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Abstract

In this paper we present the results of parallelizing

two life sciences applications, Markov random fields-

based (MRF) liver segmentation and HMMER’s Viterbi

algorithm, using GPUs. We relate our experiences in

porting both applications to the GPU as well as the tech-

niques and optimizations that are most beneficial. The

unique characteristics of both algorithms are demon-

strated by implementations on an NVIDIA 8800 GTXUl-

tra using the CUDA programming environment. We test

multiple enhancements in our GPU kernels in order to

demonstrate the effectiveness of each strategy. Our opti-

mized MRF kernel achieves over 130x speedup, and our

hmmsearch implementation achieves up to 38x speedup.

We show that the differences in speedup between MRF

and hmmsearch is due primarily to the frequency at

which the hmmsearch must read from the GPU’s DRAM.

1. Introduction

In recent years graphics processing units (GPUs)

have become increasingly attractive for general purpose

parallel computation. Parallel code that traditionally re-

quired expensive computational clusters to achieve rea-

sonable speedup may now port to GPUs yielding results

equivalent to tens or hundreds of traditional CPU cores

at a fraction of the cost. As tools such as NVIDIA’s

CUDA [18] continue to mature, the burden of GPU pro-

gramming continues to decrease allowing for expression

of traditional parallel codes in the familiar “C” language.

With peak computing power exceeding 1 TFLOP/s

∗This research was supported in part by NSF IGERT grant

9987598, MEDC/Michigan Life Science Corridor, and NYSTAR.

for the latest NVIDIA GPUs, their attraction for general

purpose computation is clear. However, graphics pro-

cessors are not suited for all types of computations. In

this paper we evaluate the use of the NVIDIA 8800 GTX

Ultra GPU for two classes of statistical problems within

the life science domain: the HMMER sequence database

search application (hmmsearch), and a medical imag-

ing liver segmentation application based on Markov ran-

dom fields (MRF). HMMER’s hmmsearch tool is par-

ticularly well-suited for many-core architectures due to

the embarrassingly parallel nature of sequence database

searches. MRF can be made similarly parallel. How-

ever, the many-core architecture of the GPU also cre-

ates challenges to HMMER and MRF implementations.

CUDA exposes multiple levels of memory to the pro-

grammer that must be managed. Further, memory lay-

out and load balancing are critical performance barriers

that must be overcome to maximally utilize the GPU.We

examine these issues and demonstrate a variety of opti-

mization strategies that are useful for different classes of

GPU-based applications. We make the following contri-

butions:

• Implement liver segmentation using Markov ran-

dom fields on the GPU.

• Implement a GPU-based implementation of HM-

MER’s hmmsearch tool.

• Discuss and analyze the advantages and limitations

of GPU hardware for general purpose HPC.

The remainder of this paper is organized as follows:

In Section 2 we introduce the liver segmentation algo-

rithm using MRF, while in Section 3 we briefly de-

scribe HMMER and the parallelization strategy com-

monly used. We present an overview of GPU computing



Algorithm 1MRFalgorithm (class label 3d-array (CL),

data 3d-array (D), mean (µ), variance (σ))

1: Initialize number of iteration (K) to zero.

2: Initialize Current Index (Icurr) to start of volume.

3: while Icurr < size of volume do

4: Current label lcurr= CL[Icurr]
5: Current value vcurr = D[Icurr]
6: r = Random class label from air, bone, liver;

7: Energycurr = GaussianPrior(vcurr, lcurr) +

CliquePotential(Icurr, lcurr)
8: Energynew = GaussianPrior(vcurr, r) +

CliquePotential(Icurr, r)
9: ∆Energy = Energycurr − Energynew

10: if ∆Energy > kszi then

11: CL[Icurr] = r;

12: summaDelta + = DiffEnergy

13: end if

14: Increment Icurr

15: end while

16: Update mean µ and variance σ using the new class

labels.

17: Check if the energy change in the volume is minimal

(summaDelta). If not, continue steps 2 to 16 until

the energy change is minimal.

18: Increment K

Algorithm 2CliquePotential(Class label 3d-array (CL),

Index I , Label L)

1: Initialize energy, E as zero

2: for all Ineighbor ∈ Neighborhood of I do

3: lcurr = CL[Ineighbor]
4: if lcurr = l then

5: E = E − betaInClass

6: else

7: E = E − betaOutClass

8: end if

9: end for

in Section 4. In Section 5 we present the results of our

MRF and hmmsearch implementations, and in Section 6

we analyze the differences of each algorithm and their

suitability for GPU acceleration. Our future work is pre-

sented in Section 7.

2.MRF Segmentation

Segmentation is the identification of non-overlapping

objects of interest from images or volumes, and is a fun-

damental problem in image processing. In the case of

the liver, segmentation is critical in several diagnostic

and surgical procedures. We use a Markov random field

(MRF) to obtain an initial estimate of the liver boundary.

MRFs condition the property associated with each pixel

(or voxel) on its immediate neighborhood. A sample set

(sample set can be an image or a volume) S is said to

be an MRF if: ∀s ∈ S, p(Ys|Yr, r 6= s) = p(Ys|Yδs
),

where s and r are individual data points (pixels in 2D,

voxels in 3D), and δs is a neighborhood of s. An MRF

can be modeled by taking Y as a specific property, in

our case a class label assignment. In other implementa-

tions, Y may represent features being extracted from an

image [21]. Algorithms 1 and 2 provide pseudocode for

our MRF implementation.

2.1. Related Work

Liver segmentation methodologies include model-

driven approaches [3, 8, 10, 11] that use a model to limit

the segmentation algorithm to certain image areas, and

data-driven approaches that do not use a model to re-

strict the image being processed [16, 22]. Our method-

ology falls into the data-driven approach, where we use

a user-input seed point in combination with the Markov

random field to obtain an initial liver boundary. We then

refine the boundary using an active contour. A 2D, non-

parallel version of the algorithm has previously been

published [1].

There are several 2D and 3D algorithms available for

liver segmentation. Masutani et al. McInerney and Ter-

zopoulos, and Pham et al. provide surveys of the tech-

niques [14, 15, 20]. However, few algorithms have been

analyzed with respect to speedup, and fewer still have

been adapted to high-speed architectures like graphics

processing units.

3. HMMER Background

Protein sequence analysis tools to predict homology,

structure and function of particular peptide sequences

exist in abundance. Some of the most commonly used

tools are part of the profile hidden Markov model search

tool, HMMER, developed by Sean Eddy [5, 6]. These

tools construct hidden Markov models (HMMs) of a set

of aligned protein sequences with known similar func-

tion and homology, and provide database search func-

tionality to compare input HMMs to sequence databases

(as well as input sequences to HMM databases).

HMMER is composed of two search functions, hmm-

search and hmmpfam. hmmsearch searches an in-

put HMM against a sequence database, while hmmp-

fam searches one or more input sequences against a

database of HMMs. Both hmmsearch and hmmpfam rely

on the same core algorithm for their scoring function,

P7Viterbi. We focus our GPU implementation on hmm-

search as it is the more compute-intensive of the two

search applications.



Algorithm 3 Pseudocode for HMMER’s hmmsearch

tool.

1: Input: A profile HMM, H and a sequence database

S

2: for all i ∈ S do

3: score = P7Viterbi(H , S i)

4: if score is significant then

5: PostprocessSignificantHit(Si,H, score)
6: end if

7: end for

1 for (i = 1; i <= L; i++) {

...

3 for (k = 1; k <= M; k++) {

mc[k] = mpp[k-1] + tpmm[k-1];

5 if ((sc = ip[k-1] + tpim[k-1]) >

mc[k]) mc[k] = sc;

7 if ((sc = dpp[k-1] + tpdm[k-1]) >

mc[k]) mc[k] = sc;

9 if ((sc = xmb + bp[k]) >

mc[k]) mc[k] = sc;

11 mc[k] += ms[k];

if (mc[k] < -INFTY) mc[k] = -INFTY;

13

dc[k] = dc[k-1] + tpdd[k-1];

15 if ((sc = mc[k-1] + tpmd[k-1]) >

dc[k]) dc[k] = sc;

17 if (dc[k] < -INFTY) dc[k] = -INFTY;

19 if (k < M) {

ic[k] = mpp[k] + tpmi[k];

21 if ((sc = ip[k] + tpii[k]) >

ic[k]) ic[k] = sc;

23 ic[k] += is[k];

if (ic[k] < -INFTY) ic[k] = -INFTY;

25 }

}

27 ...

}

29 ...

P7ViterbiTrace(hmm, dsq, L, mx, &tr);

Listing 1. The most time consuming por-
tion of the P7Viterbi algorithm.

At the core of the HMMER search is the Viterbi algo-

rithm, used to compute the most probable path through

a given state model. Algorithm 3 shows the pseudocode

for a typical HMMER database search, and Listing 1

provides a code snippet of the most time consuming por-

tion of the P7Viterbi algorithm. Line 1 from Listing 1

represents the sequence loop, while lines 3-26 represent

the HMM loop. The P7Viterbi algorithm is sensitive to

both the length of sequences in a sequence database and

the length of input HMM.

We note that the majority of the array references in

Listing 1 are to one of three dynamic programming ma-

trices, mmx, imx, and dmx. The matrices mc and mpp,

for example, reference the current and previous rows of

the mmx matrix. Similarly, the ic and ip matrices refer

to the current and previous row of the imx matrix. Fi-

nally, the dc and dpp matrices refer to the current and

previous rows of the dmx matrix. These array assign-

ments occur between the i and k loops of Listing 1, but

are not shown. Other matrices, such as the tpXX series

contain the transition scores associated with the HMM,

and are referenced repeatedly within the k loop. The

digitized sequence is itself accounted for within both

the ms and is arrays. This will become more impor-

tant when we describe our memory optimizations in Sec-

tion 5.2.

As is common of database search algorithms, hmm-

search is embarrassingly parallel over the database loop

of Algorithm 3. After profiling, we found that over

97% of the runtime was spent in the P7Viterbi function,

where approximately 50% of the run-time is spent in the

portion of P7Viterbi displayed in Listing 1, lines 3-26.

Therefore, the key to parallelizing a HMMER search

is to offload the P7Viterbi function to multiple comput-

ing elements, while also ensuring that the code fragment

shown in Listing 1 is as efficient as possible.

3.1. Related Work

HMMER includes a PVM (Parallel Virtual Machine)

implementation of the searching algorithms. However,

due to its reliance on PVM and its non-optimized mes-

saging, its scalability is limited. MPI (Message Passing

Interface) implementations are the most common paral-

lel HMMER techniques. MPI-HMMER [24] is a well-

known and commonly used implementation. In MPI-

HMMER, worker nodes are assigned multiple database

chunks to compute in parallel. A single master node is

used to collect the results. This results in near linear

speedup for small to mid-sized computational clusters

(64 nodes or less).

A second Bluegene-based MPI implementation has

been demonstrated to scale through 1024 nodes [9]. It

uses a hierarchical master model as well as improved

data collection and load balancing strategies to alleviate

the single master bottleneck present in MPI-HMMER.

However, its reliance on a Bluegene supercomputer lim-

its its widespread adoption.

ClawHMMer was the first GPU-enabled hmmsearch

implementation and is capable of efficiently utiliz-

ing multiple GPUs in the form of a rendering clus-

ter [7]. Unlike our implementation, ClawHMMer

is based on the BrookGPU stream programming lan-

guage [2]. Other optimizations, including several FPGA

implementations, have been demonstrated in the litera-

ture [13, 19, 23]. GPUs have also been used to accel-



Figure 1. Initial boundary of the liver obtained fromMRF segmentation, Difference in CUDA and
serial results: top slice 3.86%, bottom slice 11.07%. Left to right: Image of the abdominal area,
CUDA output, serial output, difference between CUDA and serial outputs.

erate other sequence analysis algorithms, including the

Smith-Waterman algorithm [12].

Beyond HMMER, hidden Markov models have been

applied to a variety of compute intensive problems.

Chong et al. describe an HMM-based Viterbi algorithm

for speech recognition applications. Their GPU imple-

mentation achieved approximately 9x speedup using the

NVIDIA 8800 GTX [4].

4. Computing With GPUs

Computing with GPUs presents unique challenges

and limitations that must be addressed in order to

achieve high performance. In this section we describe

the NVIDIA 8800-based GPU that is used in our tests

and also explain the unique features of the GPU that

make programming them a challenge.

The graphics processors used in our tests are

NVIDIA 8800 GTX Ultra GPUs with 768 MB RAM.

The 8800 GTX Ultra is composed of 16 stream multi-

processors, each of which is itself composed of 8 stream

processors for a total of 128 stream processors. Each

multiprocessor has 8192 32-bit registers, which in prac-

tice limits the number of threads (and therefore, perfor-

mance) of the GPU kernel. The GPU is programmed

using NVIDIA’s CUDA programming model [18]. Each

multiprocessor can manage 768 active threads. Threads

are partitioned into thread blocks of up to 512 threads

each, and thread blocks are further partitioned into

warps of 32 threads. Each warp is executed by a sin-

gle multiprocessor. Warps are not user-controlled or

assignable, but rather are automatically partitioned from

user-defined blocks. At any given clock cycle, an indi-

vidual multiprocessor (and its stream processors) exe-

cutes the same instruction on all threads of a warp. Con-

sequently, each multiprocessor should most accurately

be thought of as a SIMD processor.

Programming the GPU is not a matter of simply

mapping a single thread to a single stream processor.

Rather, with 8192 registers per multiprocessor, hundreds

of threads per multiprocessor and thousands of threads

per board should be used in order to fully utilize the

GPU. Memory access patterns, in particular, must be

carefully studied in order to minimize the number of

global memory reads. Where possible, an application

should make use of the 16 KB of shared memory per

multiprocessor, as well as the texture and 64 KB con-

stant memory, in order to minimize GPU kernel ac-

cess to global memory. When global memory must be

accessed, it is essential that memory be both properly

aligned, and laid out such that each SIMD thread ac-

cesses consecutive array elements in order to combine

memory reads into larger 384-bit reads. We discuss

these optimizations in more detail in Section 5.



 1

 4

 16

 64

 256

 1024

1x16x32

1x32x16

2x32x8

2x64x4

4x32x4

4x64x2

8x32x2

2x256x1

4x128x1

8x64x1

16x32x1

 0

 50

 100

 150

 200

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

S
p
e
e
d
u
p

Num blocks X threads per block X x-coordinates per block

Speedup vs. Number of Threads

CPU Time
GPU Time

Speedup

Figure 2. Speedup of MRF as a function of the number of threads; size of CT volume: 512 x 512

x 77

5. GPU Implementations and Results

In this section we describe the GPU implementations

ofMRF liver segmentation and the P7Viterbi algorithm.

We provide details and performance results of optimiza-

tions for both GPU kernels. All GPU and serial tests

were performed on a machine consisting of a 2.2 GHz

AMD Athlon 275 processor with 8 GB memory and 2

NVIDIA 8800 GTX Ultra GPUs. A single GPU was

used in our tests.

5.1. MRF Liver Segmentation Kernel

Algorithms 1 and 2 outline the major steps in the

MRF computation that provides an approximate liver

boundary from the 3D CT volume. The CT volume is

a stack of multiple 512 X 512 images, for example a

512 X 512 X 60 volume has 60 CT images in it; x and

y values of the volume will range from 0 to 511 and

the z co-ordinate will range from 0 to 59. In our GPU

approach, lines 3 through 15 of Algorithm 1 are imple-

mented on the GPU, and multiple threads are used to

iterate through the volume. Each thread is assigned a

particular x coordinate, or a range of x coordinates ac-

cording to its thread Id; the y and z co-ordinates will

iterate through 0-511 and 0-N , respectively, where N is

the number of images in the volume.

In our GPU implementation, multiple threads process

the volume in parallel and update class label values si-

multaneously. The GPU architecture does not permit

these updates to be synchronized across threads. Hence,

calls toCliquePotential in lines 7 and 8 of Algorithm 1

do not have guaranteed access to updated class labels

along the x coordinate. In the sequential implementation

on CPU, updated class label values of the entire volume

are available. Since class labels are not available across

threads, the GPU implementation is a departure from

the MRF model. Both the serial and CUDA versions

of MRF segmentation have been tested on a publicly-

available dataset [1]. Our results indicate that segmenta-

tion from both the serial and CUDA versions differ only

with respect to outlier points. The difference in segmen-

tation boundaries is computed by taking dissimilar areas

from the serial and CUDA results, and computing the ra-

tio of this area with the CUDA segmentation area. The

difference ratio ranges from a minimum of 2.86% to a

maximum of 22.76%, with an average of 9.35%. Large

differences (>16%) occur at extremities of the liver re-

gion. The liver has a small size at the extremities, and

even a small variation in segmentation accounts for a

large percent error. Figure 1 shows two results from the

serial and CUDA implementations. TheMRF segmenta-

tion results serve as inputs to a snake-based method that

refines these initial estimates of the liver boundary.

A primary optimization in our implementation is

memory coalescing. Coalescing is a technique used

to combine non-sequential and small reads from global

memory, into the more efficient sequential and large

global memory reads. This minimizes the penalty of

reading from memory. Reads by consecutive threads

in a warp are combined by hardware into several wider

memory reads. On the 8800 GTX, Consecutive 32-bit
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Figure 3. Speedup of MRF for multiple test cases.

reads that are issued simultaneously are automatically

merged into multiple 384-bit reads in order to efficiently

saturate the memory bus. For the GPU to be able to co-

alesce memory reads, we have modified the implemen-

tation such that threads within a warp read memory se-

quentially.

The class label values of the 3D volume are laid out

in a single dimensional array. The neighboring x co-

ordinates lie close together and threads operate on this

x coordinate in order, leading to coalesced reads for

nearly every access to the global memory. If multiple

GPU threads are reading from the same array begin-

ning at offset n, then thread 0 should read (assuming

32-bit array elements) array[n], thread 1 should read

array[n+1], etc.

Figure 2 presents speedup results for different config-

urations. A configuration in this context refers to, “num-

ber of blocks× threads per block× number of x coordi-

nates per thread.” It appears that speedup increases with

an increase in the block size as well as an increase in

the total number of threads. However, when the number

of blocks is held constant with increasing thread counts,

speedup changes more significantly than with change in

number of blocks alone. Significant difference is seen

in the speedup of configurations with different thread

counts; examples include the configurations 2x32x8 ver-

sus 2x256x1, 4x32x4 versus 4x128x1, and 8x32x2 ver-

sus 8x64x1. Also, the increase in speedup is compar-

atively less than when multiple blocks are used with-

out increasing thread count. For example, configuration

2x64x4 versus 4x32x4 and configuration 4x64x2 versus

8x32x2. Overall, our results show that the total number

of threads executed has a more significant effect than

block count.

In Figure 3 we present the results of our MRF ker-

nel with increasing numbers of CT slices. As we show,

the smallest volume demonstrates the highest speedup

of 134x for the 60 image CT volume. The 77 image CT

volume used in Figure 2 achieved nearly 133x speedup.

None of the volumes achieved a speedup of less than

129x, when compared to a single core of an Athlon 275

processor.

5.2. P7Viterbi Kernel

The C code of the P7Viterbi algorithm was ported to

CUDAwith a variety of performance optimizations. The

kernel operates on multiple sequences simultaneously,

with each thread operating on a unique sequence. The

number of threads that can be executed in parallel will

be limited by two factors: (1) GPU memory will limit

the number of sequences that can be stored, and (2) The

number of registers used by each thread will limit the

number of threads that can run in parallel. In our imple-

mentation, register use is the most prohibitive resource.

The P7Viterbi kernel in our initial implementation

requires 32 registers per thread, allowing a maximum

of 256 active threads per multiprocessor. The NVIDIA

8800 GTX Ultra has 16 multiprocessors, and can there-

fore maintain 4096 (256 ∗ 16) active threads. This is

accomplished by splitting the k loop from Listing 1 into

three independent mc, dc, and ic loops. The advan-

tage to this strategy is that fewer registers are required,

resulting in higher GPU utilization. Further, splitting

the loops provides an easy mechanism to employ loop

unrolling. The disadvantage is that we lose most oppor-
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tunities for reusing itermediate data. We revisit point in

our optimized kernels.

In the remainder of this section we describe the op-

timizations made to the GPU kernel. We consider a

variety of optimizations in our implementation includ-

ing database-level load balancing, memory layout and

coalescing, loop unrolling, and shared/constant mem-

ory use. The results presented in this section show the

impact of each of these optimizations (and several oth-

ers) as we lead the reader through our implementation

strategy, ending with our highest performing implemen-

tation. Results are shown with a variety of HMMs of

increasing length.

We note that the average length of an HMM within

the commonly available Pfam database is 209 states.

Within the context of hidden Markov models, the length

of an HMM corresponds to the number of match states

encoded in a specific model/HMM. A match state (e.g.

mi), as opposed to an insert state or delete state, indi-

cates that a target sequence aligns to the model at state

mi. More importantly (for the purpose of this paper),

the length corresponds to the array bounds of the inner-

most M -loop from Listing 1. Thus, HMMs of greater

length result in longer running computations.

We test HMMs of length 77, 209, 456, 789, and

1431 states. All HMMs except the 77 state HMM were

taken directly from the Pfam database, while the 77

state HMM is distributed with the HMMER source. All

tests are taken against the publicly available NCBI non-

redundant database (NCBI NR [17]). The 3 GB NR

database used in these tests consists of over 5.5 million

sequences with sequence lengths varying from 6–37,000

amino acids.

As we described in Section 3, HMMER’s P7Viterbi

function is sensitive to both the length of the query

HMM as well as the length of an individual sequence.

CUDA provides limited support for thread synchroniza-

tion; a barrier synchronization function is provided that

returns only when all threads have finished execution

(cudaThreadSynchronize()). In our initial imple-

mentation, 4096 threads are run in parallel on a single

GPU, with each thread operating on its own sequence.

A typical database is unordered, placing short sequences

in close vicinity to long sequences. On a CUDA-enabled

GPU this results in threads operating on the shorter se-

quences completing early, and being forced to wait for

the thread computing the longest sequence in the current

batch before the barrier synchronization completes. The

solution is to presort the sequence database by length,

thereby balancing a similar load over all 4,096 threads

participating in the computation. This has the advantage

of being both effective and quite straightforward as we

are able to achieve a nearly 7x performance improve-

ment over the unsorted database without changing the

GPU kernel in any way (see Figure 4). For the database

used in these experiments, only 262.36 seconds were re-

quired for sorting. Further, the sorted database can be

reused for the entire useful life of the database, making

the one-time cost of sorting it negligible.

Loop unrolling is a classic loop optimization strat-

egy designed to reduce the overhead of inefficient loop-

ing. The idea is to replicate the loop’s inner contents

such that the ratio of useful computation to loop bounds

computation increases. The same principles apply to

GPU computation, with the caveat that loop unrolling

may introduce additional register pressure. In GPU pro-



for (k = 1; k <= M; k++) {

mc[k] = mpp[k-1] + tpmm[k-1];

}

Listing 2. Original loop

for (k = 1; k <= M; k+=4) {

mc[k] = mpp[k-1] + tpmm[k-1];

mc[k+1] = mpp[k] + tpmm[k];

mc[k+2] = mpp[k+1] + tpmm[k+1];

mc[k+3] = mpp[k+2] + tpmm[k+2];

}

Listing 3. Loop unrolled four times

gramming, the use of additional registers may reduce the

number of active threads, further reducing the overall

GPU utilization. Listings 2 and 3 provide an example

of the loop unrolling transformation for a portion of the

k-loop of Listing 1. We have experimentally determined

an unrolling factor of 2 to provide modest performance

improvements for most cases (approximately 0.8x im-

provement).

The most effective optimization to the P7Viterbi

is from optimizing memory layout and usage patterns

within the Viterbi algorithm. Because the CUDA envi-

ronment does not allow threads to dynamically allocate

GPU memory, all memory allocations (even those allo-

cating the GPU’s on-board memory) must be performed

by the host system and copied to the GPU before in-

stantiating the kernel. By default, the P7Viterbi function

requires integer arrays of size 3 ∗M ∗ L + 5 ∗ L, where

M and L are the length of the sequence and HMM, re-

spectively. For large HMMs and large sequences, this

can easily result in several megabytes of data per thread.

With only 768 MB memory for 4096 threads, this can

quickly exhaust the GPU’s memory.

Through careful optimization we are able to reduce

the memory requirements of the P7Viterbi scoring com-

putation to 6 ∗ M + 10 integer array elements. This

was accomplished by noting that the P7Viterbi algorithm

shown in Listing 1 largely requires only the current and

previous rows of the dynamic programming matrices

mmx, imx, and dmx over the length of the inner-most

loop, M (the number of HMM states). Thus, mmx, imx,

and dmx contribute 6 ∗ M array elements. The xmb

and several temporary scoring elements contribute the

remainder of the memory requirements for scoring.

Reducing the memory footprint means that we can

for (k = 1; k <= M; k++) {

mc[k] = mpp[k-1] + tpmm[k-1];

}

Listing 4. Non-coalesced memory

for (k = 1; k <= M; k++) {

mc[k*CHUNK+idx] =

mpp[(k-1)*CHUNK+idx] +

tex1Dfetch(tscTex, TMM*M + k-1);

}

Listing 5. Coalesced memory with texture

no longer perform the trace back procedure on line 30

of Listing 1. Fortunately, the trace back is only needed

when a database hit is made. In our tests fewer than

2% of the database results in hits, so we simply per-

form a full software P7Viterbi including traceback on

all database hits. This is a common strategy in hardware

accelerators, particularly FPGA [19].

We also make use of high speed texture memory to

store both the current sequence batch as well as the

HMM. Because the HMM is static through the search,

it is well suited to read-only texture memory. Similarly,

the sequence data itself is read-only, and each batch of

sequences can be bound to texture memory prior to a

GPU kernel invocation. Memory coalescing has also

significantly improved hmmsearch’s overall speedup. In

Listing 5 we provide an example of the changes needed

to improve memory reads. The mc and mpp arrays are

both coalesced while the tpmm array is stored in tex-

ture memory. As a reminder both mc and mpp point

to different rows of the same array, mmx. By default

each thread uses its own copy of the mmx array, read-

ing each element starting from mpp[0] and proceeding

through mpp[M-1]. In a GPU, however, this is inef-

ficient as such an access pattern will result in multiple

non-coalesced reads.

We reorganize all mmx (as well as dmx and imx) ar-

rays into a single array, and reorganize the read pattern

such that the first 4,096 elements (for 4,096 threads)

correspond to mpp[0] in respective threads. In List-

ing 5 the variable idx corresponds to a thread ID and

CHUNK denotes the number of threads. Thus, idx = 0

will read mpp[0], idx = 1 reads mpp[1], etc. All

threads access identical elements of the HMM, so the

tscTex array is stored as a single dimensional array in
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Figure 5. Performance improvements after applying memory coalescing.
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Figure 6. Performance of final GPU kernel.

texture memory. Figure 5 shows the results of apply-

ing memory coalescing to the P7Viterbi algorithm. This

resulted in an improvement of more than 9x for larger

HMMs.

We now consider our second and final P7Viterbi de-

sign. Rather than splitting the k loop into three indepen-

dent mc, ic, and dc kernels, we express the P7Viterbi

similarly to that shown in Listing 1. In doing so, we in-

clude the enhancements described above in addition to

the use of constant and shared memory. The advantage

to this strategy is that we are able to reuse several in-

termediate values that are computed within the k-loop

of Listing 1. The disadvantage is that this implemen-

tation introduces twelve additional registers, bringing

the total to 44. As a consequence we reduce the num-

ber of threads per block to 192 and push two registers

into the global memory. In the following paragraphs we

describe the optimizations that are responsible for our

highest performing solution.

By examining Listing 1 we can see that there are

three opportunities to reuse intermediate values through-

out the k-loop. Specifically, the current and previous

values of mc, dc, and ip can be maintained between

loop iterations to reduce the number of global memory
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Figure 8. Performance evaluation of the final hmmsearch implementation including all host and

GPU optimizations.

reads. This is crucial, as global memory reads represent

the single greatest performance inhibitor. For the pur-

poses of

In this final implementation we also include the use

of the shared and constant memories. We note that the

HMM stays constant throughout the entire computation

and is used by each thread for each sequence. In most

cases we can fit the entirety of the core transition matri-

ces (tpmm, tpim, tpdm, etc.) as well as the bp matrix

into the 64 KB constant memory. In cases where the

size of the HMM exceeds the amount of constant mem-

ory, we utilize the full constant memory before switch-

ing over to texture memory for the remaining portions

of the HMM.

Finally, we use shared memory to temporarily store

our index into each thread’s digitized sequence which is

itself used as an index into the ms and is arrays from

Listing 1. As a consequence, we are able to reduce the

number of texture reads to two per iteration (4 if the loop

is unrolled). In Figure 6 we present the results of our



final GPU kernel. As Figure 6 shows, we are able to

achieve between 12x and 37x speedup, depending on

the size of the HMM. We note that the largest HMM

(size 1431) runs for over one day before the completion

(serial time). This results in a much higher speedup as

the vast majority of the CUDA runtime is spent on the

GPU. For the same reason, the 77 state HMM results in

much lower speedup as more of its time is spent reading

from the sequence database and post-processing. In fact,

between post-processing, database reading, and DMA

transfers to the GPU, the 77 state HMM spends twice as

much time outside of the GPU kernel as within the GPU

kernel.

To compensate for such overhead, particularly for

small or average-sized HMMs, we performed several

host-side optimizations. In particular, the serial over-

head of reading the database and post-processing the

database hits between GPU kernel invocations must be

addressed. To do so we create two threads: the first

for database reading, and the second to post-process

database hits. We note that our GPU did not permit us to

overlap DMA operations to the GPU during kernel ex-

ecutions. However, more recent hardware is capable of

such optimizations.

In Figure 7 we compare our final implementation

to the existing ClawHMMER GPU implementation by

Horn et al. [7]. Because ClawHMMER runs withinWin-

dows XP, we were forced to use a smaller version of

the NR database as well as smaller HMMs in order to

stay within the Windows XP 2GB memory limit. Nev-

ertheless, as we show, our implementation substantially

outperforms the ClawHMMER implementation for ev-

ery HMM. Moreover, as the size of the HMM increases,

the performance of our CUDA implementation increases

relative to the ClawHMMER implementation.

In Figure 8 we present our final performance results

for the full NR database and a variety of HMMs of in-

creasing size. Here the benefits of the host-side opti-

mizations become clear - the 77 state HMM, for exam-

ple, now achieves a performance of 19x, compared to the

12x previously achieved. Further, both the 209 state and

456 state HMMs also improved in performance, from

22.5x and 24.6x to 28x and 27x for the 209 and 456 state

HMMs, respectively. The 789 and 1431 state HMMs im-

prove slightly, from 24x to 26x, and from 37x to 38.6x.

Their improvement was less dramatic as their runtimes

dwarfed the serial portions of the computation.

6. Discussion

A comparison of the speedup from our GPU

implementations of MRF (Figure 3) and P7Viterbi/

hmmsearch (Figure 8) shows that significantly higher

speedup is achieved in theMRF implementation. In this

section we consider the major factors that resulted in

different speedups. MRF’s major advantage over hmm-

search is that the former makes very few reads from the

GPU’s global memory; at each iteration, MRF accesses

global memory only twice. While hmmsearch also reads

global/texture memory a minimum of twice per itera-

tion, it also writes 3 values to global memory for each it-

eration. Since this loop is repeated over the entire length

of the sequence, the P7Viterbi and, consequently, hmm-

search spend a large portion of their run-time accessing

global memory. Because of this repeated global memory

access in hmmsearch, memory coalescing and the use

of constant memory proved more effective in HMMER

than in our MRF implementation. This was unsurpris-

ing, considering MRF’s limited use of global memory.

Loop unrolling proves more effective in P7Viterbi

than in MRF. The Viterbi algorithm has a limited num-

ber of variables needed in the core loop, and lends it-

self nicely to unrolling the inner loop contents. How-

ever,MRF requires more variables in its inner-loop. Un-

rolling these iterations results in increased register us-

age for temporary variables, leading to reduced perfor-

mance.

TheMRF code ultimately proved exceptionally well-

suited for acceleration on GPUs. Due to the architectural

requirements of the NVIDIA GPU, any thread partici-

pating in a warp will, by definition, execute the same

instructions simultaneously. This essentially turns the

GPU into a large SIMD processor. MRF is a natural fit

for such architectures because its inner-loop is relatively

free of branches with each thread operating on the same

set of images simultaneously. While HMMER demon-

strated exceptional speedup as well, it by necessity in-

cludes more branching than the MRF code and requires

more I/O from global memory. This ultimately prevents

the level of speedup achieved by MRF.

7. Conclusion

We have presented the performance of two statistics-

based life science applications, MRF-based liver seg-

mentation, and HMMER’s hmmsearch database search-

ing tool. Both applications demonstrated excellent per-

formance improvement on the GPU, with MRF exhibit-

ing a speedup of over 130x compared to serial execu-

tion and hmmsearch outperforming all known HMMER

GPU implementations with a speedup of 38.6x. As we

have shown, significant effort is required in order to

properly leverage a GPU for general purpose computing.

Moreover, we have demonstrated that algorithms must

properly target the GPU in order to achieve performance

improvements. This includes attention to the occupancy

of the GPU kernel, loop unrolling, proper shared and

constant memory usage, and most importantly memory



coalescing. Looking forward, our next goal is to lever-

age multiple GPUs within a single workstation, and ul-

timately GPU-based workstation clusters in order to fur-

ther optimize the performance of our applications.
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