI.

Sankaran et al. first added checkpointing support within
the LAM system [4] by implementing a lightweight coor-
dinated blocking module to replace LAM’s existing TCP
module. The protocol begins when mpirun instructs each
LAM daemon (lamd) to checkpoint its MPI processes. When
a checkpoint signal is delivered to an MPI process, each
process exchanges bookmark information with all other
MPI processes. These bookmarks contain the number of
bytes sent to/received from every other MPI process. With
this information, any in-flight messages can be waited on,
and received, before the checkpoint occurs.

After quiescing the network channels, the MPI library
is locked and a checkpointing thread assumes control. The
BLCR Library (Berkeley Linux Checkpoint/Restart) is used
as a kernel-level checkpointing engine [13]. Each process
checkpoints itself using BLCR (including mpirun) and the
computation resumes.

When a node fails, the user restarts the checkpointed
mpirun which automatically restarts the application using
an application schema to maintain the original topology. The
MPI library is then reinitialized and computation resumes.

Zhang et al. describe a user-level checkpointing solution
that is also implemented within LAM [15]. Their check-
pointer (libcsm) is signal-based rather than thread-based.
But otherwise, their implementation is identical to that of
Sankaran’s.

A problem with the above solutions is that both require
identical restart topologies. If, for example, a compute node
fails, the system cannot restart by remapping checkpoints
to existing nodes. Instead, a new node must be inserted into
the cluster to force the restart topology into consistency
with the original topology. This requires the existence of
spare nodes that can be inserted into the MPI world to
replace failed nodes. If no spare nodes are available, the
computation cannot be restarted.

Two previous groups have attempted to solve the prob-
lem of migrating LAM checkpoint images. Cao et al. [29]
propose a migration scheme based on the BLCR work [4]
by Sankaran et al. Their technique towards migrating LAM
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Fig. 1. Checkpointing and restarting a LAM/MPI process.
The boxed portion represents the majority of our check-
point/migration enhancements.

checkpoints requires a tool to parse through the binary
checkpoint images, find the MPI process location informa-
tion, and update the node IDs.

Wang et al. propose a pause/migrate solution where
spare nodes are used for migration purposes when a LAM
daemon discovers an unresponsive node [16]. Upon de-
tecting a failure, their system migrates the failed processes
via a network file system to the replacement nodes before
continuing the computation. However, the scalability of
their solution is not yet known as their results were limited
to 16 nodes

In Fig. 1 we provide a brief sketch of the LAM/MPI
checkpoint/restart mechanism, including our enhance-
ments. Our checkpointing solution uses the same coordi-
nated blocking approach as Sankaran and Zhang’s tech-
niques described above. To perform the checkpointing, we
use Victor Zandy’s Ckpt checkpointer [30]. Unlike previous
solutions, we allow for arbitrary restart topologies without
relying on any shared storage or checkpoint parsing.

The majority of Fig. 1 is the same basic checkpoint
strategy that is used by Sankaran et al. [4]. Where our
implementation differs is in the “restart base” and “GPS

struct _gps { 

int4 gps_node;     /* node ID */
int4 gps_pid;        /* process ID */
int4 gps_idx;        /*process index */
int4 gps_grank;    /*glob. rank in loc. world */

}; 

Fig. 2. LAM GPS (global positioning system) structure. This
maintains node-specific data that must be updated prior to
migration.

coordinate update” portions of Fig. 1 where process-specific
data is updated before continuation (noted by the box).
The primary differences (compared to LAM’s BLCR check-
point implementation) are that user-level checkpointing
does not provide the same restart capabilities of kernel-
level checkpointing. For example, process IDs are restored
when using a kernel-level checkpointer such as BLCR [13],
but cannot be restored at the user-level. Thus our user-level
checkpointing solution requires a more in-depth restart pro-
cedure that both restores the computation and resynchro-
nizes the process-specific attributes that would otherwise
be handled by the kernel-level checkpointing library.

In the “restart base” portion of Fig. 1 we update all
process-specific information that has changed due to a
restart. This includes updating process IDs, environment
variables, and restarting messaging channels. In order to
support process migration, we added a phase to LAM’s
restart sequence. We depict this as “update GPS coordi-
nates.” Internally, LAM uses a GPS (global positioning
system) structure (Fig. 2) to maintain vital identification
for each MPI process. The GPS structure defines location-
specific information for each MPI process. It provides a
mechanism to easily determine the node on which a process
is executing as well a process’ rank within its node. Thus,
for every process in the MPI world, there exists a GPS
entry, and each process caches a local copy of the entire
GPS array. A migration that varies the MPI topology will
alter elements of the GPS array as processes are assigned to
alternate nodes (the gps node field in Fig. 2). Our strategy
is to mimic an MPI Init upon restart in order to trigger
a GPS cache update from mpirun. This facilitates the ar-
bitrary migration of MPI processes without relying on a
tool to manually parse the checkpoints. It further simplifies
the restarting of messaging channels as it allows us to
use LAM’s existing message channel initialization code to
start/restart its underlying network connections.

5 CHECKPOINT STORAGE, RESILIENCE, AND
PERFORMANCE

In order to enhance the resiliency of checkpointing while
simultaneously reducing its overhead, we include data
replication. While not typically stated explicitly, nearly all
checkpoint/restart methods rely on the existence of net-
work storage that is accessible to the entire cluster. Such
strategies suffer from two major drawbacks in that they
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create a single point of failure and also incur excessive
overhead when compared to checkpointing to local disks.

Moreover, a cluster that utilizes a network file system-
based checkpoint/restart mechanism may sit idle should
the file system experience a failure. This leads not only to
wasteful downtime, but also may lead to lost data should
the computation fail without the ability to checkpoint.
However, even with fault-tolerant network storage, simply
writing large amounts of data to such storage represents an
unnecessary overhead to the application. To help mitigate
this overhead we examine two replication strategies in the
sections to follow: a dedicated server technique, and a
distributed replication strategy.

We acknowledge that arguments can be made in support
of the use of SANs or parallel file systems for the storage
of checkpoints. The most powerful supercomputers, such
as the IBM BlueGene/L, have no per-node local storage.
Instead, parallel file systems are used for persistent data
storage in order to reduce the number of node failures
due to disk failures. However, the majority of today’s
computational clusters already posses some form of local
storage. Our goal is to better utilize such storage for fault-
tolerance. Further, as supercomputing becomes more data-
intensive, the need for local storage, even in the largest
supercomputers, is becoming even more necessary [31].
With active work in the search and analysis of petabytes
of data, high-speed, local, and “intelligent” disks are be-
coming mandatory [32]. We would argue that the next
generation of supercomputers must contain some form of
high speed local storage, despite its potential shortcomings.

Our implementation is built on top of TCP using ether-
net. Other networking fabrics could be used, as evidenced
by the previous work in InfiniBand and Myrinet. How-
ever, our goal was to target the most widely used cluster
interconnect in an effort to be more widely applicable.
Accordingly, we chose gigabit ethernet due to its popularity
within the Top500 supercomputer list (56.8% as of June
2008) [33].

We evaluate both centralized-server and network
storage-based techniques and compare them against our
proposed replication strategy using the SP, LU, and BT
benchmarks from the NAS Parallel Benchmarks (NPB)
suite [6] and the High Performance LINPACK (HPL) [34]
benchmark. The remaining benchmarks within the NPB
suite represent synthetic computational kernels, rather than
mini-applications. We limited our NPB benchmarking focus
to the mini-applications as we found them to be more rep-
resentative of typical computational workloads. The tests
were performed with a single MPI process per node. To
measure the performance of our checkpointing implemen-
tation and replication using the NPB tests, we used ex-
clusively “Class D” benchmarks. For the HPL benchmark,
we selected a matrix with a problem size of 53,000. These
configurations resulted in checkpoint sizes and runtimes
that are listed in Table 1, with all tests conducted on a single
set of 64 nodes. Later, in Section 5.5, we test our solution
for scalability.

These tests were performed using a Wayne State Univer-

TABLE 1
Benchmark runtime and checkpoint sizes.

Runtime (s) Size (MB)

LU 2240.68 204

BT 3982.69 1020

SP 3962.61 447

HPL 2698.74 374

sity cluster consisting of 92 dual 2.66 GHz Pentium IV Xeon
processors with 2.5 GB RAM, a 10,000 RPM Ultra SCSI hard
disk and fast ethernet. A 36 TB Sun X4500 storage unit was
also used for the network storage tests. The 92 node cluster
accesses the X4500 via a single gigabit fibre connection.
Tests are performed on 64 nodes of the 92 node cluster, with
checkpoints taken at intervals ranging from 4 minutes to 16
minutes. We utilize short checkpointing frequencies in or-
der to exaggerate the impact of our checkpoint strategy on
the benchmarks. In a production environment, checkpoints
would be taken at intervals of several hours or more. By
exaggerating the checkpoint intervals, we are able to gain
a more accurate sense of the worst-case overheads present
in our system.

As a baseline, we compare storage to a dedicated server,
storage to the X4500, and replication storage techniques
against the checkpoint data shown in Fig. 3. Here we
show the result of periodically checkpointing the NAS
Parallel Benchmarks as well as the HPL benchmark along
with a breakdown of the time taken to perform a single
checkpoint. Each node stores its checkpoints directly to its
own local disk. This is done in order to gain a sense of
the overhead incurred from checkpointing without stable
storage of any kind.

In Fig. 3(a) we break the checkpointing overhead down
by coordination time, memory write time, and continue
time. The coordination phase includes the time needed to
quiesce the network channels/exchange bookmarks (see
Section 4). The memory write time consists of the time
needed to checkpoint the entire memory footprint of a
single process and write it to a local disk. Finally, the
continue phase includes the time needed to synchronize
and resume the computation. On occasion, particularly
with large memory footprints, the continue phase can
seem disproportionately long. This is due to some nodes’
slower checkpoint/file writing performance, forcing the
faster nodes to wait. As we show in Fig. 3(a), this is
the case with the BT benchmark. Such waiting ultimately
drives up the continue phase timings, as they are simply an
average of all nodes’ waiting time. We note carefully that
one should not conclude that the continue phase dominates
the overhead in such cases. Instead, it is more accurately
interpreted as a measure of the slowest nodes’ checkpoint
writing performance.

Thus, the time required to checkpoint the entire system is
largely dependent on the time needed to write the memory
footprint of the individual nodes. Writing the checkpoint
file to disk represents the single largest time in the entire
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(a) (b)

Fig. 3. A breakdown of checkpointing overheads of 64 node computations written directly to local disk: (a) Overhead of
checkpointing at 8 minute intervals; (b) total overhead with varying checkpointing frequencies.

checkpoint process and dwarfs the coordination phase.
Thus, as the memory footprint of an application grows,
so too does the time needed to checkpoint. This can also
impact the time needed to perform the continue barrier as
faster nodes are forced to wait for slower nodes to write
their checkpoints to disk.

In Fig. 3(b) we provide the total overheads for all
benchmarks at 4, 8, and 16 minute checkpointing intervals.
Our user-level checkpointing implementation shows very
little overhead even when checkpointing the 1.02 GB BT
benchmark at 4 minute intervals. Indeed none of the bench-
marks exhibit overhead of more than 8% despite being
checkpointed as much as 17 times (in the case of BT). As
the checkpointing frequency is reduced to 8 and 16 minutes,
the overhead drops to less than 2% in all cases. The major
source of the overhead of our checkpointing scheme lies in
the time taken in writing the checkpoint images to the local
file system.

5.1 Dedicated Checkpoint Servers versus Checkpoint-
ing to Network Storage

The two most common checkpoint storage techniques
presented in the literature are the use of dedicated
server(s) [35] and storing checkpoints directly to network
storage [2], [4]. We begin our evaluation with a comparison
of these two strategies.

For our dedicated checkpoint server implementation we
use the LAM daemons (lamd) to move checkpoints from
individual nodes to a dedicated checkpoint server. Each
lamd was extended with an additional daemon that is used
to both collect checkpoint information from each of its MPI
processes, and asynchronously propagate the data to the
dedicated server. We have also extended mpirun to include
a checkpointing daemon responsible for scheduling and
receiving checkpoints.

In Fig. 4 we show the overhead of checkpointing with the
added cost of streaming the checkpoints to a centralized
server or storing the checkpoints to the Sun X4500. Only

Fig. 4. Overhead of NPB and HPL using X4500 and central-
ized server, 64 nodes.

one checkpoint is taken for both the dedicated checkpoint
server as well as the X4500. As Fig. 4 shows, the overhead
of storing checkpoints to the X4500 far outperforms that of
streaming the checkpoints to a centralized server. Indeed,
the overhead of streaming the largest checkpoints, BT, to
a dedicated server result in overhead of 113.5%. Storing
checkpoints directly to the X4500, however, results in an
overhead of only 16.62%. This is to be expected, given that
the single dedicated server is collecting checkpoints over a
fast ethernet connection.

However, we can also see that as the size of the check-
point decreases, so too does the overhead incurred by
streaming all checkpoints to a centralized server. A single
checkpoint incurs an overhead of 37%, 56%, and 68%
for the LU, SP, and HPL benchmarks respectively. Simi-
lar reductions are seen when saving checkpoints directly
to the X4500, resulting in overheads of 7.6%, 7.4%, and
7.8% for LU, SP, and HPL. We note that the overhead
incurred by HPL is higher than both SP and LU due to
its shorter runtime, and larger checkpoints. With a runtime
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that approximates LU, and checkpoint sizes approximating
SP, the HPL benchmark spends proportionally more time
checkpointing than either LU or SP, hence the slightly
higher overhead.

Nevertheless, the X4500-based solution shows a distinct
advantage over centralized storage, as would be expected
for moderately-sized clusters. To help mitigate the bot-
tleneck of a centralized server, techniques using multiple
checkpoint servers have been proposed [35]. However, their
efficacy in the presence of large checkpoint files has not
been demonstrated in the literature (NPB class B results are
shown). Furthermore, if each checkpoint server is collecting
data from a distinct set of nodes, as Coti et al. imply [35],
the computation will not be resilient to failed checkpoint
servers. Finally, as we show in Fig. 4, dedicated server
strategies simply do not scale, particularly not at cluster
sizes of 64 nodes. Thus, a solution that uses dedicated
servers would require a large number of servers to acco-
modate large computations.

Wang et al. propose a technique to alleviate the impact of
checkpointing directly to centralized storage such as SAN
or NAS devices by combining local checkpointing with
asynchronous checkpoint propagation to network stor-
age [16]. However, they require multiple levels of schedul-
ing in order to prevent the SAN from being overwhelmed
by the network traffic. The overhead of their scheduling
has not yet been demonstrated in the literature, nor has the
scalability of their approach, where their tests are limited
to 16 nodes. Other strategies, such as serializing checkpoint
writes to the SAN, have also been demonstrated in the
literature [17]. In Section 5.5 we evaluate the Jung et al.
implementation of serializing checkpoints.

5.2 Checkpoint Replication

To address the scalability issues shown in Section 5.1,
we implemented an asynchronous replication strategy that
distributes the checkpoint/replication overhead over all
nodes participating in the computation. Again we extended
LAM’s lamds. This time we used a peer-to-peer strategy
between each lamd to replicate checkpoints to multiple
nodes. This addresses both the resiliency of checkpoints
to node failure as well as the bottlenecks incurred by
transferring data to dedicated servers.

A variety of replication strategies have been used in peer-
to-peer systems. Typically, such strategies must take into
account the relative popularity of individual files within the
network in order to ascertain the optimal replication strat-
egy. Common techniques include the square-root, propor-
tional, and uniform distributions [36]. While the uniform
distribution is not often used within peer-to-peer networks,
because it does not account for a file’s query probability, our
checkpoint/restart system relies on the availability of each
checkpoint within the network. Thus, each checkpoint has
an equal query probability/popularity and we feel that a
uniform distribution is justified for this specific case.

We opted to distribute the checkpoints pseudo-randomly
in order to provide a higher resilience to network failures.

For example, a solution that replicates to a node’s nearest
(or farthest) neighbors may fail in the presence of a switch
failure. A strategy that forces nodes to replicate to their
farthest neighbors may also exhibit lower performance in
the presence of inadequate network bisection bandwidth.
Further, nodes may not fail independently and instead
may cause the failure of additional nodes within their
local vicinity. Thus, we use random replication in order to
probabilistically spread checkpoints onto multiple switches
in multiple locations.

To ensure an even distribution of checkpoints throughout
the MPI world, we extended the lamboot command with a
parameter representing the degree of replication (number
of replicas). lamboot is responsible for computing and in-
forming each lamd of its replicas.

5.2.1 Random Node Selection

Intuitively, the generation of random locations for replica
placement is quite simple. The MPI computation is de-
scribed by a set of nodes, with one or more compute
processes executing per node. For each node there is a
single lamd process per user, independent of the number
of MPI processes executing on any particular node. Since
replication is provided at the node level, not the MPI process
level, the computation can be described strictly in terms of
the number of nodes. Then N = node0, node1, . . . , noden−1

is the set of nodes participating in a user’s MPI computa-
tion, and r is the number of replicas, decided by the user.

The goal is to randomly generate r replicas per node,
subject to the following constraints:

1. A node should not replicate to itself.
2. A node should replicate to exactly r nodes, each of

which may only store r replicas.
3. Each of a node’s r replicas should be unique.

Constraints 1 and 3 are quite straightforward. Num-
ber 2, however, represents the subtle difference between
our balanced replication approach, and an approach that
simply utilizes multiple checkpoint repositories. Without
constraint 2 an imbalance can occur within the replica
storage. An extreme, though unlikely, consequence of this
would be one in which many nodes are assigned the same
replicas, thereby overly burdening a few nodes that act as
defacto checkpoint servers. Our approach eliminates this
possibility.

Perhaps the most obvious solution is to proceed in
order from node0 through noden−1, and randomly generate
replicas per the above constraints. In practice, however, this
will not work due to the gradual narrowing of the replica
candidates as the algorithm proceeds. Eventually one is left
with only a few replica candidates, none of which satisfy
the constraints.

In Algorithm 1 we describe our solution to the problem
of random node selection. Similar work has been studied
in the context of expander graphs [37]. The key to our
algorithm is to begin with an initial state that satisfies
the above replica constraints, and incrementally refines the
replica choices through swapping. We achieve an initial
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0 goes to 0 0 0
1 goes to 1 1 1
2 goes to 2 2 2
...

Fig. 5. Initial assignment where each
node is first initialized with its own
replicas.

0 goes to 1 2 3
1 goes to 2 3 4
2 goes to 3 4 5
...

Fig. 6. After shifts where each
replica has been circular shifted by
column index − 1.

0 goes to 31 14 5
1 goes to 11 3 61
2 goes to 53 33 36
...

Fig. 7. Final assignments where
replicas have been randomly
swapped within columns, assumes
64 nodes.

Algorithm 1 Compute random replica placements.

Input: Integer r, the number of replicas
Input: Integer n, the number of nodes
Output: Replica array, Replicas[0...n − 1][0...r − 1]
1: for all i such that 0 ≤ i < n do

2: Preload node i’s replicas with i

3: end for

4: Circular-shift each column (j index) of Replicas

by column index − 1
5: for all i such that 0 ≤ i < n do

6: for all j such that 0 ≤ j < r do

7: repeat

8: z = random node, s.t. 0 ≤ z < n

9: v = Replicas[z][j]
10: until z 6= i

11: if v 6= i and Replicas[i][j] 6= z then

12: valid replica = 1
13: for all k such that 0 ≤ k < r do

14: if Replicas[i][k] == v or Replicas[i][j] ==
Replicas[z][k] then

15: valid replica = 0
16: end if

17: end for

18: if valid replica then

19: Replicas[z][j] = Replicas[i][j]
20: Replicas[i][j] = v

21: end if

22: end if

23: end for

24: end for

state in lines 1–4. The only requirement of the circular-shift
referenced on line 4 is that the final state of replicas should
be valid according to the constraints. This means that each
column (j index in Algorithm 1) should be circular-shifted
such that no two rows (i index) contains duplicate replicas
and no row should be assigned itself (if there are n nodes,
one should not shift by either 0 or n). The shift can be
random or could be as simple as rotating the jth column
by j ± 1.

In Fig. 5 and 6 we provide an example of an initial state
and post-shift state, assuming 64 nodes with 3 replicas.
Clearly, rotating the columns as shown in Fig. 6 is far from
ideal. Nevertheless, it is a valid assignment that provides
an adequate initial state. Once the initial state is achieved,
the algorithm proceeds through each node and each replica

and swaps replicas with randomly chosen nodes.

Because we began the swapping with a valid initial state,
we need only maintain the constraints while introducing
an element of randomness into the replica generation. Two
nodes may swap replicas as long as neither node already
contains a copy of their potential replicas, and provided
that the swap would not result in either node replicating
to itself.

In lines 7–10 we generate the candidate node that may
later be used for swapping. The only constraint that is
enforced is that z, the random node, should not be i. That
is, node i should not attempt to swap with itself. At the
end of the repeat-until loop, z will contain the node that
node i may swap with, and v contains the actual replica
that may be swapped.

Once a valid replica candidate has been generated, we
simply check to ensure that swapping would maintain a
valid state. In line 11 we confirm that the exchange would
not result in self-replication. That is, v, the actual replica to
be swapped, should not be i, and vice versa. In lines 13–
16 we confirm that for both nodes i and the candidate
node, the swap would not result in a duplicate replica being
added to either node’s replica set. Finally, in lines 18–21 we
perform the actual replica swap. We provide an example
of a possible final replica assignment for a 64 node cluster
with 3 replicas in Fig. 7.

5.2.2 Basic Replication Overhead

Fig. 8 shows the results of distributing one and two replicas
of both NPB and HPL throughout the cluster. As can be
seen, the overhead of a single checkpoint in Fig. 8(a) is
substantially lower than that of either the centralized server
or X4500, shown previously in Fig. 4. In each case, we are
able to reduce the overhead of a single checkpoint to below
2%, where the overhead of a single checkpoint is computed
as overhead

num checkpoints
for the 8 minute checkpoint interval. We

observe that even at 8 minute checkpointing intervals the
aggregate overhead typically remains below 10%, with only
the BT benchmark exhibiting a higher overhead of 12.6%.
After doubling the checkpointing interval to 16 minutes,
the overhead reduces to 2.9%–4.3% for all benchmarks.

To address the resiliency of checkpoint replication in
the presence of node failure we insert multiple checkpoint
replicas into the system. In Fig. 8(b) we compare the
overheads of distributing 2 replicas of each checkpoint. As
we would expect, the overhead incurred is proportional to
the size of the checkpoint that is distributed. For smaller
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(a) (b)

Fig. 8. Overhead of one and two replicas for 64 nodes. Both NPB and HPL results are shown.

Fig. 9. HPL Recovering from up to 8 failures. The initial
computation utilized 64 nodes. Up to 8 nodes have been
failed in these tests.

checkpoints such as LU, distributing the 2 replicas rep-
resents minimal overhead. As the size of the checkpoint
increases, however, so too does the overhead. The BT data
of Fig. 8(b) clearly exhibits much higher overall overhead
than the single replica data of Fig. 8(a). Even so, the
overhead per checkpoint remains quite low as evidenced
by BT’s single checkpoint overhead of 2.86%. Once the
checkpointing interval increases to 16 minutes, the overall
overheads drop to less than 10%.

5.3 Restarting/Recovering from Failure

One potential caveat to the use of distributed local stor-
age/replication for checkpointing lies in the restart of failed
computations. Storing checkpoints to a SAN or other cen-
tral repository makes restarting and rebalancing computa-
tion quite straightforward. Indeed, one can simply restart
the failed computation in a similar manner as running a
standard MPI application. Since all checkpoints are stored
in a single place, mpirun can easily find and start any

checkpoint on any node, provided that the checkpoints are
already migrateable.

Restarting a computation that uses local storage, how-
ever, is slightly more involved. We use the fact that all lamds
are allocated their replicas at the lamboot stage. Therefore, all
checkpoints and their replica locations are known a priori.
At startup, the lamboot command simply records all replica
locations and writes them to a file (replica schema). One
would expect even the largest cluster’s replica schema
to total less than several megabytes, with typical clusters
averaging less than 100 kilobytes. As such, this file can be
replicated like any other checkpoint. For added resiliency,
the replica schema may be broadcast to all nodes in the
computation.

When restarting a failed computation due to node failure,
mpirun uses the replica placement data along with the
current machine file to remap computation onto existing
nodes. First, all surviving nodes are assigned their own
checkpoints to restart. If the computation is restarted on
a subset of the original nodes, then any outstanding check-
points are remapped to a previous replica location. If addi-
tional replacement nodes are available, mpirun initializes a
parallel file transfer to copy unclaimed checkpoints to the
new node(s).

In Fig. 9 we present the results of restarting the HPL
benchmark in the presence of 0, 4, and 8 failures, where 0
failures indicates a simple restart with no missing nodes.
We compare our mapped restart to the typical strategy of
restarting from a shared storage device. As Fig. 9 shows,
our local storage strategy exhibits clear benefits to restarting
computations, reducing the X4500-based restart times from
4.4 minutes to 2.4 seconds with 8 failures.

Both solutions exhibit nearly constant restart times re-
gardless of the number of failures. This is to be expected,
as oversubscribing computations to nodes incurs overhead
primarily in runtime rather than startup time, whereas in
restarts the overhead is due to lack of bandwidth. Never-
theless, we see a slight increase in startup times, with the
X4500 restart times increasing from 243.4 seconds to 265.7
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TABLE 2
Number of allowed failures to maintain 90,99, and 99.9% probability of restart with 1-4 replicas.

1 Replica 2 Replicas 3 Replicas 4 Replicas

Allowed Failures for Allowed Failures for Allowed Failures for Allowed Failures for
Nodes 90% 99% 99.9% 90% 99% 99.9% 90% 99% 99.9% 90% 99% 99.9%

8 1 1 1 2 2 2 3 3 3 4 4 4

16 1 1 1 2 2 2 5 4 3 7 5 4

32 2 1 1 5 3 2 8 5 4 11 8 6

64 3 1 1 8 4 2 14 8 5 19 12 8

128 4 1 1 12 6 3 22 13 8 32 21 14

256 5 2 1 20 9 5 37 21 13 55 35 23

512 7 2 1 31 14 7 62 35 21 95 60 38

1024 10 3 1 48 23 11 104 59 33 165 103 67

2048 15 5 2 76 35 17 174 97 56 286 179 112

seconds, and the local storage restart times increasing from
2.0 seconds to 2.4 seconds as additional failures are added.

5.4 The Degree of Replication

While the replication strategy that we have described has
clear advantages in terms of reducing the overhead on a
running application, an important question that remains
is the number of replicas necessary to achieve a high
probability of restart. To help answer this question, we
developed a simulator capable of replicating node failures,
given inputs of the network size and the number of replicas.
Table 2 lists the number of failures that our replication
scheme will probabilistically tolerate, given 1-4 replicas.
We provide failure data for both the number of replicas
as well as the desired probability of a successful restart
up to 99.9%. Our goal with Table 2 is not to demonstrate
that our system is capable of surviving a node failure
with 2 or more replicas, but rather to show the number
of simultaneous node failures that our replication system is
capable of surviving, for example in the case of a switch
failure.

From Table 2 we can see that our replication strategy
enables a high probability of restart with seemingly few
replicas needed in the system. With 2048 processors, for
example, we estimate that 112 simultaneous failures could
occur while maintaining at least a 99.9% probability of
successful restart and requiring only 4 replicas of each
checkpoint. This amounts to 5.5% of the total cluster. With
5 or 6 replicas (not shown) our system can tolerate failures
of 9.1% and 12.6% of the cluster while still maintaining a
99.9% probability of restart.

5.5 Scalability Studies

To demonstrate scalability we also tested our implemen-
tation with up to 256 nodes on a University at Buffalo
Center for Computation Research owned cluster consisting
of 1600 3.0/3.2 GHz Intel Xeon processors, with 2 proces-
sors per node (800 total nodes), gigabit ethernet, Myrinet
2G, a 30 TB EMC Clariion CX700-based SAN as well as
a high performance commercial Ibrix parallel file system.

21 active Ibrix segment servers are in use and connect to
the existing EMC SAN. The ethernet network has a 44
gigabit theoretical bisection bandwidth. The data mover
associated with the SAN’s scratch file system used in our
benchmarks has a maximum sustained bandwidth of 260
MB/s. Despite the cluster’s Myrinet network we chose to
implement our results using gigabit ethernet, due to its
prevalence in the Top500 list [33]. Similar strategies could
be employed for both Myrinet and InfiniBand, and we
would expect performance improvements in those cases.

Because the checkpointing engine, Ckpt [30], is only 32-
bit while the University at Buffalo’s Xeon processors are
each 64-bit, we simulated the mechanics of checkpointing
with an artificial 1 GB file that is created and written to
local disk at each checkpoint interval. Aside from this, the
remaining portions of our checkpointing system remain
intact (coordination, continue, file writing, and replication).
Tests on all shared storage devices (EMC SAN and Ibrix
parallel file system) were performed multiple times to
ensure that spikes in resource usage could be taken into
account while also being performed at non-peak times to
minimize the impact of cluster users on the shared storage.
We focus our remaining tests on the HPL benchmark as its
runtime is easily adjusted to maintain a reasonable amount
of computation. The NPB benchmarks simply execute too
quickly on clusters of 128 and 256 nodes and do not
demonstrate realistic overheads.

In Fig. 10 we demonstrate the impact of our replication
scheme. Each set of nodes (64, 128, and 256) operates on
a unique data set to maintain a run time of approximately
1000 seconds. The individual figures in Fig. 10 all represent
the percent overhead of the HPL benchmark at each cluster
size for checkpointing intervals of 8 and 16 minutes (2
checkpoints and 1 checkpoint, respectively). From Fig. 10(a)
we can see that the cost of a single replica is quite low,
exhibiting overheads of less than 5% at 16 minute check-
pointing intervals. By halving the checkpointing interval to
8 minutes, we incur approximately twice the overhead at
9.4% for 256 nodes.

Similar single checkpoint results can be seen at 2, 3, and 4
replicas with only a minimal increase in overhead for each
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(a) (b)

(c) (d)

Fig. 10. Scalability tests using the HPL benchmark with 1-4 replicas. Each node size (64, 128, 256) is compared against a
base runtime of approximately 1000 seconds.

replica. However, by halving the checkpointing interval to
8 minutes, we incur a slight increase in overhead as replicas
are added, with 256 nodes resulting in an overhead of
approximately 2.5 times the cost of a single checkpoint.
This is due largely to the networking overhead added
by replication, resulting in decreased bandwidth for the
running application.

For comparison, we also present the overhead of check-
pointing to the EMC SAN and Ibrix parallel file system
in Fig. 11. Large scale evaluation of the centralized server
technique was not possible due to the limited disk capacity
of the compute nodes. As can be seen, the overhead of
checkpointing directly to a SAN not only dwarfs that of our
distributed replication strategy but also nullifies the efficacy
of additional processors for large clusters. At 256 nodes, for
example, a single checkpoint to the EMC SAN results in an
overhead of nearly 200%, while our checkpoint/replication
strategy with 4 replicas results in an overhead of only 7.1%.
This suggests that for today’s large-scale clusters SAN-
based checkpointing is not currently a viable solution.

The Ibrix file system, while scaling much better than the
EMC SAN, is quickly overwhelmed as the ratio of compute

Fig. 11. Comparing overheads of replication to SAN and
the Ibrix PFS. A single checkpoint is performed for the SAN
and Ibrix cases. Results are compared against a single
checkpoint using 4 replicas.

nodes to IO/segment servers increases. At 64 nodes, the
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Fig. 12. Comparing replication to serialized SAN writes.
The labels “x: 4 Rep” indicates timings for x nodes with 4
replicas. The labels “x: Serial” indcate serialized writes to
the SAN. All timings include a single checkpoint.

21 segment servers are able to easily accommodate the
checkpoint data with minimal overhead (11.9% for Ibrix vs.
2.3% with 4 replicas at 16 minute intervals). However, as
the ratio of compute nodes to segment servers increases to
6:1 and 12:1 for 128 and 256 nodes, the overhead increases
dramatically. Indeed, the overhead of saving checkpoints
to the Ibrix parallel file systems for cluster sizes of 128 and
256 nodes is 41.8% and 59.8%, respectively.

Jung et al. suggest a serialized approach to reducing the
overhead of storing checkpoints to shared devices such as a
SAN [17]. Their strategy is to first checkpoint to local stor-
age, then copy the checkpoints to a SAN. We reproduced
this experiment, comparing a single serialized checkpoint
against a single 4 replica checkpoint. The results, shown in
Fig. 12, show that serializing the transfer of checkpoints to
shared storage closely matches our HPL runtimes. How-
ever, one must also consider the time needed to complete
a checkpoint, shown in the stacked bar of Fig. 12. Here we
see that the consequence of the serialization is drastically
increased checkpointing times, ranging from 1700 seconds
at 64 nodes to nearly 5300 seconds at 256 nodes. This
represents a checkpoint time of 5 times the benchmark
time. Our replication strategy, however, exhibits nearly
constant checkpoint times of approximately 250 seconds for
4 replicas, which is well within the benchmark times.

The result of the increased checkpointing times is that
applications are effectively limited to a checkpointing in-
terval proportional to the number of nodes participating
in the checkpoint. From Fig. 12 we can see that a 256
node computation, each writing 1 GB checkpoints, may
checkpoint at a frequency of approximately 90 minutes.
Increasing the size of checkpoints or the number of nodes
will increase the checkpointing time commensurately. Of
course, the checkpointing time may be reduced somewhat
by increasing the copy rate to network storage; however,
the consequence is increased overhead on the application.

In order to further reduce the replication overhead while

Fig. 13. Replication overhead with dedicated network for
checkpointing using 256 nodes.

maintaining low checkpoint writing/replication times, we
include the ability for an MPI application to utilize ad-
ditional networks to carry checkpoint data. While not
mandatory, separating the replica communication from
the application’s communication may substantially reduce
the impact of replication on the application. Clusters that
already utilize multiple networks may simply exchange
checkpoint replicas using a secondary network to further
reduce overheads for no additional cost. We chose to use
our Myrinet network, with IP over Myrinet (IPoM), for
replication. Checkpoints could instead be carried by the
ethernet network with the main application operating over
Myrinet; however, we chose to replicate over the Myrinet
network to facilitate comparison with our existing single
network ethernet tests. A similar strategy could be used to
enable checkpoints over an InfiniBand network.

In Fig. 13 we show the results of 1-4 replicas at 256
nodes. As the figure shows, the use of additional networks
to offload checkpoint replication can lead to substantial
reductions in overhead. Our results show an average im-
provement of 40% at 8 minute checkpointing intervals and
50% at 16 minute checkpointing intervals when comparing
the 256 node overhead of Fig. 10. We note that while utiliz-
ing a secondary network improves the performance of our
replication scheme, it cannot fully eliminate all networking
overhead. Ultimately, each node must individually transmit
and receive all checkpoint data (as well as write the replicas
to disk). Processing such data leads to a small amount of
overhead for increasing amounts of data.

5.6 Comparing the Costs of SAN, PFS, and Local Stor-
age

Some have argued that contention for SAN resources could
be mitigated through the use of a checkpoint backplane
with a dedicated SAN/parallel file system [38]. However
a SAN solution capable of handling the massive amounts
of data generated by tomorrow’s supercomputers would
simply cost too much. We consider two commercial SAN-
based systems, one is a mid-range solution that includes
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the cost of a commercial parallel file system. The second is
considered a high-end system that, due to incompatibilities,
does not utilize a parallel file system. Both are designed
to support a cluster of approximately 1000 nodes. We do
not list vendor names as the vendors wished to remain
anonymous. Current pricing for a 54 TB (usable) mid-range
SAN, including a parallel file system, is approximately $1.1
million plus $16,570 annually in projected energy costs.
A high-end SAN, with 54 TB of usable storage, would
cost nearly $1.4 million plus $34,632 annually in projected
energy costs. Neither system includes the cost of IO servers,
host bus adapters (HBAs), or a backup system, and both
include heavy academic discounts for the hardware.

To equip a similar 1000 node computational cluster with
up to 1 TB of usable local storage for checkpointing could
be accomplished at a cost of only $644 per node. This
includes the cost of two 1 TB (SATA II 7200 RPM) hard
disks1 ($255 each) and a hardware RAID 1 controller2

($134). The cost drops to only $334 per node if 500 GB hard
disks3 are used instead ($100 each).

Comparing the usable storage of the local storage vs.
SAN backplane solutions, we are left with 500TB of local
storage if 500GB hard disks are used and 1 petabyte of usable
storage if 1TB hard disks are used instead. Thus, local
storage/replication solution can be purchased for only 25-
58% of the SAN backplane cost, with lower checkpointing
overhead.

Of course it should be noted that the addition of hard
disks may increase the failure rate of an individual node.
This may be due to an increase in heat produced by nodes,
which may result in a strain on the cooling capabilities
of the data center. However, whether the disks used for
checkpointing are stored locally at each node, or centrally
in a SAN, they will output similar amounts of heat. Ul-
timately, the data center’s cooling system must remove
the heat regardless of where it’s generated. Further, recent
studies suggest that disks themselves are less susceptible
to heat than originally thought [39]. This, combined with
the more recent emphasis on data-intensive computing [31],
suggests that next-generation supercomputers may require
local storage despite the possibility of increased failures.

6 CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to effectively check-
point MPI applications using the LAM/MPI implemen-
tation with low overhead. Previous checkpointing imple-
mentations have typically neglected the issue of checkpoint
storage. We comprehensively addressed this issue with a
comparison against all major storage techniques, including
SAN-based strategies and commercial parallel file systems.
Our replication implementation has proven to be highly
effective and resilient to node failures.

Further, we showed that our replication strategy is highly
scalable. Where previous work discussed within the liter-
ature typically tests scalability up to 16 nodes, we have

1. Western Digital WD10EACS
2. 3ware 8006-2LP
3. Western Digital WD5000AAJS

demonstrated low overhead up to 256 nodes with more
realistic checkpoint image sizes of 1 GB per node. Our work
enables more effective use of resources without reliance
on network storage, and is able to take advantage of
additional network availability (such as Myrinet or addi-
tional ethernet networks) to further reduce the overhead
of checkpoint replication. We hope to extend this work to
provide support for additional network interconnects, such
as InfiniBand and Myrinet, using their native interfaces
rather than IP. We believe that this will result in further
increases in performance. Finally, we showed that our local
storage/replication solution is far less expensive than a
dedicated checkpointing backplane, costing as little as 25%
of a SAN-based solution.

We are currently investigating the use of coding strate-
gies for further reduction in checkpointing overhead. This
has the potential to reduce the amount of data sent over
the network as full replicas need not be sent. However,
the encoding overhead is a concern that must be balanced
against the reduction in replication overhead.
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