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A Fault-Tolerant Strategy for Virtualized HPC Clusters

John Paul Walters · Vipin Chaudhary

Abstract Virtualization is a common strategy for improving the utilization of exist-
ing computing resources, particularly within data centers. However, its use for high
performance computing (HPC) applications is currently limited despite its potential
for both improving resource utilization as well as providing resource guarantees to
its users. In this article we systematically evaluate threemajor virtual machine im-
plementations for computationally intensive HPC applications using various standard
benchmarks. Using VMWare Server, Xen, and OpenVZ we examinethe suitability
of full virtualization (VMWare), paravirtualization (Xen), and operating system-level
virtualization (OpenVZ) in terms of network utilization, SMP performance, file sys-
tem performance, and MPI scalability. We show that the operating system-level vir-
tualization provided by OpenVZ provides the best overall performance, particularly
for MPI scalability. With the knowledge gained by our VM evaluation, we extend
OpenVZ to include support for checkpointing and fault-tolerance for MPI-based vir-
tual server distributed computing.
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1 Introduction

The use of virtualization in computing is a well-established idea dating back more
than 30 years [18]. Traditionally, its use has meant accepting a sizable performance
penalty in exchange for the convenience of the virtual machine. Now, however, the
performance penalties have been reduced. Faster processors as well as more efficient
virtualization solutions now allow even modest desktop computers to host powerful
virtual machines.

Soon large computational clusters will be leveraging the benefits of virtualiza-
tion in order to enhance the utility of the cluster as well as to ease the burden of
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administering such large numbers of machines. Indeed, Amazon’s Elastic Compute
Cloud (EC2) already uses the Xen hypervisor to provide customers with a completely
tailored environment on which to execute their computations [42]. Virtual machines
allow administrators to more accurately control their resources while simultaneously
protecting the host node from malfunctioning user-software. This allows adminis-
trators to provide “sandbox-like” environments with minimal performance reduction
from the user’s perspective, and also allows users the flexibility to customize their
computing environment.

However, to date, a comprehensive examination of the various virtualization strate-
gies and implementations has not been conducted, particularly with an eye towards its
use in HPC environments. We begin by conducting an evaluation of three major vir-
tualization technologies: full virtualization, paravirtualization, and operating system-
level virtualization which are represented by VMWare Server, Xen, and OpenVZ,
respectively. We show that OpenVZ’s operating system-level virtualization provides
the lowest overhead, and in most cases outperforms both VMWare Server and Xen
for distributed computations, such as MPI.

However, with the increased use of virtualized HPC clusters, issues of fault-
tolerance must be addressed in the context of distributed computations. To address the
challenges faced in checkpointing current and future virtualized distributed systems,
we propose a fault-tolerant system based on OpenVZ [36]. To do so, we leverage
the existing checkpoint/restart mechanism within OpenVZ,and enhance its utility
through a checkpoint-enabled LAM/MPI implementation and alightweight check-
point/replication daemon,Ovzd. Our system allows OpenVZ’s virtual private servers
(VPS) to initiate system checkpoints and to replicate thosecheckpoints to additional
host machines for added fault resiliency.

We make the following contributions in this article:

1. Virtualization Evaluation: We evaluate several virtualization solutions for sin-
gle node performance and scalability. We focus our tests on industry-standard
scientific benchmarks including SMP tests through the use ofOpenMP imple-
mentations of the NAS Parallel Benchmarks (NPB) [4]. We examine file system
and network performance (using IOZone [25] and Netperf [26]) in the absence
of MPI benchmarks in order to gain insight into the potentialperformance bot-
tlenecks that may effect distributed computing. We then extend our evaluation to
the cluster-level and benchmark the virtualization solutions using the MPI imple-
mentation of NPB and the High Performance LINPACK benchmark(HPL) [13].

2. VM Checkpointing of MPI Computations: Building on the results of our vir-
tualization evaluation, we describe and evaluate a fully checkpoint-enabled fault-
tolerance solution for MPI computations within the OpenVZ virtualization envi-
ronment. The system supports the checkpointing of both the running computation,
as well as incremental file system checkpointing to ensure data consistency upon
restoring a failed computation. We use local disk checkpointing with replication
in order to minimize overhead while providing high reliability.

Using our system, additional fault-tolerance work can be easily developed and
deployed with support for full system fault-tolerance. Further, our system can be
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extended to include support for job schedulers such as PBS/Torque, and system mon-
itors such as Ganglia [29]. With such functionality, preemptive checkpointing and
migration can be used to minimize checkpoint overhead whilestill providing maxi-
mal fault-resilience.

The rest of this article is organized as follows: in Section 2we discuss the back-
ground of virtualization systems and checkpointing, whilein Section 3 we briefly
describe Xen, VMWare Server, and OpenVZ. In Section 4 we present the results of
our performance comparison. In Section 5 we detail our MPI-enabled checkpointing
implementation. In Section 6 we provide a brief theoreticalframework used for an-
alyzing our performance-related data. In Section 7 we demonstrate the performance
of our implementation. In Section 8 we detail the work related to our project, and in
Section 9 present our conclusions.

2 VM and Checkpointing Background

Both checkpointing and virtualization are well-studied inthe scientific literature. In
this section we provide a brief overview of the major issues relating to virtual ma-
chines and checkpointing and how the two relate to one another. We describe the
major types of virtualization strategies that are currently in use, as well as the three
main levels at which checkpointing can be accomplished. This background is neces-
sary in order to understand the differences and performanceimplications between the
evaluated virtual machines.

2.1 Existing Virtualization Technologies

To accurately characterize the performance of different virtualization technologies
we begin with an overview of the major virtualization strategies that are in common
use for production computing environments. In general, most virtualization strategies
fall into one of four major categories:

1. Full Virtualization: Also sometimes called hardware emulation. In this case an
unmodified operating system is run using a hypervisor to trapand safely trans-
late/execute privileged instructions on-the-fly. Becausetrapping the privileged in-
structions can lead to significant performance penalties, novel strategies are used
to aggregate multiple instructions and translate them together. Other enhance-
ments, such as binary translation, can further improve performance by reducing
the need to translate these instructions in the future [3,35].

2. Paravirtualization: Like full virtualization, paravirtualization also uses a hyper-
visor. However, unlike full virtualization, paravirtualization requires changes to
the virtualized operating system. This allows the VM to coordinate with the hy-
pervisor, reducing the use of the privileged instructions that are typically respon-
sible for the major performance penalties in full virtualization. The advantage
is that paravirtualized virtual machines traditionally outperform fully virtualized
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virtual machines. The disadvantage, however, is the need tomodify the paravir-
tualized operating system in order to make it hypervisor-aware. This has implica-
tions for operating systems whose source code is unavailable.

3. Operating System-level Virtualization: The most intrusive form of virtualiza-
tion is operating system-level virtualization. Unlike both paravirtualization and
full virtualization, operating system-level virtualization does not rely on a hy-
pervisor. Instead, the operating system is modified to securely isolate multiplein-
stances of an operating system within a single host machine. A singlekernel man-
ages the resources of all instances. The guest operating system instances are often
referred to as virtual private servers (VPS). The advantageto operating system-
level virtualization lies mainly in its high performance. No hypervisor/instruction
trapping is necessary. This typically results in system performance of near-native
speeds. Further, because a single kernel is used for all operating system instances,
fewer resources are required to support the multiple instances. The primary disad-
vantage, however, is that if the single kernel crashes or is compromised, all VPS
instances are compromised.

4. Native Virtualization: Native virtualization leverages hardware support for vir-
tualization within a processor to aid in the virtualizationeffort. It allows multiple
unmodified operating systems to execute alongside one another, provided that all
operating systems are capable of executing directly on the host processor without
emulation. This is unlike the full virtualization technique where it is possible to
run an operating system on a fictional (or emulated) processor, though typically
with poor performance. In x8664 series processors, both Intel and AMD support
virtualization through the Intel-VT and AMD-V virtualization extensions.

For the remainder of this article we use the word “guest” to refer to the virtualized
operating system utilized within any of the above virtualization strategies. Therefore
a guest can refer to a VPS (OS-level virtualization), or a VM (full virtualization,
paravirtualization).

In order to evaluate the viability of the different virtualization technologies, we
compare VMWare Server version 1.0.21, Xen version 3.0.4.1, and OpenVZ based on
kernel version 2.6.16. These choices allow us to compare full virtualization, paravir-
tualization, and OS-level virtualization for their use in HPC scenarios, and were the
most recent versions available at the time of our testing. Wedo not include a compar-
ison of native virtualization in our evaluation as previousstudies have already shown
native virtualization to perform comparably to VMWare’s freely available VMWare
Player in software mode [1].

2.2 Checkpointing Overview

Virtualization has historically provided an effective means towards fault-tolerance [33].
IBM mainframes, for example, have long used hardware virtualization to achieve pro-
cessor, memory, and I/O fault-tolerance. With more powerful hardware, virtualization

1 We had hoped to test VMWare ESX Server, but hardware incompatibilities prevented us from doing
so.
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can now be used in non-mainframe scenarios with commodity equipment. This has
the potential to allow much higher degrees of fault-tolerance than have previously
been seen in computational clusters.

In addition to the benefits of fault-tolerance that are introduced by virtualization,
system administration can also be improved. By using seamless task migration, ad-
ministrators can migrate computations away from nodes thatneed to be brought down
for maintenance. This can be done without a full cluster checkpoint, or even a pause in
the entire cluster’s computation. More importantly, it allows administrators to quickly
address any maintenance issues without having to drain a node’s computations.

Traditionally, checkpointing has been approached at one ofthree levels: kernel-
level, user-level, or application-level. In kernel-levelcheckpointing [14], the check-
pointer is implemented as a kernel module, or directly within the kernel, making
checkpointing fairly straightforward. However, the checkpoint itself is heavily re-
liant on the operating system (kernel version, process IDs,etc.). User-level check-
pointing [44] performs checkpointing using a checkpointing library, enabling a more
portable checkpointing implementation at the cost of limited access to kernel-specific
attributes (e.g. user-level checkpointers cannot restoreprocess IDs). At the highest
level is application-level checkpointing [9] where code isinstrumented with check-
pointing primitives. The advantage to this approach is thatcheckpoints can often be
restored to arbitrary architectures. However, application-level checkpointers require
access to a user’s source code and do not support arbitrary checkpointing.

There are two major checkpointing/rollback recovery techniques: coordinated
checkpointing and message logging. Coordinated checkpointing requires that all pro-
cesses come to an agreement on a consistent state before a checkpoint is taken. Upon
failure, all processes are rolled back to the most recent checkpoint/consistent state.

Message logging requires distributed systems to keep trackof interprocess mes-
sages in order to bring a checkpoint up-to-date. Checkpoints can be taken in a non-
coordinated manner, but the overhead of logging the interprocess messages can limit
its utility. Elnozahy et al. provide a detailed survey of thevarious rollback recovery
protocols that are in use today [15].

2.3 LAM/MPI Background

LAM/MPI [10] is a research implementation of the MPI-1.2 standard [17] with por-
tions of the MPI-2 standard. LAM uses a layered software approach in its construc-
tion [34]. In doing so, various modules are available to the programmer that tune
LAM/MPI’s runtime functionality including TCP, Infiniband, Myrinet, and shared
memory communication.

To enable checkpointing, LAM includes a TCP replacement module named CRTCP.
The CRTCP module handles the underlying TCP communication,but adds additional
byte counters to keep track of the number of bytes sent to/received from every par-
ticipating MPI process. When checkpointing, these byte counters are exchanged be-
tween MPI processes and are used to ensure that all outstanding messages have been
collected before checkpointing begins. LAM then uses the BLCR [14] checkpoint-
ing module to perform the actual checkpointing of each process. We extend LAM’s
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built-in checkpointing support to include the checkpointing of a full OpenVZ virtual
server by making use of OpenVZ’s save/restore (checkpoint/restart) functionality. In
doing so, we do not rely on BLCR in any way.

3 Overview of Test Virtualization Implementations

Before our evaluation we first provide a brief overview of thethree virtualization
solutions that we will be testing: VMWare Server [37], Xen [5], and OpenVZ [36].

VMWare is currently the market leader in virtualization technology. We chose
to evaluate the free VMWare Server product, which includes support for both full
virtualization and native virtualization, as well as limited (2 CPU) virtual SMP sup-
port. Unlike VMWare ESX Server, VMWare Server (formerly GSXServer) operates
on top of either the Linux or Windows operating systems. The advantage to this ap-
proach is a user’s ability to use additional hardware that issupported by either Linux
or Windows, but is not supported by the bare-metal ESX Serveroperating system
(SATA hard disk support is notably missing from ESX Server).The disadvantage is
the greater overhead from the base operating system, and consequently the potential
for less efficient resource utilization.

VMWare Server supports three types of networking: bridged networking, NAT
networking, and host-only networking. Bridged networkingallows multiple virtual
machines to act as if they are each distinct hosts, with each virtual machine being
assigned its own IP address. NAT networking allows one or more virtual machines to
communicate over the same IP address. Host-only networkingcan be used to allow
the virtual machine to communicate directly with the host without the need for a true
network interface. Bridged networking was used for all of our experimentation.

Xen is the most popular paravirtualization implementationin use today. Because
of the paravirtualization, guests exist as independent operating systems. The guests
typically exhibit minimal performance overhead, approximating near-native perfor-
mance. Resource management exists primarily in the form of memory allocation, and
CPU allocation. Xen file storage can exist as either a single file on the host file system
(file backed storage), or in the form of partitions or logicalvolumes.

Xen networking is completely virtualized (excepting the Infiniband work done by
Liu, et al. [22]). A series of virtual ethernet devices are created on the host system
which ultimately function as the endpoints of network interfaces in the guests. Upon
instantiating a guest, one of the virtual ethernet devices is used as the endpoint to a
newly created “connected virtual ethernet interface” withone end residing on the host
and another in the guest. The guest sees its endpoint(s) as standard ethernet devices
(e.g. “eth0”). Each virtual ethernet devices is also given aMAC address. Bridging is
used on the host to allow all guests to appear as individual servers.

OpenVZ is the open source version of Parallels’ Virtuozzo product for Linux.
It uses operating system-level virtualization to achieve near native performance for
operating system guests. Because of its integration with the Linux kernel, OpenVZ
is able to achieve a level of granularity in resource controlthat full virtualization and
paravirtualization cannot. Indeed, OpenVZ is able to limitthe size of an individual
guest’s communication buffer sizes (e.g. TCP send and receive buffers) as well as
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kernel memory, memory pages, and disk space down to the inodelevel. Adjustments
can only be made by the host system, meaning an administratorof a guest operating
system cannot change his resource constraints.

OpenVZ fully virtualizes its network subsystem and allows users to choose be-
tween using a virtual network device, or a virtual ethernet device. The default virtual
network device is the fastest, but does not allow a guest administrator to manipulate
the network configuration. The virtual ethernet device is configurable by a guest ad-
ministrator and acts like a standard ethernet device. Usingthe virtual network device,
all guests are securely isolated (in terms of network traffic). Our tests were performed
using the default virtual network device.

4 Performance Results

We now present the results of our performance analysis. We benchmark each system
(Xen, OpenVZ, and VMWare Server) against a base x86 Fedora Core 5 install. All
analysis was performed on a cluster of 64 dedicated Dell PowerEdge SC1425 servers
consisting of:

– 2x3.2GHz Intel Xeon processors
– Intel 82541GI gigabit ethernet controller
– 2 GB RAM
– 7200 RPM SATA hard disk

In addition, nodes are connected through a pair of Force10 E1200 switches. The
E1200 switches are fully non-blocking gigabit ethernet using 48port copper line
cards. To maintain consistency, each guest consisted of a minimal install of Fedora
Core 5 with full access to both CPUs. The base system and VMWare Server installs
used a 2.6.15 series RedHat kernel. The OpenVZ benchmarks were performed on the
latest 2.6.16 series OpenVZ kernels, while the Xen analysiswas performed using a
2.6.16 series kernel for both the host and guest operating systems. All guest operating
systems were allotted 1650 MB RAM, leaving 350 MB for the hostoperating system.
This allowed all benchmarks to run comfortably within the guest without any swap-
ping, while leaving adequate resources for the host operating system as well. In all
cases, unnecessary services were disabled in order to maximize the guest’s resources.

Each system was tested for network performance using Netperf [26], as well as
file system-read/re-read and file system-write/re-write performance using IOZone [25].
These tests serve as microbenchmarks, and will prove useful(particularly the net-
work benchmarks) in analyzing the scalability and performance of the distributed
benchmarks. Our primary computational benchmarks are the NAS Parallel Bench-
mark suite [4] and the High Performance LINPACK (HPL) benchmark [13]. We test
both serial, parallel (OpenMP), and MPI versions of the NPB kernels. All guests are
instantiated with a standard install, and all performance measurements were obtained
with “out-of-the-box” installations. The LAM MPI implementation was used for all
MPI performance analysis.
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Fig. 1 Our network performance comparison. Xen closely matches the native bandwidth performance,
while OpenVZ demonstrates nearly native latency. VMWare Server suffers in both bandwidth and latency.

4.1 Network Performance

Using the Netperf [26] network benchmark tool, we tested thenetwork character-
istics of each virtualization strategy and compared it against the native results. All
tests were performed multiple times and their results were averaged. We measured
latency using Netperf’s TCP Request/Response test with increasing message sizes.
The latency shown is the half-roundtrip latency.

In Figure 1 we present a comparison of two key network performance metrics:
throughput and latency. Examining Figure 1(a) we see that Xen clearly outperforms
both OpenVZ and VMWare Server in network bandwidth and is able to utilize 94.5%
of the network bandwidth (compared to the base/native bandwidth). OpenVZ and
VMWare Server, however, are able to achieve only 35.3% and 25.9%, respectively,
of the native bandwidth.

Examining Figure 1(b), however, tells a different story. While Xen was able to
achieve near-native performance in bulk data transfer, it demonstrates exceptionally
high latency. OpenVZ, however, closely matches the base latency with an average
1-byte one-way latency of 84.62µs compared to the base latency of 80.0µs. This
represents a difference of only 5.8%. Xen, however, exhibits a 1-byte one-way latency
of 159.89µs, approximately twice that of the base measurement. This tells us that,
while Xen may perform exceptionally well in applications that move large amounts
of bulk data, it is unlikely to outperform OpenVZ on applications that require low-
latency network traffic.

4.2 File System Performance

We tested each guest’s file system using the IOZone [25] file system benchmark us-
ing files of varying size ranging from 64 KB to 512 MB, and record sizes from 4 KB
to 16 MB. For ease of interpretation, we fix the record size at 1MB for the graphs
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Fig. 2 IOZone file system performance. OpenVZ closely follows the native performance, but suffers in
the caching effect. Xen also misses the caching effect, but exhibits approximately half the performance of
the base system.

shown in Figure 2. While in each case, the full complement of IOZone tests were run,
space does not allow us to show all results. We chose the read,write, re-read, and
re-write file operations as our representative benchmarks as they accurately demon-
strated the types of overhead found within each virtualization technology. The read
test measures the performance of reading an existing file andthe write test measures
the performance of writing a new file. The re-read test measures the performance of
reading a recently read file while the re-write test measuresthe performance of writ-
ing to a file that already exists. All of our tests IOZone testsare effectively measuring
the caching and buffering performance of each system, rather than the spindle speed
of the disks. This is intentional, as we sought to measure theoverhead introduced by
each virtualization technology, rather than the disk performance itself. We omit the
results of the VMWare Server IOZone tests as incompatibilities with the serial ATA
disk controller required the use of file-backed virtual disks rather than LVM-backed
or partition-backed virtual disks. It is well known that file-backed virtual disks suffer
from exceptionally poor performance.

In Figure 2 one can immediately see a consistant trend in thatOpenVZ and the
base system perform similarly while Xen exhibits major performance overheads in
all cases. However, even OpenVZ demonstrates an important impact of virtualization
in that the effect of the buffer cache is reduced or eliminated. The same is true for
Xen. A non-virtualized system should exhibit two performance plateaus for file sizes
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(a) (b)

Fig. 3 Relative execution time of NPB serial and parallel (OpenMP) benchmarks. In (a) all three virtual-
ization solutions perform similarly, with OpenVZ and Xen exhibiting near-native performance, while in
(b) VMWare Server shows a decrease in performance for OpenMP tests, while OpenVZ and Xen remain
near-native.

less than the system’s memory. The first is the CPU cache effect, which, to a degree,
all three systems exhibit. File sizes that fit entirely within the processor’s cache will
exhibit a sharp spike in performance, but will decline rapidly until the second plateau
representing the buffer cache effect. The base system is theonly system to exhibit the
proper performance improvement for files fitting into the system’s buffer cache.

Nevertheless, as we show in Figures 2(a) and 2(b), OpenVZ achieves reasonable
file system performance when compared to the base system. TheOpenVZ guests re-
side within the file system of the host as a directory within the host’s file system.
Consequently, the overhead of virtualization is minimal, particularly when compared
to Xen. The results show that OpenVZ has low overhead resulting in high perfor-
mance file system operations.

Xen, which uses Logical Volume Management (LVM) for guest storage, exhibits
lower performance than either OpenVZ or the base system. Theread performance of
Xen, shown in Figure 2(b) ranges from 686-772 MB/s, and is less than half of the
performance of the base system which which peeks at 1706 MB/s(see Figure 2(b)).
Similar results are seen for the write, re-write, and re-read tests.

4.3 Single Node Benchmarks

While our primary objective is to test the performance and scalability of VMWare
Server, Xen, and OpenVZ for distributed HPC applications wefirst show the baseline
performance of NAS Parallel Benchmarks [4] on a single node using both the serial
and OpenMP benchmarks from NPB 3.2. Some of the benchmarks (namely MG and
FT) were excluded due to their memory requirements.

The results of the serial and parallel NPB tests are shown in Figure 3. We normal-
ize the result of each test to a fraction of the native performance in order to maintain
a consistent scale between benchmarks with differing run times. In Figure 3(a) we
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see that the class C serial results nearly match the baselinenative performance. Even
the fully-virtualized VMWare Server demonstrates performance that is consistently
within 10% of the normalized native run time.

The most problematic benchmark for VMWare Server, as shown in Figures 3(a),
is the IS (integer sort) kernel. Indeed the IS kernel is the only benchmark that exhibits
a relative execution time that is more than 10% slower than the native time. Because
of the normalized execution times shown in Figure 3 the actual time component of
the benchmark is removed. However, IS exhibits an exceptionally short run time for
the class C problem size. Thus, the small amount of overhead is magnified due to the
short run times of the IS benchmark.

However, we see no meaningful performance penalty in using either Xen or
OpenVZ. Even the IS kernel exhibits near-native performance. This suggests that
the CPU-bound overhead of both paravirtualization and operating system-level virtu-
alization is quite insignificant. Indeed, in several cases we see a slight performance
boost over the native execution time. These slight performance improvements have
previously been shown to occur, and may be the result of the differing kernel versions
between the base and guest systems.

In Figure 3(b) we show the relative execution time of the OpenMP implementa-
tions of NPB. This time, however, we found that Xen was unableto execute both the
BT and SP benchmarks. As a consequence, we omit Xen’s resultsfor non-working
benchmarks.

In general we see from Figure 3(b) that the relative performance of the OpenMP
benchmarks is on-par with that of the native SMP performance, especially in the cases
of Xen and OpenVZ. Similar to Figure 3(a) we see that both OpenVZ and Xen per-
form at native speeds, further suggesting that the overheadof both paravirtualization
and operating system-level virtualization remains low even for parallel tasks. Indeed,
for both OpenVZ and Xen, no benchmarks exhibit a relative execution time that is
more than 1% slower than the native execution time.

VMWare Server, however, exhibits greater SMP overhead thanthe serial bench-
marks. Further, the number of benchmarks with runtimes of over 10% greater than
the base time has also increased. Whereas the serial benchmarks see only IS exhibit-
ing such a decrease in performance, three benchmarks (IS, LU, and CG) exhibit a
decrease in performance of 10% or greater in the OpenMP benchmarks.

4.4 MPI Benchmarks

In Figure 4 we present the results of our MPI benchmark analysis, again using the
Class C problem sizes of the NPB. We test each benchmark with up to 64 nodes
(using 1 process per node). Unlike the serial and parallel/OpenMP results, it is clear
from the outset that both VMWare Server and Xen suffer from a serious performance
bottleneck, particularly in terms of scalability. Indeed,both VMWare Server and Xen
exhibited exceptionally poor processor utilization as thenumber of nodes increased.
In general, however, both Xen and VMWare Server were able to utilize, to some
extent, the available processors to improve the overall runtime with three notable
exceptions: BT, CG, and SP.



12

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

642516941

S
ec

on
ds

Number of CPUs

NPB BT Performance

Base
OpenVZ

Xen
VMWare Server

(a) MPI BT

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

643216842

S
ec

on
ds

Number of CPUs

NPB CG Performance

Base
OpenVZ

Xen
VMWare Server

(b) MPI CG

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

643216842

S
ec

on
ds

Number of CPUs

NPB EP Performance

Base
OpenVZ

Xen
VMWare Server

(c) MPI EP

 0

 50

 100

 150

 200

 250

 300

 350

 400

6432168

S
ec

on
ds

Number of CPUs

NPB FT Performance

Base
OpenVZ

Xen
VMWare Server

(d) MPI FT

 0

 20

 40

 60

 80

 100

 120

 140

643216842

S
ec

on
ds

Number of CPUs

NPB IS Performance

Base
OpenVZ

Xen
VMWare Server

(e) MPI IS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

643216842

S
ec

on
ds

Number of CPUs

NPB LU Performance

Base
OpenVZ

Xen
VMWare Server

(f) MPI LU

 0

 20

 40

 60

 80

 100

 120

 140

 160

64321684

S
ec

on
ds

Number of CPUs

NPB MG Performance

Base
OpenVZ

Xen
VMWare Server

(g) MPI MG

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

642516941

S
ec

on
ds

Number of CPUs

NPB SP Performance

Base
OpenVZ

Xen
VMWare Server

(h) MPI SP

Fig. 4 Performance of the NPB MPI tests. Strictly CPU-bound tests, such as EP exhibit near-native per-
formance for all guests. Other benchmarks show OpenVZ exhibiting performance closest to native, while
Xen and VMWare server suffer due to network overhead.
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Figure 4 suggests that the greatest overhead experienced bythe guest operating
systems is related to network utilization. For example, in Figure 4(c) we show the re-
sults of the “embarrassingly parallel” kernel, EP. EP requires a minimum of network
interaction, and as a consequence we see near-native performance for all virtualiza-
tion technologies, including VMWare Server.

For benchmarks that make greater use of the network, however, the results are
quite different. In fact, rather than closely following theresults of OpenVZ and the
base system, Xen now more accurately groups with VMWare Server. This is par-
ticularly true with regards to BT, CG, and SP, three of the most poorly performing
benchmarks. OpenVZ, however, largely follows the performance of the base sys-
tem, particularly for the longer running computational benchmarks. Even the more
network-heavy benchmarks, such as BT and SP, achieve near-native performance
despite OpenVZ’s bandwidth results shown in Figure 1(a). Unlike Xen, however,
OpenVZ demonstrated near-native latencies (Figure 1(b)) which we believe is the
primary reason for OpenVZ’s scalability.

Both BT and SP are considered “mini applications” within theNAS Parallel
Benchmark suite. They are both CFD applications with similar structure. While they
are not considered network-bound, they are responsible forgenerating the greatest
amount of network traffic (SP followed by BT) as shown by Wong,et al. [43]. We
believe the primary reason for the poor performance of thesebenchmarks is the ex-
ceptionally high latencies exhibited by Xen and VMWare Server (Figure 1(b)). Un-
like CG, however, the modest performance improvement demonstrated with BT and
SP is likely due to a small amount of overlap in communicationand computation that
is able to mask the high latencies to a limited extent.

While the BT and SP benchmarks demonstrated poor performance, the CG bench-
mark was unique in that it demonstrated decreasing performance on both Xen and
VMWare Server. This is likely due to the CG benchmark requiring the use of block-
ing sends (matched with non-blocking receives). Because ofthe exceptionally high
penalty that Xen and VMWare Server observe in latency, it comes as no surprise that
their blocking behavior severely impacts their overall performance. Indeed, the sin-
gle byte “ping-pong” latency test shows a difference of nearly 80 µs between Xen
and the base system, while a difference of only 4µs was observed between the base
system and OpenVZ. VMWare Server exhibited a latency over 3.5x larger than the
base system. This suggests that for the NPB kernels, latencyhas a greater impact on
scalability and performance than bandwidth as we see a corresponding decrease in
benchmark performance with the increase in latency.

In Figure 5 we show the results of our HPL benchmarks. Again, we see the effect
of the high latencies on the benchmark performance. At 64 nodes, for example, Xen
is able to achieve only 57% of the performance (Gflops) of the base system while
OpenVZ achieves over 90% of the base system performance. VMWare Server, suf-
fering from both exceptionally high latencies and low bandwidth, is able to achieve
only 25% of the base performance. We believe that an improvement in the guest band-
width within OpenVZ guests would further improve the performance of OpenVZ to
nearly match the native performance.
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Fig. 5 OpenVZ performs closest to the native system, while Xen and VMWare Server exhibit decreased
scalability.

5 Checkpointing/Restart System Design

In Section 4 we showed that virtualization is a viable choicefor HPC clusters. How-
ever, in order for large scientific research to be carried outon virtualized clusters,
some form of fault tolerance/checkpointing must be present. Building on our previ-
ous work in MPI checkpointing [40, 41] we propose a checkpointing solution based
on OpenVZ [36], an operating system level virtualization solution. We assume that
failures follow the stopping model; that is, one or more nodes crashes or otherwise
stops sending or receiving messages. We then reduce the overhead of checkpointing
by eliminating the SAN or other network storage as a checkpointing bottleneck. To
do so, we leverage OpenVZ’s existing checkpoint/restart mechanism, and enhance
its utility through a checkpoint-enabled LAM/MPI implementation and a lightweight
checkpoint/replication daemon,Ovzd. All checkpoints are stored on a node’s local
disk in order to eliminate any reliance on network storage. This, however, requires
the use of replication in order to tolerate node failures as acheckpoint stored only
to a single node’s local disk will be unavailable in the eventof a crash. Our sys-
tem allows OpenVZ’s virtual private servers (VPS) to initiate system checkpoints
and to replicate those checkpoints to additional peer machines for added fault re-
siliency. In the sections to follow, we describe the implementation of our OpenVZ
MPI-enabled checkpointing solution and demonstrate its performance using the stan-
dard NPB benchmarks.

5.1 System Startup

In order to properly facilitate a checkpoint/restart and fault-tolerance mechanism in
OpenVZ we implemented a checkpointing daemon,Ovzd, that is responsible for
taking the actual checkpoint/snapshot of the running computation and file system.
Ovzd runs as a single instance on the host system and acts as a relaybetween a vir-
tual private server (VPS) and the checkpoint/restart mechanism built into OpenVZ.
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Ovzd also adds file system checkpointing and replication to the VPS to enable fault-
resilience in case of node failures and to maintain a consistent file system for VPS
restarts.

Upon starting a VPS,Ovzd overlays a FIFO into the VPS’ file system in order
to facilitate communication between the VPS and the host node/Ovzd. Through this
FIFO, our checkpoint-enabled MPI implementation is able tosignal Ovzd when a
checkpoint is desired. Once the new VPS has initialized,Ovzd immediately begins to
checkpoint the file system of the newly connected VPS. This isdone while the VPS
continues to run and serves as the baseline file system image for future incremental
checkpoints. We usetar with incremental backup options to save the file system im-
age to local disk. During the creation of the base file system image, checkpointing is
suppressed in order to guarantee a consistent file system image. Once all participating
Ovzds have created the base file system image, checkpointing is re-enabled.

5.2 Checkpointing

We are not the first group to implement checkpointing within the LAM/MPI system.
Basic checkpointing support was added directly to the LAM/MPI implementation
by Sankaran et al [30]. Because of the previous work in LAM/MPI checkpointing,
the basic checkpointing/restart building blocks were already present within LAM’s
source code. This provided an ideal environment for testingour virtualization and
replication strategies.

MPI checkpointing in OpenVZ is a multi-step process that begins within the VPS.
Our checkpoint-enabled MPI is based on the LAM/MPI implementation with mod-
ifications to its existing checkpointing support. The majordifferences between our
OpenVZ-based implementation and the basic checkpointing support already included
within LAM are in the manner in which checkpoints are taken, and how those check-
points are stored (discussed in Section 5.4). To perform checkpoints, we no longer
rely on the use of the BLCR checkpointing module [14]. Instead we provide an
OpenVZ-aware LAM implementation that coordinates with thecheckpointing fea-
tures of the OpenVZ-based kernel. This coordination is performed through theOvzd
described above.

The protocol begins whenmpirun instructs each LAM daemon (lamd) to check-
point its MPI processes. When a checkpoint signal is delivered to an MPI process,
each process exchanges bookmark information with all otherMPI processes. This
process is known as quiescing the network, and is already provided by LAM and
reused in our implementation. These bookmarks contain the number of bytes sent
to/received from every other MPI process. With this information, any in-flight mes-
sages can be waited on and received before theOvzd performs the checkpoint. This
is critical in order to maintain a consistent distributed state upon restart.

Once all messages have been accounted for, the checkpointing of the VPS mem-
ory footprint can begin. To do so, the lowest ranking MPI process within each VPS
writes a checkpoint message to its FIFO instructing theOvzd to perform a checkpoint.
Upon receiving a checkpoint signal, eachOvzd performs the following actions:

1. Ovzd momentarily suspends its VPS to prepare for a checkpoint.
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2. The VPS’ memory image is saved to local storage.
3. The VPS’ file system is incrementally saved using the baseline image to minimize

the number of saved files.
4. Ovzd then resumes the VPS to continue the computation.

Because the majority of the file system is saved prior to the first checkpoint being
delivered, the primary overhead in checkpointing the VPS isin step 2 (saving the
memory image) above.

5.3 Restarting

One of the advantages of using virtualization is that a virtual server/virtual machine is
able to maintain its network address on any machine. With this functionality, restart-
ing an MPI computation is greatly simplified because MPI jobsneed not update their
address caches, nor must they update any process IDs. Because the entire operating
system instance was checkpointed, MPI sees the entire operating system exactly as it
was prior to checkpointing.

The disadvantage, however, is that a great deal of data must be restored before
the VPS can be reinitialized and restored. To handle the mechanics of restarting the
computation on multiple nodes, we developed a set of user tools that can be used
to rapidly restart the computation of many nodes simultaneously. Using our restore
module, a user simply inputs a list of nodes/VPS IDs as well asthe desired checkpoint
to restore. The VPS list functions in almost the same manner as an MPI machine list,
and performs the following:

1. Connect to each host machine in the VPS list.
2. Remove any instance of the to-be-restored VPS from the host machine.
3. Restore the file system, including all increments, to maintain a consistent file

system.
4. Reload the memory image of the VPS only, do not continue computation.
5. Once all participating VPS images have been reloaded, resume computation.

Because the most time consuming portion of the recovery algorithm is the file
system restoration, we designed the recovery tool to perform items 1-4 concurrently
on all participating host nodes. This allows the recovery time to be reduced primar-
ily to the time of the slowest host node. Because the virtualized network subsystem
is not restarted until the VPS image is restarted, we preventany node from resum-
ing computation until all nodes are first reloaded. Once all nodes have indicated the
completion of step 4, each VPS can be resumed without any lossof messages.

5.4 Data Resiliency to Node Failures

If checkpoints are saved only to the host node’s local disk, computations will be
lost due to a node failure. Common strategies for preventingthe loss of data in-
clude saving to network storage and dedicated checkpoint servers. However, virtual
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servers/virtual machines present additional problems to checkpointing directly to net-
work storage or dedicated servers. In particular, checkpointing a virtual server may
result in considerably larger checkpoints due to the need tocheckpoint the file system
of a virtual server. While this overhead can, to some extent, be mitigated by the use
of incremental file system checkpoints (as we describe), large differences in the file
system will still result in large checkpoints.

Our solution is to use a replication system in order to replicate checkpoint data
throughout the participating cluster. Upon startup, eachOvzd is given a series of
randomly chosen addresses (within the participating cluster) that will function as
replica nodes. The user indicates the degree of replication(number of replicas), and
each checkpoint is replicated to the user-defined number of nodes. The replication
itself is performed after a checkpoint completes and after the VPS has been resumed.
All replication is therefore performed concurrently with the VPS computation. This
reduces the impact of checkpointing on shared resources such as network storage,
and also reduces the impact of checkpointing on the computation itself by propa-
gating checkpoints while computation continues. Further,by spreading the cost of
checkpointing over all nodes participating in the computation, no individual network
links become saturated, such as in the case of dedicated checkpoint servers. As we
show in [41] we are able to drastically reduce the overhead ofcheckpointing even the
largest computations in a scalable fashion. This is crucialfor the large amount of data
that may be generated by checkpointing virtual servers.

5.5 The Degree of Replication

While the replication strategy that we have described has clear advantages in terms of
reducing the overhead on a running application, an important question that remains
is the number of replicas necessary to reliably restart a computation. In Table 1 we
present simulated data representing the number of allowed node failures with a prob-
ability of restart at 90, 99, and 99.9%. We simulate with up to3 replicas for each
cluster size. The data are generated from a simulator developed in-house to simulate
a user-defined number of failures with a given number of replicas and to compute
whether a restart is possible with the remaining nodes. We define a successful restart
as one in which at least one replica of each virtual server exists somewhere within the
remaining nodes.

From Table 1 we observe that a high probability of restart canbe achieved with
seemingly few replicas. More important, however, is that the effectiveness of our
replication strategy isideal for large clusters. Indeed, unlike the network storage and
centralized server approach commonly used [41], checkpoint replication scales well
with the size of the cluster (replication overhead is discussed in Section 7.1). Put
differently, as the size of the cluster increases, our replication strategy can proba-
bilistically tolerate greater node failures with fewer replicas. Such scalability is a
requirement as clusters increase to thousands or hundreds of thousands of nodes.
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Table 1 Probability of successful restart with 1-3 replicas.

1 Replica 2 Replicas 3 Replicas
Allowed Failures for Allowed Failures for Allowed Failures for

Nodes 90% 99% 99.9% 90% 99% 99.9% 90% 99% 99.9%

8 1 1 1 2 2 2 3 3 3
16 1 1 1 2 2 2 5 4 3
32 2 1 1 5 3 2 8 5 4
64 3 1 1 8 4 2 14 8 4
128 4 1 1 12 6 3 22 13 8
256 5 2 1 19 9 5 37 21 13
512 7 2 1 31 14 7 62 35 20
1024 10 3 1 48 22 11 104 58 33
2048 15 5 2 76 35 17 174 97 55

6 Checkpoint/Replication Analysis

Before presenting our numerical results we begin with a moregeneral theoretical
analysis of the overheads involved in both checkpointing and replicating a compu-
tation. This will allow us to more accurately reason with regards to the actual data
collected in our studies, particularly the replication data. We begin with a general de-
scription of the distribution of time (in terms of the total run time of the application)
in a distributed system. Let:

tcomp = Portion of the computation’s running time spent computing
tcomm = Portion of the computation’s running time spent communicating

n = Number of checkpoints taken
tcoord = Coordination (pre-checkpointing) time
twrite = Time to serialize memory and write checkpoints to disk
tcont = Time to resynchronize nodes post-checkpoint
ttot = The total run time of the distributed computation

α = Impact of replication on communication time

We emphasize that each of the above values areper node. In the absence of check-
pointing we can then approximate the running time of a singlenode of an MPI appli-
cation as:

ttot = tcomp + tcomm

That is, we approximate the total running time of the distributed computation as
the sum of the time spent both communicating and computing. If we then allow for
checkpointing (without replication) we can approximate the total running time with:

ttot = tcomp + tcomm + n(tcoord + twrite + tcont) (1)

For simplicity, we assume that from one checkpoint to another tcoord, twrite, andtcont

remain constant. The overhead of Equation 1 can be most accurately characterized
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within the quantityn(tcoord + twrite + tcont). Typically, the quantitytwrite dom-
inates the overhead of checkpointing solutions, particularly periodic solutions such
as we describe here. Thus, applications with large memory footprints will almost al-
ways experience greater checkpointing overheads than applications which consume
less memory. In cases where a large amount of memory is written to disk the choice
of n, the number of checkpoints taken (directly related to the time between check-
points), should be smaller (meaning more time between checkpoints) than an applica-
tion that consumes less memory. However, in some situationsit is possible fortcoord

to dominate the checkpointing overhead. This could happen with particularly large
distributed systems that consume relatively small amountsof memory. Indeed, the
memory footprint (per process) of NPB reduces quite quicklyfor each doubling of
nodes (see Table 2). Clearly then, it is important to carefully select the number of
checkpoints with both the memory footprint of each node as well as the overall size
of the cluster in mind.

In Section 5.4 we described our replication system that we use to both increase
a computation’s resiliency to node failure as well as reducecontention on shared
network storage. Starting with Equation 1, we can now approximate the impact of
replication on the per-node running time of the application:

ttot = tcomp + αtcomm + n(tcoord + twrite + tcont) (2)

The variableα represents the impact of replication on the communication compo-
nent of the application. Ultimately,α is directly related to the value oftwrite where
a larger memory footprint would reasonably result in a larger impact on the com-
munication portion of the computation. However, from Equation 2 we can see that
the impact of checkpointing with replication is not only dependent on the size of the
memory footprint, but also on the individual communicationcharacteristics of the ap-
plication being checkpointed. This allows us to reason as towhy an application with
a small memory footprint might experience a greater checkpointing overhead than
one with a larger memory footprint. For example, a computation using only a small
number of nodes with a large memory footprint (twrite) may experience a greater
overhead than a computation with a greater communication (tcomm) component but
smaller memory footprint. However, as the number of nodes increases and the mem-
ory footprint (per node) decreases, the overhead may shift towards the computation
with the greater communication component. We will see an example of this in Sec-
tion 7.1.

7 Performance Results

In order to demonstrate the performance of our implementation, we used the NAS
Parallel Benchmarks [43] with up to 64 nodes. The NPB contains a combination of
computational kernels and “mini applications.” For our analysis, we choose to use the
“mini applications” LU, SP, and BT. Again, all tests were conducted on nodes from
the University at Buffalo’s Center for Computational Research (CCR), whose char-
acteristics are discussed Section 4. For these tests, each VPS was allocated 1.8 GB
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(a) OpenVZ checkpointing with 2 minutes inter-
vals.

(b) Time to restart from a checkpoint.

Fig. 6 Base checkpoint and restart performance. Checkpoints are saved directly to local storage, but repli-
cation is not used.

RAM, full access to a single processor, and a CentOS 4.4 instance of approximately
270 MB (compressed to approximately 144 MB). The CentOS operating system in-
stance was created from a standard OpenVZ template. In orderto demonstrate the
effectiveness of checkpointing the file system, no extraordinary measures were taken
to reduce the CentOS image size. We used the most recent version of the OpenVZ
testing kernel (2.6.18-ovz028test015.1) for all tests. The operating system memory
footprints for each of the benchmarks is listed in Table 2.

Table 2 Checkpoint sizes for varying cluster sizes.

8 16 32 64
LU 106 MB 57 MB 34 MB 21 MB
BT 477 MB 270 MB 176 MB 77 MB
SP 180 MB 107 MB 75 MB 38 MB

In Figure 6(a) we present the timings for our basic checkpointing implementa-
tion. All checkpoints are written directly to local disk in order to minimize the time
needed for writing the checkpoint file to stable storage. We checkpoint each system at
2 minute intervals in order to gain a sense of the overhead involved in checkpointing
an entire virtual server. Comparing the checkpointing times to the non-checkpointing
times, we see that the overhead remains low, with a maximum overhead of 11.29%
for the BT benchmark at 32 nodes. From Table 2 we can see that the BT benchmark
generates checkpoint files that are consistently larger than both the LU and SP bench-
marks. Thus, we expect to observe greater overheads with BT’s larger checkpoints.

In Figure 6(b) we show the time needed to restore a computation for the SP bench-
mark with up to 64 nodes. In the case of restarting, the dominating factor is the time
needed to restore the VPS’ file system to its checkpointed state. Since we do this
concurrently on all nodes, the time needed to restore a computation is approximately
equal to the time needed to restore the computation to the slowest member of the
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group. Because restoring a computation must be done by first restoring all file system
checkpoints (in order) followed immediately by a coordinated reloading of all VPS
memory checkpoints, a slowdown in either the memory restorephase or the file sys-
tem restore phase of a single VPS will slow down the restore process for the entire
cluster.

7.1 Replication Overhead

In order to increase the resiliency of our checkpointing scheme to node failures, we
also include checkpoint replication. This allows us to eliminate any reliance on net-
work storage while also increasing the survivability of theapplication. In this section
we demonstrate the overhead of our approach with 1-3 replicas, and up to 64 nodes
per computation. Each replication consists of both replicating the memory checkpoint
as well as any incremental file system changes. In our experiments, the typical file
system incremental checkpoints amount to less than 0.5 MB, thus contributing only
a very small amount of overhead to the replication system. Each experiment assumes
that checkpointing occurs at 4 minute intervals. When the entire computation is com-
pleted in fewer than 4 minutes, a single checkpoint is taken at the midpoint of the
computation.

In Figure 7(a) we present the results of replicating each checkpoint to exactly one
additional node. As can be seen, the BT benchmark consistently results in greater
overhead than either the LU or SP benchmarks. This is particularly true with smaller
cluster sizes, where the checkpoint sizes are larger (from Table 2). Nevertheless, with
only a single replica being inserted into the network, the overhead due to the replica-
tion remains quite low.

In Figures 7(b) and 7(c) we present the results of replicating each checkpoint
to two and three nodes, respectively. As can be seen, the computations suffer from
only a minimal amount of additional overhead as the extra replications are used, with
overheads as low as 2.3% for the case of the SP 8 node benchmark. As in the case of
the single replica, the overhead does increase with the sizeof the cluster. However,
we would expect to see a reduction in overhead for the larger cluster sizes with longer
running computations as well as more reasonable checkpointing intervals. Because
the larger cluster sizes lasted less than 4 minutes, the results show a disproportionately
high overhead.

We note, however, that the impact of replication on the overall run time of the
benchmark depends not only on the size of the checkpoints, but also on the bench-
mark’s communication characteristics (recall Section 6).Wong et al. have previously
characterized the scalability and communications characteristics of NPB [43]. While
the BT benchmark may exhibit the largest memory footprint, the SP benchmark per-
forms (by far) the most communication. Similarly, the LU benchmark performs the
least amount of communication. Their results are for 4 CPU implementations of the
class A problem sizes. More precisely, they report that the BT benchmark is respon-
sible for a total of 1072 MB of communication data, while the SP benchmark is
responsible for 1876 MB, and the LU benchmark communicates only 459 MB of
data.
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(a) Single replication overhead. (b) Overhead of 2 replicas.

(c) Overhead of 3 replicas.

Fig. 7 Performance of checkpointing class C NPB with 1-3 replicas. Checkpoints are first saved to local
storage. Once computation resumes,Ovzd performs the replication.

Of course, the class C benchmarks that we tested would resultin considerably
greater amounts of communication. Nevertheless, we can seea trend when we ex-
amine both the replication overhead along with the size of the checkpoints. Using
the analysis developed in Section 6 we see that for small cluster sizes, particularly
8 or 9 nodes, the BT benchmark exhibits the greatest overheadfor any replication
level. This is due to the additional communication generated by BT’s replicas that is
concentrated on only 9 nodes. Thus, a greater amount of communication overhead
is placed on fewer nodes. This results in an increasedα (per node) contributing to a
largertcomm component from Equation 2. In fact, the replication of the 9 node BT
benchmark adds between 1.4 GB and 4.3 GB of data (depending onthe number of
replicas) to the system.

However, as the number of nodes increases, the size of the checkpoints decrease,
as does the total running time of the computation. This distributes theα component
of Equation 2 over a greater number of nodes and reduces the number of checkpoints
as shown in Figure 7. This is particularly evident in the caseof the SP benchmark
which initially starts with relatively little overhead, particularly compared with BT.
Indeed, the overhead of replicating the SP benchmark increases much more rapidly
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(with increasing cluster sizes) than either the BT or LU benchmark. At 64 nodes,
for example, the overhead of replicating the SP benchmark isnearly identical to that
of the BT benchmark (approximately 35%) despite checkpointsizes that differ by a
factor of two (Table 2). As would be expected, LU consistently exhibits much lower
replication overhead than either BT or SP, suggesting that its smaller communication
volume is less affected by the replication overhead.

8 Related Work

There have been many descriptions of virtualization strategies in the literature, in-
cluding performance enhancements designed to reduce theiroverhead. Xen, in par-
ticular, has undergone considerable analysis [12]. In Huang, et al. [22] the idea of
VMM bypass I/O is discussed. VMM bypass I/O is used to reduce the overhead
of network communication with Infiniband network interfaces. Using VMM bypass
I/O it was shown that Xen is capable of near-native bandwidthand latency, which
resulted in exceptionally low overhead for both NPB and HPL benchmarks using
the MVAPICH Infiniband-based MPI implementation. However,the VMM bypass
I/O currently breaks Xen’s checkpointing functionality. Raj et al. describe network
processor-based self-virtualizing network interfaces that can be used to minimize the
overhead of network communication [28]. Their work reducesthe network latency
by up to 50%, but requires specialized network interface cards. Menon et al. provide
an analysis of Xen and introduce the Xenoprof [23] tool for Xen VM analysis. Using
the Xenoprof tool, they demonstrated Xen’s key weaknesses in the area of network
overhead.

Emeneker et al. compare both Xen and User-Mode Linux (UML) for cluster pe-
formance [16]. Their goal was to compare both a paravirtualized virtualization im-
plementation (Xen) against an operating system-level virtualization package (UML).
They showed that Xen clearly outperforms UML in terms of performance, reliability,
and the impact of the virtualization technologies.

In Soltesz, et al. [32] a comparison of Xen and Linux-Vserveris discussed with
special attention paid to availability, security and resource management. They show
that container-based/operating system-based virtualization is particularly well suited
for environments where resource guarantees along with minimal overhead are needed.
However, no existing work has adequately examined the varying virtualization strate-
gies for their use in HPC environments, particularly with regard to scalability. Our
evaluation and experimentation fills this gap and provides abetter understanding of
the use of virtualization for cluster computing.

VMWare ESX Server has been studied in regards to the architecture, memory
management and the overheads of I/O processing [2, 11, 31, 38]. Because VMWare
infrastructure products implement a full virtualization technology, they have detri-
mental impact on the performance even though they provide easy support for unmod-
ified operating systems.

Checkpointing at both the user-level and kernel-level has been extensively stud-
ied [14, 27]. Often such implementations are applicable only to single-process or
multi-threaded checkpointing. Checkpointing a distributed system requires additional
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considerations, including in-flight messages, sockets, and open files. Gropp, et al.
provide a high-level overview of the challenges and strategies used in checkpoint-
ing MPI applications [20]. The official LAM/MPI implementation includes support
for checkpointing using the Berkeley Linux Checkpoint/Restart (BLCR) kernel-level
checkpointing library [30]. A more recent implementation by Zhang et al. duplicates
the functionality of LAM’s kernel-level checkpointer, butimplements checkpointing
at the user-level [45].

The most widely published application-level checkpointing system for MPI pro-
grams is theC3 system by Bronevetsky et al. [9].C3 uses a non-blocking coordinated
checkpointing protocol for programs written in theC programming language. Be-
cause it provides checkpointing at the application level, apre-processor/pre-compiler
is used to first transform a user’s source code into checkpointable code. This al-
lows for platform independence in that a checkpointing engine need not be created
specifically for each architecture, and in many cases allowsfor checkpointing and
migration within heterogeneous cluster architectures [7]. However, application-level
checkpointing also requires more effort on the part of the programmer, where check-
pointing primitives must be inserted manually.

MPICH-V [8] uses an uncoordinated message logging strategywith checkpoint-
ing provided by the Condor checkpointing library [21]. The advantage to using a
message logging strategy is that nodes participating in thecomputation may check-
point independently of one another. Further, upon failure,only the failed node is
restarted. Messages sent to the failed node between the timeof the last checkpoint
and the node’s failure (and subsequent restart) are replayed from stable storage while
the unaffected nodes continue their computation. However,the overhead of capturing
and storing all of an application’s messages results in additional overhead.

Regardless of the level at which checkpointing is performed, there is typically an
implicit assumption regarding the reliability of message passing in distributed sys-
tems. Graham et al. provide a detailed discription of the problem and have introduced
LA-MPI in order to take advantage of network-based fault-tolerance [19]. Network
fault-tolerance solutions, such as LA-MPI, complement ourwork.

In our previous work, in non-virtualized systems, we have shown that the over-
head of checkpointing can be reduced dramatically by the useof local disk check-
pointing with replication [40, 41]. Because virtual machines must maintain both a
consistent memory state as well as a consistent file system, the amount of data that
must be stored may increase dramatically. In this article wehave shown that a similar
replication strategy may be applied to virtualized computenodes. Other strategies,
such as the use of parallel file systems or NFS cluster delegation [6] may improve the
overhead of checkpointing when compared to SANs. However, as we have shown in
our previous work, even highly scalable commerical parallel file systems are easily
overwhelmed by large-scale checkpointing.

Checkpointing within virtual environments has also been studied, though typi-
cally not for the use of HPC applications. OpenVZ [36], Xen [5], and VMWare [37]
all provide mechanisms to checkpoint the memory footprint of a running virtual ma-
chine. However, to date, the use of these checkpointing mechanisms have been lim-
ited to the area of “live migration” due to the lack of complete file system check-
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pointing and/or a lack of checkpoint/continue functionality. By supporting only live
migration, the virtualization tools avoid file system consistency issues.

Another application is in the use of preemptive migration [24]. By integrating a
monitor with Xen’s live migration, Nagarajan et al. attemptto predict node failures
and migrate computations away from failing nodes. However,such strategies are still
susceptible to sudden and unexpected node failures. Further, the work by Nagarajan,
et al. is incapable of rollback-recovery and instead relieson accurately predicting fail-
ures prior to their occurrence. Our work does not preclude such proactive migration,
and would prove quite complementary.

Our work differs from the previous work in VM checkpointing and storage in that
we enable periodic checkpointing and rollback recovery forMPI applications execut-
ing within an virtualized environment. This requires cooperation with the existing
VM-level checkpointing support that is already provided bythe VM/VPS. Moreover,
we also include support for checkpointing incremental file system changes in order
to provide rollback support. We have added local disk checkpointing with replica-
tion to both reduce the overhead of checkpointing as well as to improve checkpoint
resiliency in the presence of multiple simultaneous node failures. Our checkpointing
solution does not rely on the existence of network storage for checkpointing. The ab-
sence of network storage allows for improved scalability and also shorter checkpoint
intervals (where desired) [40].

9 Conclusions and Future work

We have performed an analysis of the effect of virtualization on scientific benchmarks
using VMWare Server, Xen, and OpenVZ. Our analysis shows that, while none match
the performance of the base system perfectly, OpenVZ demonstrates low overhead
and high performance in both file system performance and industry-standard scien-
tific benchmarks. While Xen demonstrated excellent network bandwidth, its excep-
tionally high latency hindered its scalability. VMWare Server, while demonstrating
reasonable CPU-bound performance, was similarly unable tocope with the MPI-
based NPB benchmarks.

Drawing on these results we have shown that full checkpointing of OpenVZ-
based virtualized servers can be accomplished at low-cost and near invisibility to the
end user. We use both checkpointing and replication in orderto ensure the lowest
possible checkpointing overhead. A remaining issue that must be addressed is the in-
tegration of our checkpointing and fault-tolerance systeminto common cluster batch
schedulers, such as PBS Pro or Torque. We have already begun work on a cluster
framework that integrates our VM fault-tolerance with the commonly used Torque
resource manager [39]. The goal is to extend our fault-tolerance work beyond failure
management in order to enable better utilization of clusterresources
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