Noname manuscript No.
(will be inserted by the editor)

A Fault-Tolerant Strategy for Virtualized HPC Clusters

John Paul Walters - Vipin Chaudhary

Abstract Virtualization is a common strategy for improving the wtion of exist-
ing computing resources, particularly within data centel®vever, its use for high
performance computing (HPC) applications is currentlyitixth despite its potential
for both improving resource utilization as well as provigliresource guarantees to
its users. In this article we systematically evaluate thmegor virtual machine im-
plementations for computationally intensive HPC applarat using various standard
benchmarks. Using VMWare Server, Xen, and OpenVZ we exathi@euitability
of full virtualization (VMWare), paravirtualization (Xgnand operating system-level
virtualization (OpenVZ) in terms of network utilizationM® performance, file sys-
tem performance, and MPI scalability. We show that the dperaystem-level vir-
tualization provided by OpenVZ provides the best overatfgenance, particularly
for MPI scalability. With the knowledge gained by our VM ewation, we extend
OpenVZ to include support for checkpointing and fault-talece for MPI-based vir-
tual server distributed computing.

Keywords Virtualization- Benchmark Fault-Tolerance Checkpointing MPI

1 Introduction

The use of virtualization in computing is a well-establidhdea dating back more
than 30 years [18]. Traditionally, its use has meant acnggtisizable performance
penalty in exchange for the convenience of the virtual naehiNow, however, the
performance penalties have been reduced. Faster prosessaell as more efficient
virtualization solutions now allow even modest desktop patars to host powerful
virtual machines.
Soon large computational clusters will be leveraging theeffies of virtualiza-

tion in order to enhance the utility of the cluster as well asase the burden of

J. P. Walters and V. Chaudhary

University at Buffalo, The State University of New York
Department of Computer Science and Engingeering
E-mail: {waltersj, vipin} @buffalo.edu

administering such large numbers of machines. Indeed, AnisElastic Compute
Cloud (EC2) already uses the Xen hypervisor to provide caste with a completely
tailored environment on which to execute their computati@t2]. Virtual machines
allow administrators to more accurately control their teses while simultaneously
protecting the host node from malfunctioning user-sofawdrhis allows adminis-
trators to provide “sandbox-like” environments with mirgihperformance reduction
from the user’s perspective, and also allows users the flixito customize their

computing environment.

However, to date, a comprehensive examination of the vaxitualization strate-
gies and implementations has not been conducted, particulih an eye towards its
use in HPC environments. We begin by conducting an evaluatichree major vir-
tualization technologies: full virtualization, paravigiization, and operating system-
level virtualization which are represented by VMWare Serven, and OpenVZ,
respectively. We show that OpenVZ's operating systemtieiviialization provides
the lowest overhead, and in most cases outperforms both \&l\&frver and Xen
for distributed computations, such as MPI.

However, with the increased use of virtualized HPC clustmsues of fault-
tolerance must be addressed in the context of distributegbatations. To address the
challenges faced in checkpointing current and future aiited distributed systems,
we propose a fault-tolerant system based on OpenVZ [36].0Tea] we leverage
the existing checkpoint/restart mechanism within Open¥iZgd enhance its utility
through a checkpoint-enabled LAM/MPI implementation anléghtweight check-
point/replication daemorQvzd. Our system allows OpenVZ's virtual private servers
(VPS) to initiate system checkpoints and to replicate tlabsekpoints to additional
host machines for added fault resiliency.

We make the following contributions in this article:

1. Virtualization Evaluation: We evaluate several virtualization solutions for sin-
gle node performance and scalability. We focus our testsndasitry-standard
scientific benchmarks including SMP tests through the us@m#nMP imple-
mentations of the NAS Parallel Benchmarks (NPB) [4]. We exarfile system
and network performance (using 10Zone [25] and Netperf)[26}the absence
of MPI benchmarks in order to gain insight into the potenpieiformance bot-
tlenecks that may effect distributed computing. We theemratour evaluation to
the cluster-level and benchmark the virtualization sohsiusing the MPI imple-
mentation of NPB and the High Performance LINPACK benchnfgifRL) [13].

2. VM Checkpointing of MPI Computations: Building on the results of our vir-
tualization evaluation, we describe and evaluate a fulbckpoint-enabled fault-
tolerance solution for MPI computations within the OpenMZualization envi-
ronment. The system supports the checkpointing of bothuthieing computation,
as well as incremental file system checkpointing to ensuta amsistency upon
restoring a failed computation. We use local disk checkjmynwith replication
in order to minimize overhead while providing high reliatyil

Using our system, additional fault-tolerance work can bsilpaleveloped and
deployed with support for full system fault-tolerance. ther, our system can be

extended to include support for job schedulers such as RB@I&, and system mon-
itors such as Ganglia [29]. With such functionality, pre¢ing checkpointing and
migration can be used to minimize checkpoint overhead wgtileproviding maxi-
mal fault-resilience.

The rest of this article is organized as follows: in Sectione2discuss the back-
ground of virtualization systems and checkpointing, wiiléSection 3 we briefly
describe Xen, VMWare Server, and OpenVZ. In Section 4 wegnttethe results of
our performance comparison. In Section 5 we detail our MRalbéed checkpointing
implementation. In Section 6 we provide a brief theoretfcamework used for an-
alyzing our performance-related data. In Section 7 we detnate the performance
of our implementation. In Section 8 we detail the work rafétie our project, and in
Section 9 present our conclusions.

2 VM and Checkpointing Background

Both checkpointing and virtualization are well-studiedhie scientific literature. In
this section we provide a brief overview of the major issugating to virtual ma-
chines and checkpointing and how the two relate to one andot¥te describe the
major types of virtualization strategies that are curseimluse, as well as the three
main levels at which checkpointing can be accomplisheds Bhtkground is neces-
sary in order to understand the differences and performiamglécations between the
evaluated virtual machines.

2.1 Existing Virtualization Technologies

To accurately characterize the performance of differeriualization technologies
we begin with an overview of the major virtualization stigs that are in common
use for production computing environments. In general tviosialization strategies
fall into one of four major categories:

1. Full Virtualization: Also sometimes called hardware emulation. In this case an
unmodified operating system is run using a hypervisor to éragh safely trans-
late/execute privileged instructions on-the-fly. Becauagping the privileged in-
structions can lead to significant performance penaltieglrstrategies are used
to aggregate multiple instructions and translate themthage Other enhance-
ments, such as binary translation, can further improveopexdnce by reducing
the need to translate these instructions in the future [3, 35

2. Paravirtualization: Like full virtualization, paravirtualization also uses gper-
visor. However, unlike full virtualization, paravirtuahtion requires changes to
the virtualized operating system. This allows the VM to aboate with the hy-
pervisor, reducing the use of the privileged instructidret aire typically respon-
sible for the major performance penalties in full virtualion. The advantage
is that paravirtualized virtual machines traditionallytperform fully virtualized

virtual machines. The disadvantage, however, is the neetwbttify the paravir-
tualized operating system in order to make it hypervisoar@nThis has implica-
tions for operating systems whose source code is unavailabl

3. Operating System-level Virtualization: The most intrusive form of virtualiza-
tion is operating system-level virtualization. Unlike bqtaravirtualization and
full virtualization, operating system-level virtualitat does not rely on a hy-
pervisor. Instead, the operating system is modified to sdgigolate multiplén-
stances of an operating system within a single host machine. A sikgiael man-
ages the resources of all instances. The guest operatitepsysstances are often
referred to as virtual private servers (VPS). The advantagmerating system-
level virtualization lies mainly in its high performanceoNypervisor/instruction
trapping is necessary. This typically results in systenfiquarance of near-native
speeds. Further, because a single kernel is used for alitipgsystem instances,
fewer resources are required to support the multiple inst®irhe primary disad-
vantage, however, is that if the single kernel crashes asrigpcomised, all VPS
instances are compromised.

4. Native Virtualization: Native virtualization leverages hardware support for vir-
tualization within a processor to aid in the virtualizatieffiort. It allows multiple
unmodified operating systems to execute alongside one@metiovided that all
operating systems are capable of executing directly ondkegrocessor without
emulation. This is unlike the full virtualization technigjwhere it is possible to
run an operating system on a fictional (or emulated) procedsmugh typically
with poor performance. In x864 series processors, both Intel and AMD support
virtualization through the Intel-VT and AMD-V virtualizan extensions.

For the remainder of this article we use the word “guest” ferrt the virtualized
operating system utilized within any of the above virtuatian strategies. Therefore
a guest can refer to a VPS (OS-level virtualization), or a MMl (virtualization,
paravirtualization).

In order to evaluate the viability of the different virtusdition technologies, we
compare VMWare Server version 1.8, Xen version 3.0.4.1, and OpenVZ based on
kernel version 2.6.16. These choices allow us to compareiftialization, paravir-
tualization, and OS-level virtualization for their use i@ scenarios, and were the
most recent versions available at the time of our testingd@eot include a compar-
ison of native virtualization in our evaluation as previatisdies have already shown
native virtualization to perform comparably to VMWare’'sély available VMWare
Player in software mode [1].

2.2 Checkpointing Overview
Virtualization has historically provided an effective medowards fault-tolerance [33].

IBM mainframes, for example, have long used hardware Jigagon to achieve pro-
cessor, memory, and I/O fault-tolerance. With more powdrdudware, virtualization

1 We had hoped to test VMWare ESX Server, but hardware incobifitigis prevented us from doing
S0.

can now be used in non-mainframe scenarios with commoditjpetent. This has
the potential to allow much higher degrees of fault-tolemthan have previously
been seen in computational clusters.

In addition to the benefits of fault-tolerance that are idtroed by virtualization,
system administration can also be improved. By using sesnéesk migration, ad-
ministrators can migrate computations away from nodesihed to be brought down
for maintenance. This can be done without a full cluster kbeint, or even a pause in
the entire cluster’'s computation. More importantly, ibals administrators to quickly
address any maintenance issues without having to drainescamputations.

Traditionally, checkpointing has been approached at orthret levels: kernel-
level, user-level, or application-level. In kernel-lewéleckpointing [14], the check-
pointer is implemented as a kernel module, or directly wittiie kernel, making
checkpointing fairly straightforward. However, the chpalat itself is heavily re-
liant on the operating system (kernel version, process &iis). User-level check-
pointing [44] performs checkpointing using a checkpoigtiitbrary, enabling a more
portable checkpointing implementation at the cost of ldiaccess to kernel-specific
attributes (e.g. user-level checkpointers cannot regionveess IDs). At the highest
level is application-level checkpointing [9] where codéristrumented with check-
pointing primitives. The advantage to this approach is thaickpoints can often be
restored to arbitrary architectures. However, applicatével checkpointers require
access to a user’s source code and do not support arbitrackmbinting.

There are two major checkpointing/rollback recovery téghes: coordinated
checkpointing and message logging. Coordinated checkpgirequires that all pro-
cesses come to an agreement on a consistent state befokpaiheis taken. Upon
failure, all processes are rolled back to the most recergkguent/consistent state.

Message logging requires distributed systems to keep tritkerprocess mes-
sages in order to bring a checkpoint up-to-date. Checkpaizm be taken in a non-
coordinated manner, but the overhead of logging the inbegss messages can limit
its utility. EInozahy et al. provide a detailed survey of tregious rollback recovery
protocols that are in use today [15].

2.3 LAM/MPI Background

LAM/MPI [10] is a research implementation of the MPI-1.2redard [17] with por-

tions of the MPI-2 standard. LAM uses a layered software @ggln in its construc-
tion [34]. In doing so, various modules are available to thegpammer that tune
LAM/MPI’s runtime functionality including TCP, InfinibandMyrinet, and shared
memory communication.

To enable checkpointing, LAM includes a TCP replacementuteodamed CRTCP.
The CRTCP module handles the underlying TCP communicatisradds additional
byte counters to keep track of the number of bytes sent tEikred from every par-
ticipating MPI process. When checkpointing, these byte tarsrare exchanged be-
tween MPI processes and are used to ensure that all outsgaméissages have been
collected before checkpointing begins. LAM then uses th€RL14] checkpoint-
ing module to perform the actual checkpointing of each sce/e extend LAM’s

built-in checkpointing support to include the checkpaigtof a full OpenVZ virtual
server by making use of OpenVZ's save/restore (checkpestdrt) functionality. In
doing so, we do not rely on BLCR in any way.

3 Overview of Test Virtualization Implementations

Before our evaluation we first provide a brief overview of theee virtualization
solutions that we will be testing: VMWare Server [37], Xef, [&d OpenVZ [36].

VMWare is currently the market leader in virtualization eology. We chose
to evaluate the free VMWare Server product, which includgspert for both full
virtualization and native virtualization, as well as ligtit (2 CPU) virtual SMP sup-
port. Unlike VMWare ESX Server, VMWare Server (formerly GS¥rver) operates
on top of either the Linux or Windows operating systems. Ténaatage to this ap-
proach is a user’s ability to use additional hardware thatifgported by either Linux
or Windows, but is not supported by the bare-metal ESX Sewperating system
(SATA hard disk support is notably missing from ESX Servébhe disadvantage is
the greater overhead from the base operating system, aseaqaently the potential
for less efficient resource utilization.

VMWare Server supports three types of networking: bridgetivorking, NAT
networking, and host-only networking. Bridged networkitpws multiple virtual
machines to act as if they are each distinct hosts, with eatlalymachine being
assigned its own IP address. NAT networking allows one oemotual machines to
communicate over the same IP address. Host-only netwoddngoe used to allow
the virtual machine to communicate directly with the hogheut the need for a true
network interface. Bridged networking was used for all of experimentation.

Xen is the most popular paravirtualization implementationse today. Because
of the paravirtualization, guests exist as independentadipg systems. The guests
typically exhibit minimal performance overhead, approatmg near-native perfor-
mance. Resource management exists primarily in the formeofiony allocation, and
CPU allocation. Xen file storage can exist as either a siniglefi the host file system
(file backed storage), or in the form of partitions or logiealumes.

Xen networking is completely virtualized (excepting thédiband work done by
Liu, et al. [22]). A series of virtual ethernet devices areated on the host system
which ultimately function as the endpoints of network ifaees in the guests. Upon
instantiating a guest, one of the virtual ethernet devisassed as the endpoint to a
newly created “connected virtual ethernet interface” woitie end residing on the host
and another in the guest. The guest sees its endpoint(radastl ethernet devices
(e.g. “eth0"). Each virtual ethernet devices is also givénAC address. Bridging is
used on the host to allow all guests to appear as individuaése

OpenVZ is the open source version of Parallels’ Virtuozzodpict for Linux.

It uses operating system-level virtualization to achiegarmative performance for
operating system guests. Because of its integration weh_thux kernel, OpenVvZ
is able to achieve a level of granularity in resource corttrat full virtualization and
paravirtualization cannot. Indeed, OpenVZ is able to lithé size of an individual
guest’'s communication buffer sizes (e.g. TCP send andvuedwiffers) as well as

kernel memory, memory pages, and disk space down to the Iaeele Adjustments
can only be made by the host system, meaning an administriaéoguest operating
system cannot change his resource constraints.

OpenVZ fully virtualizes its network subsystem and alloveers to choose be-
tween using a virtual network device, or a virtual etherretice. The default virtual
network device is the fastest, but does not allow a guestradtrator to manipulate
the network configuration. The virtual ethernet device isfigurable by a guest ad-
ministrator and acts like a standard ethernet device. Ubimgirtual network device,
all guests are securely isolated (in terms of network toafeir tests were performed
using the default virtual network device.

4 Performance Results

We now present the results of our performance analysis. \Wehpeark each system
(Xen, OpenVZ, and VMWare Server) against a base x86 Fedora &mstall. All
analysis was performed on a cluster of 64 dedicated Dell Fedge SC1425 servers
consisting of:

— 2x3.2GHz Intel Xeon processors

— Intel 82541GlI gigabit ethernet controller
- 2GB RAM

— 7200 RPM SATA hard disk

In addition, nodes are connected through a pair of Force RD& switches. The
E1200 switches are fully non-blocking gigabit etherneings#8port copper line
cards. To maintain consistency, each guest consisted ofianatiinstall of Fedora
Core 5 with full access to both CPUs. The base system and V\&arver installs
used a 2.6.15 series RedHat kernel. The OpenVZ benchmarkspe&dormed on the
latest 2.6.16 series OpenVZ kernels, while the Xen analyais performed using a
2.6.16 series kernel for both the host and guest operatstgreg. All guest operating
systems were allotted 1650 MB RAM, leaving 350 MB for the rapstrating system.
This allowed all benchmarks to run comfortably within theeguwithout any swap-
ping, while leaving adequate resources for the host operatystem as well. In all
cases, unnecessary services were disabled in order to mexime guest’s resources.

Each system was tested for network performance using Ndg&&jr as well as
file system-read/re-read and file system-write/re-writéquenance using I0Zone [25].
These tests serve as microbenchmarks, and will prove ugetticularly the net-
work benchmarks) in analyzing the scalability and perfaroeaof the distributed
benchmarks. Our primary computational benchmarks are %k® Rarallel Bench-
mark suite [4] and the High Performance LINPACK (HPL) beneikn13]. We test
both serial, parallel (OpenMP), and MPI versions of the NRBkls. All guests are
instantiated with a standard install, and all performaneasarements were obtained
with “out-of-the-box” installations. The LAM MPI implemeation was used for all
MPI performance analysis.

TCP Stream Throughput

1000

900 +—

800 Netperf Latency

900
700 T— Base

800 Openvz
[Base Wzl
- pen VMWare Server =
OpenVZ 700
[Xen
500 [J vMWare

600

Mbit/s

500

400
400

Microseconds

300 — E— 300§ o @ ooogowoa g E °

200 +— — R O o

100 e g

100 +— — o

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K
0 Message Size (bytes)

(a) Throughput (b) Latency

Fig. 1 Our network performance comparison. Xen closely matches ttieerfaandwidth performance,
while OpenVZ demonstrates nearly native latency. VMWare/&esuffers in both bandwidth and latency.

4.1 Network Performance

Using the Netperf [26] network benchmark tool, we testednbgvork character-
istics of each virtualization strategy and compared it gfaithe native results. All
tests were performed multiple times and their results weesaged. We measured
latency using Netperf's TCP Request/Response test witledsing message sizes.
The latency shown is the half-roundtrip latency.

In Figure 1 we present a comparison of two key network peréoroe metrics:
throughput and latency. Examining Figure 1(a) we see thatctearly outperforms
both OpenVZ and VMWare Server in network bandwidth and is &bltilize 94.5%
of the network bandwidth (compared to the base/native battdyv OpenVZ and
VMWare Server, however, are able to achieve only 35.3% an@Y25respectively,
of the native bandwidth.

Examining Figure 1(b), however, tells a different story. WhXen was able to
achieve near-native performance in bulk data transfegnt@hstrates exceptionally
high latency. OpenVZ, however, closely matches the basadgtwith an average
1-byte one-way latency of 84.62s compared to the base latency of 809 This
represents a difference of only 5.8%. Xen, however, exhiblt-byte one-way latency
of 159.89us, approximately twice that of the base measurement. Thisus that,
while Xen may perform exceptionally well in applicationgthmove large amounts
of bulk data, it is unlikely to outperform OpenVZ on appliicats that require low-
latency network traffic.

4.2 File System Performance

We tested each guest’s file system using the I0Zone [25] fadeesy benchmark us-
ing files of varying size ranging from 64 KB to 512 MB, and ratgizes from 4 KB
to 16 MB. For ease of interpretation, we fix the record size &tBlLfor the graphs

Measured Bandwidth (MB/s)

Measured Bandwidth (MB/s)

10Zone Write Performance

800

600 -
550
500t
450
400

350

750 \
700

650 -

" Base Write —+—
OpenVZ Write
Xen Write -

1200

1100

1000

900

800 -

700

600 [

500 [

10 100
File size in MB (record size = 1MB)

(a) 10Zone write test.

10Zone Re-write Performance

1000

Base Re-write —+—
OpenVZ Re-write
Xen Re-write -

10 100
File size in MB (record size = 1IMB)

(c) 10Zone re-write test.

1000

Measured Bandwidth (MB/s)

Measured Bandwidth (MB/s)

1800

1600

1400

1200

1000

800

600

2000

1800

1600

1400

1200

1000

800

600

10Zone Read Performance

" Base Read——
OpenVZ Read
Xen Read-

10 100
File size in MB (record size = 1MB)

(b) 10Zone read test.

1000

10Zone Re-read Performance

Base Re-read—+—
OpenVZ Re-read
Xen Re-read--

10 100
File size in MB (record size = 1MB)

(d) 10Zone re-read test.

1000

Fig. 2 10Zone file system performance. OpenVZ closely follows thivegperformance, but suffers in
the caching effect. Xen also misses the caching effect, thibix approximately half the performance of
the base system.

shown in Figure 2. While in each case, the full complement @fd@e tests were run,
space does not allow us to show all results. We chose the wedd, re-read, and
re-write file operations as our representative benchmarlteey accurately demon-
strated the types of overhead found within each virtudabpatechnology. The read
test measures the performance of reading an existing filérendrite test measures
the performance of writing a new file. The re-read test messtire performance of
reading a recently read file while the re-write test meastireperformance of writ-
ing to a file that already exists. All of our tests 10Zone testseffectively measuring
the caching and buffering performance of each system,réttha the spindle speed
of the disks. This is intentional, as we sought to measurevkehead introduced by
each virtualization technology, rather than the disk penfnce itself. We omit the
results of the VMWare Server I0Zone tests as incompaiibdlitvith the serial ATA
disk controller required the use of file-backed virtual dis&ther than LVM-backed
or partition-backed virtual disks. It is well known that fib@cked virtual disks suffer
from exceptionally poor performance.

In Figure 2 one can immediately see a consistant trend inQpanVZ and the
base system perform similarly while Xen exhibits major perfance overheads in
all cases. However, even OpenVZ demonstrates an impontgaidt of virtualization
in that the effect of the buffer cache is reduced or elimidaihe same is true for
Xen. A non-virtualized system should exhibit two perforroaplateaus for file sizes

10

NPB Class C Serial NPB Class C OMP
12 12 =
11 — — — 11 —
EoofiMIHEIHEIHE LB H = 09 HE B HEHE | H
= =
S 08 H H H H H S 08 H H H H H
g 0.7 H H H H H F [EBase g 0.7 H H H H H
%06 M M M M M F|[Wopeavz| X 06 H M M M M
sosHM HM HN|H®IHNIHEIF E\’m“ = 05 HE (HE [HE | HE | H
are >
Sos M HM HE HE | HE | H = 04+ HEl (HE R HE |-
< <
£ 03¢ M M M M M £ 03~ H M M M M
5 s
2 02 H H H H H 2 02 H H H H H
0.1 H H H H H 0.1+ H H H H H
O 1 1 L E— L e e
BT CG EP IS LU SP BT CG EP IS LU SP
Benchmark Benchmark

(@) (b)

Fig. 3 Relative execution time of NPB serial and parallel (OpenMé&)dhmarks. In (a) all three virtual-
ization solutions perform similarly, with OpenVZ and Xen éiting near-native performance, while in
(b) VMWare Server shows a decrease in performance for OpeeBtB, while OpenVZ and Xen remain
near-native.

less than the system’s memory. The first is the CPU cachetefibich, to a degree,
all three systems exhibit. File sizes that fit entirely witktie processor’s cache will
exhibit a sharp spike in performance, but will decline répidhtil the second plateau
representing the buffer cache effect. The base system enthisystem to exhibit the
proper performance improvement for files fitting into thetegss buffer cache.

Nevertheless, as we show in Figures 2(a) and 2(b), OpenVigwahreasonable
file system performance when compared to the base systenOfé®VZ guests re-
side within the file system of the host as a directory withia Host's file system.
Consequently, the overhead of virtualization is minimaltigularly when compared
to Xen. The results show that OpenVZ has low overhead resguiti high perfor-
mance file system operations.

Xen, which uses Logical Volume Management (LVM) for guestage, exhibits
lower performance than either OpenVZ or the base systemréidteperformance of
Xen, shown in Figure 2(b) ranges from 686-772 MB/s, and is tean half of the
performance of the base system which which peeks at 1706 [4BésFigure 2(b)).
Similar results are seen for the write, re-write, and redtests.

4.3 Single Node Benchmarks

While our primary objective is to test the performance andadxlity of VMWare
Server, Xen, and OpenVZ for distributed HPC applicationgiveeshow the baseline
performance of NAS Parallel Benchmarks [4] on a single nadeguboth the serial
and OpenMP benchmarks from NPB 3.2. Some of the benchmaakse{y MG and
FT) were excluded due to their memory requirements.

The results of the serial and parallel NPB tests are showigur€ 3. We normal-
ize the result of each test to a fraction of the native perforce in order to maintain
a consistent scale between benchmarks with differing megi In Figure 3(a) we

11

see that the class C serial results nearly match the baseliive performance. Even
the fully-virtualized VMWare Server demonstrates perfanoe that is consistently
within 10% of the normalized native run time.

The most problematic benchmark for VMWare Server, as shovirigures 3(a),
is the IS (integer sort) kernel. Indeed the IS kernel is tHg banchmark that exhibits
a relative execution time that is more than 10% slower tham#tive time. Because
of the normalized execution times shown in Figure 3 the ddioee component of
the benchmark is removed. However, IS exhibits an exceaftipshort run time for
the class C problem size. Thus, the small amount of overlseadgnified due to the
short run times of the IS benchmark.

However, we see no meaningful performance penalty in usitigereXen or
OpenVZ. Even the IS kernel exhibits near-native performearitis suggests that
the CPU-bound overhead of both paravirtualization andatpey system-level virtu-
alization is quite insignificant. Indeed, in several casessee a slight performance
boost over the native execution time. These slight perfaceamprovements have
previously been shown to occur, and may be the result of ffexidig kernel versions
between the base and guest systems.

In Figure 3(b) we show the relative execution time of the QpErimplementa-
tions of NPB. This time, however, we found that Xen was unéblkxecute both the
BT and SP benchmarks. As a consequence, we omit Xen'’s résulten-working
benchmarks.

In general we see from Figure 3(b) that the relative perfoicaaof the OpenMP
benchmarks is on-par with that of the native SMP performaeggecially in the cases
of Xen and OpenVZ. Similar to Figure 3(a) we see that both ®Zeand Xen per-
form at native speeds, further suggesting that the overbebdth paravirtualization
and operating system-level virtualization remains lownefeg parallel tasks. Indeed,
for both OpenVZ and Xen, no benchmarks exhibit a relativecetien time that is
more than 1% slower than the native execution time.

VMWare Server, however, exhibits greater SMP overhead tiraiserial bench-
marks. Further, the number of benchmarks with runtimes ef 40% greater than
the base time has also increased. Whereas the serial betkstsearonly 1S exhibit-
ing such a decrease in performance, three benchmarks (ISahdJCG) exhibit a
decrease in performance of 10% or greater in the OpenMP bear&s.

4.4 MPI Benchmarks

In Figure 4 we present the results of our MPI benchmark arslggain using the
Class C problem sizes of the NPB. We test each benchmark itlo 64 nodes
(using 1 process per node). Unlike the serial and parali&™P results, it is clear
from the outset that both VMWare Server and Xen suffer froraréoss performance
bottleneck, particularly in terms of scalability. Indebdth VMWare Server and Xen
exhibited exceptionally poor processor utilization asrhenber of nodes increased.
In general, however, both Xen and VMWare Server were abletitaa) to some
extent, the available processors to improve the overalltime with three notable
exceptions: BT, CG, and SP.

12

NPB BT Performance

NPB CG Performance

4000 450
Base —— Base ——
Openvz L Openvz
3500 Xen -x- 400 Xen -
VMWare Server o VMWare Server o
3000 o
i
t
b
» 2500 f "
8 b 3
2 t g
8 2000} s
2 b 3
@ 1 a
1500 &
§ *
1000 §
500 —
0 — 0l . .
1 64 24 16 32 64
Number of CPUs Number of CPUs
(2) MPI BT (b) MPI CG
NPB EP Performance NPB FT Performance
500 400
Base —— Base ——
450 Openvz 50l Openvz
Xen --x Xen -
400 f VMWare Server = VMWare Server &
b 300 |
350 J,'
b L
8 300f g 0
< { g
8 250} 8 200"
& L &
200 %
150
100
50
————]
ol . . — 0 .
24 8 16 32 64 8 32 64
Number of CPUs Number of CPUs
(c) MPI EP (d) MPIFT
NPB IS Performance NPB LU Performance
140 T T 1800 — T T
Base Base
Openvz Openvz
120 Xen - 1600 Xen e
VMWare Server & 1400 VMWare Server &
100 (-
1200
a a 9
g 80y 2 1000
s S
8 &
o 60} o 800
\x
\ & 600
40F\ Ty
\ o 400
E 2
20 ~ 200
S S -
0 0
24 8 16 32 64 24 16 32 64
Number of CPUs Number of CPUs
(e) MPI IS (f) MPI LU
NPB MG Performance NPB SP Performance
160 T T T 4000 — T T
Base Base
L OpenVZ OpenVzZ
140 Xen -x- 3500 Xen --x-
VMWare Server @ VMWare Server @
120 3000
» 100 » 2500
8 8
2 o g
8 80 8 2000
2 2
) 4 o a
60 [\ . 15007 |
k
40 - 1000 .
20F 500 °
0 0 — -
4 8 16 32 64 14 16 25 64
Number of CPUs Number of CPUs

Fig. 4 Performance of the NPB MPI tests. Strictly CPU-bound testsh @is EP exhibit near-native per-

formance for all guests. Other benchmarks show OpenVZ eximiyiterformance closest to native, while
Xen and VMWare server suffer due to network overhead.

13

Figure 4 suggests that the greatest overhead experienci lpyiest operating
systems is related to network utilization. For example,iguFe 4(c) we show the re-
sults of the “embarrassingly parallel” kernel, EP. EP reggia minimum of network
interaction, and as a consequence we see near-nativerparfoe for all virtualiza-
tion technologies, including VMWare Server.

For benchmarks that make greater use of the network, hoyageresults are
quite different. In fact, rather than closely following thesults of OpenVZ and the
base system, Xen now more accurately groups with VMWareeBemhis is par-
ticularly true with regards to BT, CG, and SP, three of the hpa®rly performing
benchmarks. OpenVz, however, largely follows the perforogaof the base sys-
tem, particularly for the longer running computational tlemarks. Even the more
network-heavy benchmarks, such as BT and SP, achieve a#ee-performance
despite OpenVZ's bandwidth results shown in Figure 1(a)likdnXen, however,
OpenVZ demonstrated near-native latencies (Figure 1(h)ttwwe believe is the
primary reason for OpenVZ'’s scalability.

Both BT and SP are considered “mini applications” within tHAS Parallel
Benchmark suite. They are both CFD applications with sinsiteucture. While they
are not considered network-bound, they are responsiblgdperating the greatest
amount of network traffic (SP followed by BT) as shown by Woepal. [43]. We
believe the primary reason for the poor performance of thesehmarks is the ex-
ceptionally high latencies exhibited by Xen and VMWare ®eifFigure 1(b)). Un-
like CG, however, the modest performance improvement dstrated with BT and
SP is likely due to a small amount of overlap in communicatind computation that
is able to mask the high latencies to a limited extent.

While the BT and SP benchmarks demonstrated poor performinec€G bench-
mark was unique in that it demonstrated decreasing perfocenan both Xen and
VMWare Server. This is likely due to the CG benchmark requjithe use of block-
ing sends (matched with non-blocking receives). Becauskeoéxceptionally high
penalty that Xen and VMWare Server observe in latency, iteoas no surprise that
their blocking behavior severely impacts their overallfpenance. Indeed, the sin-
gle byte “ping-pong” latency test shows a difference of 80 us between Xen
and the base system, while a difference of onjysAwas observed between the base
system and OpenVZ. VMWare Server exhibited a latency ovex [rger than the
base system. This suggests that for the NPB kernels, lateaxg greater impact on
scalability and performance than bandwidth as we see aspmneling decrease in
benchmark performance with the increase in latency.

In Figure 5 we show the results of our HPL benchmarks. Agaisee the effect
of the high latencies on the benchmark performance. At 64sddr example, Xen
is able to achieve only 57% of the performance (Gflops) of thgelsystem while
OpenVZ achieves over 90% of the base system performance. &f&1\8erver, suf-
fering from both exceptionally high latencies and low barutty, is able to achieve
only 25% of the base performance. We believe that an impremein the guest band-
width within OpenVZ guests would further improve the penfiance of OpenVZ to
nearly match the native performance.

14

HPL Performance

T
Base ——

VMWare Server &

GFlops

Number of CPUs

Fig. 5 OpenVZ performs closest to the native system, while Xen and \&#/$erver exhibit decreased
scalability.

5 Checkpointing/Restart System Design

In Section 4 we showed that virtualization is a viable chdaweHPC clusters. How-
ever, in order for large scientific research to be carriedasuvirtualized clusters,
some form of fault tolerance/checkpointing must be predéuiding on our previ-
ous work in MPI checkpointing [40, 41] we propose a checkfognsolution based
on OpenVZ [36], an operating system level virtualizatiotuson. We assume that
failures follow the stopping model; that is, one or more r®odeashes or otherwise
stops sending or receiving messages. We then reduce theeagkeof checkpointing
by eliminating the SAN or other network storage as a cheaktpw bottleneck. To
do so, we leverage OpenVZ's existing checkpoint/restartharism, and enhance
its utility through a checkpoint-enabled LAM/MPI implentation and a lightweight
checkpoint/replication daemofvzd. All checkpoints are stored on a node’s local
disk in order to eliminate any reliance on network storagds,Thowever, requires
the use of replication in order to tolerate node failures abeckpoint stored only
to a single node’s local disk will be unavailable in the eveha crash. Our sys-
tem allows OpenVZ's virtual private servers (VPS) to initiasystem checkpoints
and to replicate those checkpoints to additional peer mashior added fault re-
siliency. In the sections to follow, we describe the implatagion of our OpenVvZ
MPI-enabled checkpointing solution and demonstrate itiopmance using the stan-
dard NPB benchmarks.

5.1 System Startup

In order to properly facilitate a checkpoint/restart andltféolerance mechanism in
OpenVZ we implemented a checkpointing daem@nzd, that is responsible for
taking the actual checkpoint/snapshot of the running cdatjmn and file system.
Ovzd runs as a single instance on the host system and acts as dethsgen a vir-
tual private server (VPS) and the checkpoint/restart mashabuilt into OpenVZ.

15

Ovzd also adds file system checkpointing and replication to thg YPenable fault-
resilience in case of node failures and to maintain a carsigile system for VPS
restarts.

Upon starting a VPSOvzd overlays a FIFO into the VPS’ file system in order
to facilitate communication between the VPS and the hosekdd. Through this
FIFO, our checkpoint-enabled MPI implementation is ablesignal Ovzd when a
checkpoint is desired. Once the new VPS has initialig®dd immediately begins to
checkpoint the file system of the newly connected VPS. Thiise while the VPS
continues to run and serves as the baseline file system imadatdire incremental
checkpoints. We usir with incremental backup options to save the file system im-
age to local disk. During the creation of the base file systeagie, checkpointing is
suppressed in order to guarantee a consistent file systegeir@ace all participating
Ovzds have created the base file system image, checkpointingesakled.

5.2 Checkpointing

We are not the first group to implement checkpointing withi@ LAM/MPI system.
Basic checkpointing support was added directly to the LARINmMplementation
by Sankaran et al [30]. Because of the previous work in LAMIMPReckpointing,
the basic checkpointing/restart building blocks wereaasepresent within LAM’s
source code. This provided an ideal environment for testimgvirtualization and
replication strategies.

MPI checkpointing in OpenVZ is a multi-step process thathewithin the VPS.
Our checkpoint-enabled MPI is based on the LAM/MPI impletagan with mod-
ifications to its existing checkpointing support. The majdferences between our
OpenVZ-based implementation and the basic checkpointipgat already included
within LAM are in the manner in which checkpoints are takarg how those check-
points are stored (discussed in Section 5.4). To perfornckgwnts, we no longer
rely on the use of the BLCR checkpointing module [14]. Indte& provide an
OpenVZ-aware LAM implementation that coordinates with theckpointing fea-
tures of the OpenVZ-based kernel. This coordination isqueréd through th&vzd
described above.

The protocol begins whempirun instructs each LAM daemorigimd) to check-
point its MPI processes. When a checkpoint signal is delivévean MPI process,
each process exchanges bookmark information with all di#fer processes. This
process is known as quiescing the network, and is alreadyided by LAM and
reused in our implementation. These bookmarks contain tineber of bytes sent
to/received from every other MPI process. With this infotima, any in-flight mes-
sages can be waited on and received beforetvm performs the checkpoint. This
is critical in order to maintain a consistent distributegtstupon restart.

Once all messages have been accounted for, the checkpgaiftine VPS mem-
ory footprint can begin. To do so, the lowest ranking MPI gsgwithin each VPS
writes a checkpoint message to its FIFO instructingkzd to perform a checkpoint.
Upon receiving a checkpoint signal, eaddlizd performs the following actions:

1. Ovzd momentarily suspends its VPS to prepare for a checkpoint.

16

2. The VPS’ memory image is saved to local storage.

3. The VPS'’ file system is incrementally saved using the r@s@hage to minimize
the number of saved files.

4. Ovzd then resumes the VPS to continue the computation.

Because the majority of the file system is saved prior to tisedhmeckpoint being
delivered, the primary overhead in checkpointing the VP®i istep 2 (saving the
memory image) above.

5.3 Restarting

One of the advantages of using virtualization is that a girserver/virtual machine is
able to maintain its network address on any machine. Withfthictionality, restart-
ing an MPI computation is greatly simplified because MPI jobesd not update their
address caches, nor must they update any process IDs. Babausntire operating
system instance was checkpointed, MPI sees the entiretogesgstem exactly as it
was prior to checkpointing.

The disadvantage, however, is that a great deal of data neussbored before
the VPS can be reinitialized and restored. To handle the améc of restarting the
computation on multiple nodes, we developed a set of usds that can be used
to rapidly restart the computation of many nodes simultaslo Using our restore
module, a user simply inputs a list of nodes/VPS IDs as wehaslesired checkpoint
to restore. The VPS list functions in almost the same mamanaiP| machine list,
and performs the following:

1. Connectto each host machine in the VPS list.

2. Remove any instance of the to-be-restored VPS from thienhashine.

3. Restore the file system, including all increments, to taéina consistent file
system.

4. Reload the memory image of the VPS only, do not continuepcdation.

5. Once all participating VPS images have been reloadednresomputation.

Because the most time consuming portion of the recoveryriéthgo is the file
system restoration, we designed the recovery tool to parfams 1-4 concurrently
on all participating host nodes. This allows the recoveametio be reduced primar-
ily to the time of the slowest host node. Because the virzedlinetwork subsystem
is not restarted until the VPS image is restarted, we prezeyptnode from resum-
ing computation until all nodes are first reloaded. Once @adles have indicated the
completion of step 4, each VPS can be resumed without anypfaeessages.

5.4 Data Resiliency to Node Failures

If checkpoints are saved only to the host node’s local disknmutations will be
lost due to a node failure. Common strategies for preverttiegloss of data in-
clude saving to network storage and dedicated checkpaineéise However, virtual

17

servers/virtual machines present additional problembéckpointing directly to net-
work storage or dedicated servers. In particular, checitpgj a virtual server may
result in considerably larger checkpoints due to the neeteckpoint the file system
of a virtual server. While this overhead can, to some extenthigated by the use
of incremental file system checkpoints (as we describgjeldifferences in the file
system will still result in large checkpoints.

Our solution is to use a replication system in order to repéiccheckpoint data
throughout the participating cluster. Upon startup, e@etd is given a series of
randomly chosen addresses (within the participating etighat will function as
replica nodes. The user indicates the degree of replic@tiomber of replicas), and
each checkpoint is replicated to the user-defined numbeodés The replication
itself is performed after a checkpoint completes and affteMPS has been resumed.
All replication is therefore performed concurrently witketVPS computation. This
reduces the impact of checkpointing on shared resourcdsasioetwork storage,
and also reduces the impact of checkpointing on the compatéself by propa-
gating checkpoints while computation continues. Furtbgrspreading the cost of
checkpointing over all nodes participating in the compatatno individual network
links become saturated, such as in the case of dedicatellpdietservers. As we
show in [41] we are able to drastically reduce the overheathetkpointing even the
largest computations in a scalable fashion. This is crdicighe large amount of data
that may be generated by checkpointing virtual servers.

5.5 The Degree of Replication

While the replication strategy that we have described has eldvantages in terms of
reducing the overhead on a running application, an impbgaastion that remains
is the number of replicas necessary to reliably restart gpotation. In Table 1 we

present simulated data representing the number of alloweé failures with a prob-

ability of restart at 90, 99, and 99.9%. We simulate with u@Bteeplicas for each

cluster size. The data are generated from a simulator deselim-house to simulate
a user-defined number of failures with a given number of cegliand to compute
whether a restart is possible with the remaining nodes. \finala successful restart
as one in which at least one replica of each virtual servetgsomewhere within the
remaining nodes.

From Table 1 we observe that a high probability of restartlmaachieved with
seemingly few replicas. More important, however, is that #ffectiveness of our
replication strategy ideal for large clusters. Indeed, unlike the network storage and
centralized server approach commonly used [41], checkpepilication scales well
with the size of the cluster (replication overhead is disedsin Section 7.1). Put
differently, as the size of the cluster increases, our cafibn strategy can proba-
bilistically tolerate greater node failures with fewer lieps. Such scalability is a
requirement as clusters increase to thousands or hundrédususands of nodes.

18

Table 1 Probability of successful restart with 1-3 replicas.

1 Replica 2 Replicas 3 Replicas

Allowed Failures for Allowed Failures for Allowed Failures for
Nodes || 90% [99% [99.9% | 90% [99% [99.9% | 90% [99% [99.9%
8 1 1 1 2 2 2 3 3 3
16 1 1 1 2 2 2 5 4 3
32 2 1 1 5 3 2 8 5 4
64 3 1 1 8 4 2 14 8 4
128 4 1 1 12 6 3 22 13 8
256 5 2 1 19 9 5 37 21 13
512 7 2 1 31 14 7 62 35 20
1024 10 3 1 48 22 11 104 58 33
2048 15 5 2 76 35 17 174 97 55

6 Checkpoint/Replication Analysis

Before presenting our numerical results we begin with a nymneeral theoretical
analysis of the overheads involved in both checkpointing maplicating a compu-
tation. This will allow us to more accurately reason withaets to the actual data
collected in our studies, particularly the replicationada/e begin with a general de-
scription of the distribution of time (in terms of the totakrtime of the application)
in a distributed system. Let:

tcomp = Portion of the computation’s running time spent computing
teomm = Portion of the computation’s running time spent commuimgat
n = Number of checkpoints taken
teoora = Coordination (pre-checkpointing) time
twrite = Time to serialize memory and write checkpoints to disk
t.ont = Time to resynchronize nodes post-checkpoint
t:o¢ = The total run time of the distributed computation
a = Impact of replication on communication time

We emphasize that each of the above valueparaode. In the absence of check-
pointing we can then approximate the running time of a singlde of an MPI appli-
cation as:

tiot = tcomp + teomm

That is, we approximate the total running time of the distiéiol computation as
the sum of the time spent both communicating and computfnge Ithen allow for
checkpointing (without replication) we can approximate thtal running time with:

ttot - tcomp + tcomm + n(tcoord + twrite + tcont) (1)

For simplicity, we assume that from one checkpoint to anothg,q, twrite, aNdt cony
remain constant. The overhead of Equation 1 can be mostaebucharacterized

19

within the quantityn(tcoorda + twrite + teont). Typically, the quantityt,,,.;.. dom-
inates the overhead of checkpointing solutions, partibul@eriodic solutions such
as we describe here. Thus, applications with large memantpfmts will almost al-
ways experience greater checkpointing overheads thaicapphs which consume
less memory. In cases where a large amount of memory is wiiteisk the choice
of n, the number of checkpoints taken (directly related to thretbetween check-
points), should be smaller (meaning more time between ¢itéets) than an applica-
tion that consumes less memory. However, in some situaitiempossible fort.,.-q
to dominate the checkpointing overhead. This could happém particularly large
distributed systems that consume relatively small amoahteemory. Indeed, the
memory footprint (per process) of NPB reduces quite quidityeach doubling of
nodes (see Table 2). Clearly then, it is important to calef&glect the number of
checkpoints with both the memory footprint of each node a agthe overall size
of the cluster in mind.

In Section 5.4 we described our replication system that veetoboth increase
a computation’s resiliency to node failure as well as redemetention on shared
network storage. Starting with Equation 1, we can now agprate the impact of
replication on the per-node running time of the application

tior = tcomp + aleomm + n(tcom“d + twrite + tcont) (2)

The variablex represents the impact of replication on the communicationpn-
nent of the application. Ultimately is directly related to the value of,,;;. where
a larger memory footprint would reasonably result in a laiggact on the com-
munication portion of the computation. However, from Edquat2 we can see that
the impact of checkpointing with replication is not only éepent on the size of the
memory footprint, but also on the individual communicatibraracteristics of the ap-
plication being checkpointed. This allows us to reason aghy an application with
a small memory footprint might experience a greater cheicking overhead than
one with a larger memory footprint. For example, a compatatising only a small
number of nodes with a large memory footprit},(;;.) may experience a greater
overhead than a computation with a greater communicatigp,{,) component but
smaller memory footprint. However, as the number of nodeseases and the mem-
ory footprint (per node) decreases, the overhead may shvtirds the computation
with the greater communication component. We will see amgya of this in Sec-
tion 7.1.

7 Performance Results

In order to demonstrate the performance of our implememative used the NAS
Parallel Benchmarks [43] with up to 64 nodes. The NPB costaicombination of
computational kernels and “mini applications.” For ourlges, we choose to use the
“mini applications” LU, SP, and BT. Again, all tests were doited on nodes from
the University at Buffalo’s Center for Computational Rasba(CCR), whose char-
acteristics are discussed Section 4. For these tests, d28hwds allocated 1.8 GB

20

2 Minute Checkpointing Intervals Restart Times for SP
800 9
700 1 [1 8 —] L
600 7 [[[
dLu?2 67 —
500
é B LU None -g 5 — — — —
S 400 OBr2 S 4 | | |
0 3004 O BT None »
Hsp2 3 — — —
200 @ SP None P! I I [
100 14 [I -
[0 T T T T
8 16 32 64 9 16 25 64
Number of Processors Number of Nodes

(a) OpenVZ checkpointing with 2 minutes inter- (b) Time to restart from a checkpoint.
vals.

Fig. 6 Base checkpoint and restart performance. Checkpoints aed sirectly to local storage, but repli-
cation is not used.

RAM, full access to a single processor, and a CentOS 4.4riostaf approximately
270 MB (compressed to approximately 144 MB). The CentOSaijyey system in-
stance was created from a standard OpenVZ template. In tobdéFmonstrate the
effectiveness of checkpointing the file system, no extri@ary measures were taken
to reduce the CentOS image size. We used the most recemversthe OpenVZ
testing kernel (2.6.18-0vz028test015.1) for all testse Bperating system memory
footprints for each of the benchmarks is listed in Table 2.

Table 2 Checkpoint sizes for varying cluster sizes.

8 16 32 64

LU | 106 MB | 57 MB 34MB | 21 MB
BT | 477MB | 270MB | 176 MB | 77 MB
SP | 180MB | 107MB | 75MB | 38 MB

In Figure 6(a) we present the timings for our basic checkpwgnimplementa-
tion. All checkpoints are written directly to local disk imder to minimize the time
needed for writing the checkpoint file to stable storage. Wekpoint each system at
2 minute intervals in order to gain a sense of the overheazhiad in checkpointing
an entire virtual server. Comparing the checkpointing sitmethe non-checkpointing
times, we see that the overhead remains low, with a maximwerhead of 11.29%
for the BT benchmark at 32 nodes. From Table 2 we can see ta&8Ttbenchmark
generates checkpoint files that are consistently largertibth the LU and SP bench-
marks. Thus, we expect to observe greater overheads withlBifjer checkpoints.

In Figure 6(b) we show the time needed to restore a computididhe SP bench-
mark with up to 64 nodes. In the case of restarting, the damigdactor is the time
needed to restore the VPS' file system to its checkpointed.sfince we do this
concurrently on all nodes, the time needed to restore a ctatipu is approximately
equal to the time needed to restore the computation to theestomember of the

21

group. Because restoring a computation must be done bydgtgiring all file system
checkpoints (in order) followed immediately by a coordethteloading of all VPS
memory checkpoints, a slowdown in either the memory regibese or the file sys-
tem restore phase of a single VPS will slow down the restovegss for the entire
cluster.

7.1 Replication Overhead

In order to increase the resiliency of our checkpointingeseé to node failures, we
also include checkpoint replication. This allows us to @tiate any reliance on net-
work storage while also increasing the survivability of #pgplication. In this section
we demonstrate the overhead of our approach with 1-3 replacad up to 64 nodes
per computation. Each replication consists of both reptigghe memory checkpoint
as well as any incremental file system changes. In our expeatsnthe typical file
system incremental checkpoints amount to less than 0.5 MB, ¢ontributing only
a very small amount of overhead to the replication systerohEaperiment assumes
that checkpointing occurs at 4 minute intervals. When theeecdomputation is com-
pleted in fewer than 4 minutes, a single checkpoint is takeheamidpoint of the
computation.

In Figure 7(a) we present the results of replicating eacklgh@nt to exactly one
additional node. As can be seen, the BT benchmark condistesults in greater
overhead than either the LU or SP benchmarks. This is patlgurue with smaller
cluster sizes, where the checkpoint sizes are larger (fraloie2). Nevertheless, with
only a single replica being inserted into the network, therbead due to the replica-
tion remains quite low.

In Figures 7(b) and 7(c) we present the results of repligatiach checkpoint
to two and three nodes, respectively. As can be seen, theutatigns suffer from
only a minimal amount of additional overhead as the extréa&ions are used, with
overheads as low as 2.3% for the case of the SP 8 node bencl#sarkthe case of
the single replica, the overhead does increase with theo$ittee cluster. However,
we would expect to see a reduction in overhead for the latgstar sizes with longer
running computations as well as more reasonable checlpgiimtervals. Because
the larger cluster sizes lasted less than 4 minutes, thitsebiow a disproportionately
high overhead.

We note, however, that the impact of replication on the di/esa time of the
benchmark depends not only on the size of the checkpointsldo on the bench-
mark’s communication characteristics (recall Section)ng et al. have previously
characterized the scalability and communications charistics of NPB [43]. While
the BT benchmark may exhibit the largest memory footprim, $P benchmark per-
forms (by far) the most communication. Similarly, the LU bbmark performs the
least amount of communication. Their results are for 4 CPplémentations of the
class A problem sizes. More precisely, they report that thé&chmark is respon-
sible for a total of 1072 MB of communication data, while the Benchmark is
responsible for 1876 MB, and the LU benchmark communicatéy 459 MB of
data.

22

1 Replica at 4 Minutes 2 Replicas at 4 Minutes
800 900
700 I 800
600 7001 [
v 5004 OLru1 » 6007 OLu2
g B LU None E 500 B LU None
g 400 rOBT 1 S 400 | BT 2
2 3004 | O BT None « O BT None
Hsp1 300 [Hsp2
200 r @ SPNone 200 1 | @ SP None
100 100 —
0-! 0-
8 16 32 64 8 16 32 64
Number of Processors Number of Processors
(a) Single replication overhead. (b) Overhead of 2 replicas.

3 Replicas at 4 Minutes

900
800
700 +— [
3 600 OLu3
£ 500 M LU None
¢ i OBT3
o 400 [BT None
300 Hsp3
200 4 O SP None
100
0
8 16 32 64

Number of Processors

(c) Overhead of 3 replicas.

Fig. 7 Performance of checkpointing class C NPB with 1-3 replicdgdRpoints are first saved to local
storage. Once computation resum@szd performs the replication.

Of course, the class C benchmarks that we tested would riesctinsiderably
greater amounts of communication. Nevertheless, we caa s&nd when we ex-
amine both the replication overhead along with the size efdheckpoints. Using
the analysis developed in Section 6 we see that for smaltetlgizes, particularly
8 or 9 nodes, the BT benchmark exhibits the greatest overteeaghy replication
level. This is due to the additional communication generaieBT's replicas that is
concentrated on only 9 nodes. Thus, a greater amount of comation overhead
is placed on fewer nodes. This results in an increas@aer node) contributing to a
largert.omm component from Equation 2. In fact, the replication of thec@lenBT
benchmark adds between 1.4 GB and 4.3 GB of data (dependitigearumber of
replicas) to the system.

However, as the number of nodes increases, the size of tickmbiats decrease,
as does the total running time of the computation. This itistes theo: component
of Equation 2 over a greater number of nodes and reduces thierwof checkpoints
as shown in Figure 7. This is particularly evident in the casthe SP benchmark
which initially starts with relatively little overhead, gacularly compared with BT.
Indeed, the overhead of replicating the SP benchmark isesemuch more rapidly

23

(with increasing cluster sizes) than either the BT or LU tbenark. At 64 nodes,
for example, the overhead of replicating the SP benchmarkasly identical to that
of the BT benchmark (approximately 35%) despite checkpgizes that differ by a
factor of two (Table 2). As would be expected, LU consistepithibits much lower
replication overhead than either BT or SP, suggesting thahnaller communication
volume is less affected by the replication overhead.

8 Related Work

There have been many descriptions of virtualization sjiatein the literature, in-
cluding performance enhancements designed to reducedtieinead. Xen, in par-
ticular, has undergone considerable analysis [12]. In iguahal. [22] the idea of
VMM bypass 1/O is discussed. VMM bypass 1/O is used to redineedverhead
of network communication with Infiniband network interfac&Jsing VMM bypass
I/O it was shown that Xen is capable of near-native bandwadltti latency, which
resulted in exceptionally low overhead for both NPB and HRIhdhmarks using
the MVAPICH Infiniband-based MPI implementation. Howeuwlie VMM bypass
I/O currently breaks Xen'’s checkpointing functionalityajret al. describe network
processor-based self-virtualizing network interfaced tan be used to minimize the
overhead of network communication [28]. Their work reduttess network latency
by up to 50%, but requires specialized network interfacd<avlenon et al. provide
an analysis of Xen and introduce the Xenoprof [23] tool fonX&vl analysis. Using
the Xenoprof tool, they demonstrated Xen's key weakness#ei area of network
overhead.

Emeneker et al. compare both Xen and User-Mode Linux (UML)Xfoster pe-
formance [16]. Their goal was to compare both a paravirzedlivirtualization im-
plementation (Xen) against an operating system-levalaiization package (UML).
They showed that Xen clearly outperforms UML in terms of parfance, reliability,
and the impact of the virtualization technologies.

In Soltesz, et al. [32] a comparison of Xen and Linux-Vsefgadiscussed with
special attention paid to availability, security and reseumanagement. They show
that container-based/operating system-based virtdiglizas particularly well suited
for environments where resource guarantees along witmmalroverhead are needed.
However, no existing work has adequately examined the ngwirtualization strate-
gies for their use in HPC environments, particularly witgard to scalability. Our
evaluation and experimentation fills this gap and providestéer understanding of
the use of virtualization for cluster computing.

VMWare ESX Server has been studied in regards to the arthitgsonemory
management and the overheads of 1/0O processing [2, 11, BB&88ause VMWare
infrastructure products implement a full virtualizatioechnology, they have detri-
mental impact on the performance even though they provisle ®gpport for unmod-
ified operating systems.

Checkpointing at both the user-level and kernel-level heemntextensively stud-
ied [14, 27]. Often such implementations are applicabley @alsingle-process or
multi-threaded checkpointing. Checkpointing a distrdalisystem requires additional

24

considerations, including in-flight messages, socketd, apen files. Gropp, et al.
provide a high-level overview of the challenges and stiegegsed in checkpoint-
ing MPI applications [20]. The official LAM/MPI implementan includes support
for checkpointing using the Berkeley Linux Checkpoint/Reis(BLCR) kernel-level
checkpointing library [30]. A more recent implementatiognZhang et al. duplicates
the functionality of LAM'’s kernel-level checkpointer, bimiplements checkpointing
at the user-level [45].

The most widely published application-level checkpoigtaystem for MPI pro-
grams is the_ system by Bronevetsky et al. [9]> uses a non-blocking coordinated
checkpointing protocol for programs written in tprogramming language. Be-
cause it provides checkpointing at the application levplteaprocessor/pre-compiler
is used to first transform a user’s source code into checkggm code. This al-
lows for platform independence in that a checkpointing eagieed not be created
specifically for each architecture, and in many cases alfowsheckpointing and
migration within heterogeneous cluster architecturesHitjvever, application-level
checkpointing also requires more effort on the part of tleypmmer, where check-
pointing primitives must be inserted manually.

MPICH-V [8] uses an uncoordinated message logging stratétjycheckpoint-
ing provided by the Condor checkpointing library [21]. Thévantage to using a
message logging strategy is that nodes participating ircdingputation may check-
point independently of one another. Further, upon failomy the failed node is
restarted. Messages sent to the failed node between theotithe last checkpoint
and the node’s failure (and subsequent restart) are repfaye stable storage while
the unaffected nodes continue their computation. Howd#lverpverhead of capturing
and storing all of an application’s messages results intiaeh@il overhead.

Regardless of the level at which checkpointing is perforntieele is typically an
implicit assumption regarding the reliability of messageging in distributed sys-
tems. Graham et al. provide a detailed discription of thélem and have introduced
LA-MPI in order to take advantage of network-based faulkeriance [19]. Network
fault-tolerance solutions, such as LA-MPI, complementwark.

In our previous work, in non-virtualized systems, we havevahthat the over-
head of checkpointing can be reduced dramatically by theofigecal disk check-
pointing with replication [40, 41]. Because virtual maasnmust maintain both a
consistent memory state as well as a consistent file systengrhount of data that
must be stored may increase dramatically. In this articl&éawe shown that a similar
replication strategy may be applied to virtualized computdes. Other strategies,
such as the use of parallel file systems or NFS cluster déedg#f] may improve the
overhead of checkpointing when compared to SANs. Howegerehave shown in
our previous work, even highly scalable commerical paréile systems are easily
overwhelmed by large-scale checkpointing.

Checkpointing within virtual environments has also beemligd, though typi-
cally not for the use of HPC applications. OpenVZ [36], Xeh fnd VMWare [37]
all provide mechanisms to checkpoint the memory footprira munning virtual ma-
chine. However, to date, the use of these checkpointing amesims have been lim-
ited to the area of “live migration” due to the lack of compldile system check-

25

pointing and/or a lack of checkpoint/continue functiotyalBy supporting only live
migration, the virtualization tools avoid file system catsicy issues.

Another application is in the use of preemptive migratiod][By integrating a
monitor with Xen’s live migration, Nagarajan et al. attenptpredict node failures
and migrate computations away from failing nodes. Howeugeh strategies are still
susceptible to sudden and unexpected node failures. Futtteevork by Nagarajan,
et al. isincapable of rollback-recovery and instead ralieaccurately predicting fail-
ures prior to their occurrence. Our work does not precludé guoactive migration,
and would prove quite complementary.

Our work differs from the previous work in VM checkpointingdstorage in that
we enable periodic checkpointing and rollback recoveryM&l applications execut-
ing within an virtualized environment. This requires co@ti®n with the existing
VM-level checkpointing support that is already providedihy VM/VPS. Moreover,
we also include support for checkpointing incremental fjlstem changes in order
to provide rollback support. We have added local disk cheitiktimg with replica-
tion to both reduce the overhead of checkpointing as welbasiprove checkpoint
resiliency in the presence of multiple simultaneous noderts. Our checkpointing
solution does not rely on the existence of network storagetfeckpointing. The ab-
sence of network storage allows for improved scalabilityf also shorter checkpoint
intervals (where desired) [40].

9 Conclusions and Future work

We have performed an analysis of the effect of virtualizatio scientific benchmarks
using VMWare Server, Xen, and OpenVZ. Our analysis showstale none match

the performance of the base system perfectly, OpenVZ demates low overhead
and high performance in both file system performance andsinghstandard scien-
tific benchmarks. While Xen demonstrated excellent netwearkdwidth, its excep-
tionally high latency hindered its scalability. VMWare 8er, while demonstrating
reasonable CPU-bound performance, was similarly unabope with the MPI-

based NPB benchmarks.

Drawing on these results we have shown that full checkpmintf OpenVz-
based virtualized servers can be accomplished at low-odsth@ar invisibility to the
end user. We use both checkpointing and replication in cmensure the lowest
possible checkpointing overhead. A remaining issue that teraddressed is the in-
tegration of our checkpointing and fault-tolerance sysitgim common cluster batch
schedulers, such as PBS Pro or Torque. We have already bemknow a cluster
framework that integrates our VM fault-tolerance with th@renonly used Torque
resource manager [39]. The goal is to extend our fault-dolee work beyond failure
management in order to enable better utilization of clugtsources

Acknowledgments

We would like to acknowledge the input of the anonymous regis whose sugges-
tions have greatly improved the quality of this article. Vi&aacknowledge Minsuk

26

Cha, Salvatore Guercio Jr, and Steve Gallo for their coutiidbs to the virtual ma-
chine evaluations. Support was provided in part by NSF IGERiIht 9987598, the
Institute for Scientific Computing at Wayne State UnivetdilEDC/Michigan Life
Science Corridor, and NYSTAR.

References

1. K. Adams and O. Agesen. A Comparison of Software and HardWeckniques for x86 Virtualiza-
tion. In ASPLOS-XII: Proceedings of the 12" International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 2—13. ACM Press, 2006.

2. |. Ahmad, J. M. Anderson, A. M. Holler, R. Kambo, and V. MakhijAn Analysis of Disk Perfor-
mance in VMware ESX Server Virtual Machines.WW(C ’03: Proceedings of the 6/ International
Workshop on Workload Characterization, pages 65—76. IEEE Computer Society Press, 2003.

3. E.R. Altman, D. Kaeli, and Y. Sheffer. Guest Editors’ Imtuation: Welcome to the Opportunities of
Binary Translation Computer, 33(3):40-45, 2000.

4. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, RQarter, L. Dagum, R. A. Fatoohi, P. O.
Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon/ankatakrishnan, and S. K. Weeratunga.
The NAS Parallel Benchmarksnternational Journal of High Performance Computing Applications,
5(3):63-73, 1991.

5. P.Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.RId\eugebauer, |. Pratt, and A. Warfield.
Xen and the Art of Virtualization. Ir8OSP '03: Proceedings of the 19t" Symposium on Operating
Systems Principles, pages 164-177. ACM Press, 2003.

6. A.Batsakis and R. Burns. NFS-CD: Write-Enabled Coopegdliaching in NFSIEEE Transactions
on Parallel and Distributed Systems, 19(3):323-333, 2008.

7. A. Beguelin, E. Seligman, and P. Stephan. Application LEeelt Tolerance in Heterogeneous Net-
works of WorkstationsJ. Parallel Distrib. Comput., 43(2):147-155, 1997.

8. G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fed C. Germain, T. Herault, P. Lemarinier,
O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov. MPI&#HToward a Scalable Fault Tolerant
MPI for Volatile Nodes. InSC '02: Proceedings of the 19t annual Supercomputing Conference,
pages 1-18, Los Alamitos, CA, USA, 2002. IEEE Computer Sodletsgs.

9. G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghilltomated Application-Level Checkpoint-
ing of MPI Programs. IiPPoPP ’03: Proceedings of the 9t* Symposium on Principles and Practice
of Parallel Programming, pages 84-94. ACM Press, 2003.

10. G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster Eoriment for MPI. InProceedings of
Supercomputing Symposium, pages 379-386. IEEE Computer Society Press, 1994.

11. L. Cherkasova and R. Gardner. Measuring CPU OverheatidoProcessing in the Xen Virtual
Machine Monitor. INUSENIX 2005 Annual Technical Conference, General Track, pages 387—-390.
USENIX Association, 2005.

12. B.Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlaysoiiefne, and J. Matthews. Xen and the Art
of Repeated Research. USENI X Technical Conference FREENIX Track, pages 135-144. USENIX
Association, 2004.

13. J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPA@Kchmark: Past, present, and future.
Concurrency and Computation: Practice and Experience, 15:1-18, 2003.

14. J. Duell. The Design and Implementation of Berkeley Lahrauk Checkpoint/Restart. Technical
Report LBNL-54941, Lawrence Berkeley National Lab, 2002.

15. E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. JohnsonSArvey of Rollback-Recovery Protocols
in Message-Passing System&M Comput. Surv., 34(3):375-408, 2002.

16. W. Emeneker and D. Stanzione. HPC Cluster Readiness ofix@t/ser Mode Linux. I€LUSTER
’06: Proceedings of the International Conference on Cluster Computing, pages 1-8. IEEE Computer
Society Press, 2006.

17. The MPI Forum. MPI: A Message Passing Interface.SIn’93: Proceedings of the 6t annual
Supercomputing Conference., pages 878-883. IEEE Computer Society Press, 1993.

18. R. P. Goldberg. Survey of Virtual Machine Reseat&tE Computer, 7(6):34—45, 1974.

19. R.L.Graham, S. E. Choi, D. J. Daniel, N. N. Desai, R. G. MihnC. E. Rasmussen, L. D. Risinger,
and M. W. Sukalski. A Network-Failure-Tolerant Messageddag System for Terascale Clusters.
Int. J. Parallel Program., 31(4):285-303, 2003.

27

20.

21.

22.

23.

24.

25.
. Hewlett Packard. Netperft t p: / / www. net perf. org.
27.

28.

29.

30.

31.
32.
33.

34.

35.

36.
. VMWare. VMWare, 2006. http://www.vmware.com.
38.

39.

40.

41.

42.
43.

44.
45.

W. D. Gropp and E. Lusk. Fault Tolerance in MPI Prograhmgernational Journal of High Perfor-
mance Computer Applications, 18(3):363-372, 2004.

M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Cheikpand Migration of Unix Processes in
the Condor Distributed Processing System. Technical R&3d,University of Wisconsin-Madison,
1997.

J. Liu, W. Huang, B. Abali, and D. K. Panda. High PerformaR®M-Bypass I/O in Virtual Ma-
chines. InProceedings of the USENIX Annual Technical Conference, pages 3—16. USENIX Associa-
tion, 2006.

A. Menon, J. R. Santos, Y. Turner, G. Janakiraman, and \Waehepoel. Diagnosing Perfor-
mance Overheads in the Xen Virtual Machine Environment.VEE '05: Proceedings of the 15t
ACM/USENIX International Conference on \irtual Execution Environments, pages 13-23. ACM
Press, 2005.

A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scéttoactive Fault Tolerance for HPC
with Xen Virtualization. InICS’07: Proceedings of the 215¢ annual International Conference on
Supercomputing, pages 23-32. ACM Press, 2007.

W. D. Norcott and D. Capps. The I0Zone Filesystem Benckntrt p: / / ww. i ozone. or g.

J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Tsmarent Checkpointing Under Unix.
Technical Report UT-CS-94-242, 1994.

H. Raj and K. Schwan. High Performance and Scalable I/@adlization via Self-Virtualized De-
vices. INHPDC ' 07: Proceedings of the International Symposium on High Performance Distributed
Computing, pages 179-188. IEEE Computer Society Press, 2007.

F. Sacerdoti, M. J. Katz, M. L. Massie, and D. E. Culler.d&/Area Cluster Monitoring with Gan-
glia. In CLUSTER '03: The International Conference on Cluster Computing, pages 289—-298. IEEE
Computer Society Press, 2003.

S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, &llDR Hargrove, and E. Roman. The
LAM/MPI Checkpoint/Restart Framework: System-Initiatede€kpointing.International Journal of
High Performance Computing Applications, 19(4):479-493, 2005.

J. E. Smith and R. Nair. The Architecture of Virtual MagsnComputer, 38(5):32-38, 2005.
Stephen Soltesz, Herbeidtel, Marc E. Fiuczynski, Andy Bavier, and Larry Petersonon@iner-
based operating system virtualization: A scalable, higHggmance alternative to hypervisors.
S GOPS Oper. Syst. Rev., 41(3):275-287, 2007.

L. Spainhower and T. A. Gregg. IBM S/390 Parallel EntisgpBerver G5 Fault Tolerance: A Histor-
ical PerspectivelBM Journal of Research and Development, 43(5/6):863—873, 1999.

J. M. Squyres and A. Lumsdaine. A Component ArchitecturdfdVI/MPI. In Proceedings of
the 10t* European PVM/MPI Users' Group Meeting, LNCS 2840, pages 379-387. Springer-Verlag,
2003.

S. Sridhar, J. S. Shapiro, E. Northup, and P. P. Bungal®eTr&hs: An Open Source, Low-Level
Dynamic Instrumentation System. WEE ' 06: Proceedings of the 27 International Conference on
Virtual Execution Environments, pages 175-185. ACM Press, 2006.

SWSoft. OpenVZ - Server Virtualization, 2006. http:/Anepenvz.org/.

C. A. Waldspurger. Memory Resource Management in VMwarg E&rver. SGOPS Oper. Syst.
Rev., 36(S1):181-194, 2002.

J. P. Walters, B. Bantwal, and V. Chaudhary. Enablingragtive Jobs in Virtualized Data Centers. In
CCA'08: The 1st Workshop on Cloud Computing and Its Applications,

http://ww. cca08. or g/ paper s/ Paper 21- JohnPaul - Wal t er s. pdf, 2008.

J. P. Walters and V. Chaudhary. Replication-Based Halétrance for MPI ApplicationsTo appear

in |EEE Transactions on Parallel and Distributed Systems.

J. P. Walters and V. Chaudhary. A Scalable Asynchronepti¢aition-Based Strategy for Fault Toler-
ant MPI Applications. IrHiPC ’'07: the International Conference on High Performance Computing,
LNCS 4873, pages 257—-268. Springer-Verlag, 2007.

A. Weiss. Computing in the CloudsetWorker, 11(4):16-25, 2007.

F. C. Wong, R. P. Martin, R. H. Arpaci-Dusseau, and D. Hle€uArchitectural Requirements and
Scalability of the NAS Parallel Benchmarks. 16S°99: Proceedings of the 13t" International
Conference on Supercomputing, pages 41-58. ACM Press, 1999.

V. Zandy. Ckpt: User-level checkpointinigt t p: / / ww. ¢s. wi sc. edu/ ~zandy/ ckpt /.

Y. Zhang, D. Wong, and W. Zheng. User-Level Checkpoirt Baecovery for LAM/MPI. SGOPS
Oper. Syst. Rev., 39(3):72-81, 2005.

