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Searching on DNA and protein databases using sequence comparison algorithms has
become one of the most powerful techniques to better understand the functionality of par-
ticular biological sequences. However, the requirements to process the biological data
exceed the ability of general-purpose processors. FPGAs (Field Programmable Gate Arrays)
connected to server processors have been used to accelerate similarity searches. However,
reconfigurable computing platforms have utilized an external I/O bus as the communica-
tions channel, limiting the communication speed between the host processor and the
FPGA. This communication bottleneck often offsets the application speedup enabled by
FPGAs. In this paper we present an adaptive data prefetching scheme to avoid reconfigura-
ble processing coprocessor stalls due to data unavailability through profiling methodolo-
gies and quantitative analysis. Experimental results on various query sequences show
that the proposed scheme can effectively eliminate a major portion of the data access pen-
alty, increase throughput of the FPGA implementation by up to 42%, and achieve a speedup
of 110 for affine gap penalties over a standard PC implementation.

Published by Elsevier B.V.
1. Introduction

The amount of biological sequences available in databases has been growing exponentially over the past several years.
Although computing power has been growing at an exponential pace, the requirements to process the biological data far out-
strips the ability of traditional computing to meet the challenge of converting the data into information or knowledge. At this
point, sequential computing, that is, a single general-purpose processor, can allow only a small part of the massive, multi-
dimensional biological information to be processed. Under this scenario, the process of data analysis and understanding of
the data-described biological processes could remain incomplete, causing us to lose vast quantities of valuable information
because CPU-power and time constraints could fail to follow critical events and trends.

The algorithms for biological sequence database search can be implemented to run efficiently on various types of hard-
ware with the ability to perform several operations simultaneously. There is a wide range of different hardware available on
which the algorithms have been implemented. Hughey [12] has reviewed various types of hardware that can be used and its
performance. The hardware can be divided into general-purpose processors, which can be used for many different types of
computations, and hardware devices specifically designed for performing sequence alignments and database searches.
Reconfigurable computing hardware, a special-purpose processor, takes advantage of programmable logic devices such as
FPGAs that can be reconfigured or reprogrammed to implement specific functionality more suitably and more efficiently
than on a general-purpose processor.
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Bio-sequence database searches based on FPGA reconfigurable hardware platforms have gained popularity recently. The
hyper customized FPGA implementation [17], which performs the Smith–Waterman [23] database searches for both linear
and affine gap penalties, has reported tremendous speedup as compared to a standard desktop PC. However, the data com-
munications between the FPGA board and the host system with the large volume of data involved in these kinds of appli-
cations impact the performance. We have developed an adaptive parallel data prefetching scheme [16] for the execution
of Smith–Waterman sequence database searches to alleviate the communication bottleneck leading to a substantial perfor-
mance improvement.

The rest of the paper is organized as follows: the next section lists related work; Section 3 gives some basic background
information on the Smith–Waterman algorithm and FPGA coprocessing, along with an analysis of impacts of the latency and
bandwidth between the host processor and the FPGA; Section 4 describes the design of the adaptive data prefetching scheme
and discusses the implementation of the reconfigurable hardware platform; Section 5 analyzes the adaptive prefetching per-
formance results and explores how to eliminate the side effects that prefetching may identify; a summary and future work
are presented in Section 6.

2. Related work

A number of different designs for special-purpose hardware for performing sequence alignments and database searches
have been proposed and implemented. Their advantage over general-purpose computers is that they can be tailored specif-
ically to perform sequence comparisons at a high speed, while their disadvantage is their high cost. Special-purpose hard-
ware is usually built using either FPGA or custom ASIC (application specific integrated circuit) technology. The advantage
of FPGA is that they are reprogrammable and work with different algorithms [17,18], while ASIC is customarily designed
to a very specific purpose and cannot be changed.

Because each implementation is designed based on different hardware and uses different parameter setting, direct per-
formance comparison is quite difficult. We list a number of parallel architectures that have been specifically designed or ta-
ken advantage of their unique features for sequence database searches.

Paracel [20] used a custom ASIC approach to do the sequence alignment. Their system used 144 identical custom ASIC
devices, each containing approximately 192 PEs (processing elements) [26]. Starbridge [24] has developed a reconfigurable
computing system using FPGAs, which can deliver 10–100 times or greater improvement in computational efficiency. The
system employs a dual processor motherboard and a single Hypercomputer board with nine Xilinx XC2V6000-BG1152 Vir-
tex-II FPGAs and two XC2V4000-BG1152 Virtex-II FPGAs. Splash-2 [7] and SAMBA [11] compute simple edit distances for
both 2 and 4 bit alphabet based upon FPGA technology; however, they are not flexible enough for a general case of protein
sequence searches with full 8-bit substitution matrix. Solutions based on systolic array parallelization and the SIMD (single
instruction multiple data) concept are presented in Kestrel [3] and Fuzion [22]. The FPGA implementation [6,10,25] can pro-
vide a compact and high performance design. But the above solutions allow for neither affined gap penalties nor local
alignment.

The Cray XD1 [5] supercomputer is a high performance computing platform combining scalar processing with reconfig-
urable computing technology. The Cray XD1 Smith–Waterman solution has performed 28 times faster when tested against
other 64-bit AMD Opteron processor-based solutions running the same application.

Some other examples are MMX implementation [19] on common microprocessors, DSP implementation [14] on a Cradle
3SoC chip, and SSE2 implementation [15] on a Linux cluster using Intel Pentium processors. These implementations exploit
SIMD instruction sets of general-purpose architectures or a combination of SIMD and cluster computing to achieve
parallelism.

3. Smith–Waterman algorithm and FPGA

3.1. Smith–Waterman database searches

The comparison of biological sequences is a fundamental task in molecular biology. The Smith–Waterman algorithm [23]
is perhaps the most widely used local similarity algorithm for biological sequence comparison. In Smith–Waterman database
searches, the dynamic programming method is used to compare the query sequence to every database sequence and assign a
score to each comparison. In Eqs. (1) and (2), A, B are the query and database sequences being compared, respectively; ai is
the ith letter in A, bj is the jth letter in B; matrices H, E and F are of size (jAj + 1)(jBj + 1), and row and column 0 are initialized
to 0 in H; SS(ai,bj) is the similarity of ai and bj as read from an amino acid substitution score matrix. Matrix entries are cal-
culated using the following recurrences:
Plea
Para
H½i; j� ¼max

E½i; j�
H½i� 1; j� 1� þ SSðai; bjÞ
F½i; j�
0

8>>><
>>>:

for 1 6 i 6 m; 1 6 j 6 n;

ð1Þ
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where
Plea
Para
E½i; j� ¼ maxfH½i� k; j� � gðkÞg; for 0 < k < i;
F½i; j� ¼maxfH½i; j� l� � gðlÞg; for 0 < l < j: ð2Þ
Here, H[i, j] is the score of the optimal alignment ending at position [i, j] in the matrix, while E[i, j] and F[i, j] are the scores
of optimal alignments that end at the same position but contain a gap in sequence A or B, while g(k) and g(l) are the gap
penalty functions. The computations should proceed with i going from 1 to m and j going from 1 to n.

The Smith–Waterman algorithm exhibits strong data dependency between neighboring cells in the computation matrix
because the value of H in any cell in the alignment matrix cannot be computed before all cells to the left or above it have
been computed. The algorithm uses memory space proportional to the product of the lengths of the two sequences, mn,
and the computing time complexity is O(mn(m + n)). Gotoh [9] reduced the time needed by the algorithm to O(mn) when
affined gap penalties of the form g(k) = q + rk; (q P 0, r P 0) are used, where q is the gap open penalty and r is the gap exten-
sion penalty. The overall optimal alignment score is equal to the maximum value of H[i, j].

In the biological sequence database searches, we are particularly interested in the four standard nucleotide bases adenine
(A), thymine (T), guanine (G), and cytosine (C), and the 20 amino acids, which are A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V,
W, and Y. Fig. 1 shows an example of the Smith–Waterman alignment between two DNA sequences ACACACTAG and
AGCACACA. The similarity matrix uses the linear gap penalty q = r = 1, and a substitution score +2 if two characters match,
and �1 otherwise. The arrows show a trace-back path, which leads to the corresponding the best local alignment output,
starting from the highest score to zero.

3.2. FPGA coprocessing

The FPGA device acts as a highly flexible coprocessor, which has to be integrated into a host system. The FPGA device is
utilized for the parallel execution of the Smith–Waterman algorithm by a connection between the FPGA board and the pro-
cessor and memory of the host computer. Database sequences are transferred from the host memory to the FPGA board and
processed alignment scores are written back to the host memory for output or further processing.

The Smith–Waterman algorithm has been mapped to a linear systolic array [26] of PEs. The systolic array is composed of
identical PEs. The characters of the query sequence are preloaded into each PE, while the database characters are fed serially
into the array in Fig. 2. Thus, a comparison between pairs of characters, which applies the algorithm’s equations, is done on each
machine cycle. A database array of length m can be compared to an input query sequence of length n in O(m + n � 1) steps.

3.3. System analysis

We assume the system has no data prefetching and results post-processing, thus, the real time, Ttotal, is
Ttotal ¼ Tfpga þ Tdbloading: ð3Þ
Sequences: ACACACTAG vs. AGCACACA 

 Local Alignment:

A – C  A C A C T A 
| | | |   | |       | 

A G C A C A C – A 

A C A C A C T A G 

0 0 0 0 0 0 0 0 0 0 

A 0 2 1 2 0 2 0 0 2 1 

G 0 1 1 1 1 1 1 0 1 4 

C 0 0 3 2 3 2 3 2 1 3 

A 0 2 2 5 4 5 4 3 4 3 

C 0 1 4 4 7 6 7 6 5 4 

A 0 2 3 6 6 9 8 7 9 8 

C 0 1 4 5 8 8 11 10 9 8 

A 0 2 3 6 7 10 10 10 12 11 

Fig. 1. Example of Smith–Waterman alignment of two sequences.
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As aforementioned in Section 3.1, the FPGA coprocessor has been utilized to calculate only the optimal alignment score
H[i, j]. The theoretical FPGA hardware execution time, Tfpga, is
Plea
Para
Tfpga ¼ Tinit þ DBsize=PCIbandwidth þ ðMdb þ Nquery � 1Þ � tprocessing þ Tclose; ð4Þ
where

Tinit is the hardware initialization latency which takes approximately 80 ms over the PCI bus,
DBsize is the total size of database in bytes,
PCIbandwidth is the bandwidth of the PCI bus,
Mdb in the total number of database characters,
Nquery is the number of query characters,
tprocessing is the hardware processing time for a comparison between a pair of characters, and
Tclose is the final hardware close latency.

We now analyze the database sequence transfer. The average sequence length in the nr database is 342 amino acids. From
the perspective of the data transfer, the average input-to-output ratio is 342 to 1 for processing a single database sequence.
Due to the large size of databases, the database loading time, which transfers database characters from the disk to the appli-
cation buffer on the host, takes a major portion of the total execution time. Database loading time, Tdbloading, can be decom-
posed into four parts:
Tdbloading ¼ Tdb open þ Tunpack db þ Tpack fifo þ Tdb close; ð5Þ
where

Tdb_open is the database sequence file open latency,
Tunpack_db is the time of unpacking the database sequences,
Tpack_fifo is the time of packing the database sequences into the FIFO buffer, and
Tdb_close is the database sequence file close latency.

4. Adaptive data prefetching scheme design and implementation

Data prefetching [2,4,8] has been receiving considerable attention in high performance prcessors as a potential means of
boosting performance. Prefetching can also be an effective means of accelerating system time for acceleration based
computing.

4.1. Execution profile analysis

The total execution time of an FPGA-based biological sequence database search can be de decomposed into three primary
parts: database sequence load time on the host machine, Smith–Waterman processing time on FPGA, and other time includ-
ing data initialization and result output. In order to analyze how each part contributes to the total program execution time,
we carried out a timing profile analysis, as shown in Fig. 3, by comparing various query sequences to a 1 GB section of the
compressed nr protein database [21], which contains 936,896,903 characters in 2,739,534 sequences. The measurements
were taken on a 1.9 GHz Pentium IV processor with 768 MB memory, and an ADP-WRC-II FPGA PCI-board (Fig. 4) with a
se cite this article in press as: X. Meng, V. Chaudhary, Boosting data throughput for sequence database similarity ...,
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Xilinx Virtex II XC2V6000 from Alpha Data [1]. The board contains 119 affine PEs and accepts the query sequence up to 1420
characters. All experimental results we obtained were based on the above hardware configuration in this study.

Based on these measurements, we conclude that the execution time is dominated by FPGA processing for most cases.
Fig. 3 shows that the FPGA processing time increases proportionally with the increase in query sequence size. Furthermore,
the database sequence load time remains constant and independent of the query sequence size. However, the database load-
ing time decreases from 56% to 20% of the total execution time when the query size increases from 119 to 1420. This is very
promising for absorbing the database load time using current processing and is exploited in our implementation as shown
later.

4.2. Data pipe architecture

FPGAs are programmable logic devices which have a matrix of logic cells connected by an interconnection network, sur-
rounded by I/O for all kinds of data transfer. Besides the PCI interface (PLX PCI9656) and FPGA device (Xilinx Virtex II
XC2V6000) in Fig. 4, a clock generator creates the base clock frequency for the board. Another important component on
an FPGA board is the local memory (SDRAM) that stores data. The board has a 64-bit 66 MHz PCI bus, which provides data
transfer rates of up to 528 MB/s. The FPGA coprocessor board can be plugged into any PCI-based host computer system.

DMA (direct memory access) is an efficient way to transfer a block of data between the host computer’s memory and
FPGA’s memory with as little burden on the CPU as possible. Bus-mastering PCI devices contain dedicated logic for perform-
ing DMA transfers. To perform a DMA transfer, the CPU first programs the PCI device’s registers instructing it on where to
transfer the data, how much data to transfer and which direction the data should travel in. It then initiates the DMA transfer,
and typically, the CPU is interrupted by the device once the transfer has been completed. The advantage of DMA then, is that
the CPU can perform other tasks while the PCI device performs the data transfer.
Xilinx 
2V6000 

PLX 
PCI9656

E
xt

er
na

l
C

on
ne

ct
or

DDR
SDRAM 

DDR
SDRAM 

Local Bus 

DMA

Host
Machine

PCI bus
Clock 

FPGA Coprocessor Board

Fig. 4. Reconfigurable computing platform structure.
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The local bus protocol of a DMA-initiated burst is efficient for throughput. DMA controls both bus interfaces during
data transfer. It has two independent channels providing a flexible prioritization scheme and each channel has its own
bi-directional 256 byte deep FIFO. Using DMA enables the data transfers and the processing to be accomplished in
(a) Flowchart of Sequential Implementation

Host:  Load Database 
Buffer 

FPGA: Process Data and Send 
Results back 

Y 

N 

More Sequences? 

(b) Flowchart of Prefetching Implementation

Host: Prefetch Database in DBuffer [Flag]

FPGA: Process Data and Send
Results to RBuffer[Flag]

Host: Prefetch Database in
DBuffer [!Flag]

More Sequences? 

Host: Allocate 2 Database Buffers and 2 
Result Buffers Initialize Flag=0

Prologue 

N 

Toggle Buffer 
Flags 

Main Loop

Epilogue 

FPGA: Process the Last DBuffer and Send
Results to RBuffer[!Flag] 

Y 

Fig. 5. Flowcharts of sequence database search.
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parallel. The sequence transfer is organized in such a way that the use of DMA resources is optimized to achieve the
shortest possible communication time. Furthermore, it is easier to obtain reliable and reproducible execution time with
DMA data transfers.

4.3. Data prefetching scheme

The data transfer requires low latency and high bandwidth to ensure that the communication does not adversely affect
the processing time. Biological sequence searches on an FPGA-based coprocessor board require database sequences to be
stored in an application buffer of the host machine, and then transferred to the FPGA board for processing, because the
amount of on-board memory is usually very limited. Loading entire sequence databases, especially with the large volume
of biological sequences, into the memory of the host machine causes significant performance drawbacks. Even though the
existing implementation adopted the DMA transfer, database load on the host side and computation on the FPGA side are
still in serial order.

To overcome this drawback, we designed a double buffering parallel implementation using DMA on the FPGA board and
Pthreads [13] on the host machine. Pthreads is to realize potential program performance gains by exploiting parallelism on
the conventional processor. The idea of the double buffering strategy is to transfer database sequences into one intermediate
application buffer in the background, where the processing can be completed simultaneously in the other application buffer
utilizing the full FPGA power. Once processing is done in a local buffer, the FPGA coprocessor sends results back to the host
and retrieves new sequences from another buffer and starts computation immediately with the least idle time. The host se-
quence database buffers are filled out by the host machine during the FPGA processing. The comparisons of original design
and our double buffering design flowcharts are shown in Fig. 5.

Our implementation takes advantage of DMA transfers, which are performed by the PCI device for large blocks of
data, between the host CPU and the FPGA board. The local bus bridge, PCI9656, in an FPGA board contains multiple
DMA engines. Application software running on the host system can control these DMA engines for the rapid data trans-
fer and processing to and from the FPGA using send/receive threads. At the same time, the host software creates addi-
tional threads to load database sequences into application buffers in the background. Thus, the transformation overlaps
the communication time with the computation time in parallel loops to effectively hide the latency of the database se-
quence transfer time.

4.4. Scheduling prefetches and data prefetching

Prefetches should be issued early enough to hide communication latency, but not too early. Data prefetching attempts to
leverage this overlap by determining when to initiate data transfer in order to maximize overlap with useful computation on
the FPGA coprocessor. The software scheme prefetches a data block at least one iteration before it is used. The prefetch is
usually placed immediately after a new block of data has been processed by the FPGA. The gap between arrival time of
the prefetched data and its actual use should be minimized. The scheduling solution is able to resolve the imbalance between
data load and processing time by providing a more flexible prefetching mechanism, e.g., the adaptive prefetching buffer size.
It also seeks to minimize the chance that a buffer will be prefetched falsely, overwriting the data buffer that is actually used
next.

Since the proportions of database load and FPGA processing time keep changing with the varied query inputs, the choice
of how to select a proper buffer size for data transfer could be critical to performance. A static or improper buffer size may
decrease performance and bring additional communication overhead to the system. A data prefetching scheme would be
ineffective unless a proper buffer size is selected.

In order to exploit the seamless transformation between loading and processing, we designed and implemented a query-
based data prefetching adaptation algorithm based on the length of the query sequence. The idea is that the short query
would require small buffers to overcome database loading delay, and the long query sequence would require large buffers.
The communication overhead would be eliminated as much as possible when buffer size reaches a certain point. We discuss
experimental results on how to dynamically determine the appropriate buffer size in the next section.
5. Performance analysis

5.1. FPGA processing time

If m and n are the lengths of the database sequences and the query, respectively, then as we explained in Section 2,
the time complexity of a serial implementation of the Smith–Waterman algorithm is O(mn). For a fixed database, the
total PC execution time shows a linear increase with the query size m, as shown in Fig. 6. With the FPGA processing,
the total execution time changes to O(f(m)n), where f(m) is a stair function related to query size m. It takes almost
the same amount of clock cycles for FPGA coprocessor to process database sequences if the length of query sequence
falls into one particular length range [17]. The reason for this is that all the PEs work simultaneously even though some
PEs have no assignments.
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5.2. Adaptive prefetching performance

Experimental results, which are shown in Fig. 7, give us the comparative performance results with various double data-
base sequence buffer sizes in MB. The performance is evaluated over the range of buffer size from 13 MB to 325 MB, which
can hold approximately 10,000–250,000 database sequences. Particularly, compared to the original design which uses a sta-
tic single buffer regardless of the lengths of the input queries, the performance of the double buffer implementation is en-
hanced for most cases, e.g., from a buffer size of 52–286 MB. But, the improvement in prefetching performance saturates at a
certain point. Thus, the appropriate buffer size can be determined at this point. The best performance is reached at the buffer
size of 221 MB for short query sequence size of 119. The buffer sizes of 260 MB and 273 MB are excellent for query sizes of
714 and 1420, respectively.

However, with the various data buffer sizes, the additional overhead in the pre-fetching implementation incurred by the
buffer management may result in an idle FPGA coprocessor. Below a buffer size of 52 MB or above 286 MB, the performance
is not improved, but rather the delay increases. In our experiments, the worst performances were observed at the bound-
aries, i.e., buffer sizes of 13 MB and 325 MB, due to the overhead such as frequent switching between small buffers or filling
out a very large buffer.

As we have explained earlier in Section 5.1, the FPGA Smith–Waterman processing time is a stair function rather than a
linear function. The database buffer load time on the host machine should be fairly close to the FPGA processing time. The
prefetching buffer size, Sbuffer, required to compare a query sequence to a database of sequences on a single FPGA board is
given as
Plea
Para
Sbuffer ¼ k� g ceil
m

N þ 1

� �� �
; ð6Þ
Performance Comparisons for Various Buffer Sizes
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where Sbuffer is the prefetching buffer size in megabytes, k is the coefficient of host machine speed, m is the size of query
sequence, N is the number of PEs, and g[x] is a stair function for buffer size based on our experiments, and is summarized as
Plea
Para
gðxÞ ¼

221; x ¼ 1;
234; x ¼ 2;
247; x ¼ 3;
260; 4 6 x 6 6;
273; 7 6 x 6 12:

8>>>>>><
>>>>>>:

ð7Þ
Fig. 8 shows the performance gains with various query sequences searched against the nr database. While using the adap-
tive data prefetching on FPGA, we achieved a 42% overall performance increase on a short query sequence of length 119 over
the version without data prefetching. And there are 21% and 16% improvements for query sizes of 714 and 1420, respectively.
For performance comparison, the adaptive data prefetching scheme achieves a speedup of 110 over a desktop computer with
a 1.9 GHz Pentium IV running the serial program.

5.3. Prefetching performance analysis

In a data prefetching implementation, the data transfer is double buffered. Overlapping communication and execution
prevents the host processor from stalling while it is waiting for the computation to finish, and hides the communication time
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from the program execution. The host database load and the FPGA processing are two independent stages so that the total
execution time drops to the maximum of the time to transfer data and the time to perform the computation. From Fig. 9, we
know that Toverhead is associated with the sequence buffer size Sbuffer.
Plea
Para
Ttotal static prefetch ¼ MAXðTfpga;Tdbloading þ Toverhead½Sbuffer�Þ: ð8Þ
Ideally, with the appropriate selection of Sbuffer, Toverhead can be completely eliminated by applying the adaptive scheme.
The optimal performance can be obtained by adaptive data prefetching as shown in Eq. (9).
Ttotal adaptive prefetch ¼ MAXðTfpga;TdbloadingÞ: ð9Þ
Fig. 9 shows the impact of data prefetching operations and the achievable data transfer rate over the non-prefetching
operations and the double buffered prefetching with a static buffer size of 325 MB. Here, we picked the worst case of the
static double buffer size in order to highlight the importance of the adaptive strategy. Especially from a query size of 714
to 119, the bandwidth is increased from 21% to 42% with the adaptive data prefetching over the non-prefetching. Due to
the complexity of dynamic programming, database sequence transfer rate decreases with the longer query. That is, the long
query sequence requires more time to perform computation than the short sequence on the same data set (Fig. 3). The data
prefetching scheme enables the pipelining of the communications such that it not only absorbs the database sequences
transfer time on the host machine, but also absorbs the latency of the result transfers between the FPGA and the host. This
approach greatly improves the bandwidth without upgrading the widely used legacy PCI communication interface, which
usually limits the effectiveness of the reconfigurable computing.

Fig. 10 shows the overall performance comparison in MCUPS (mega cell updates per second). MCUPS is a commonly used
performance comparison measure in computational biology and represents the number of times in a second that an FPGA
coprocessor can update 1,000,000 Smith–Waterman cells (Eqs. (1) and (2)). MCUPS provides a good usability metric for se-
quence database search system implementations.

The performance plot demonstrates a linear growth in processing speed as the input query size increases. The commu-
nication pipeline significantly improves the overall performance and can achieve nearly 4000 MCUPS real performance
depending on the query size. With data prefetching, the query sequence size of 833 could obtain almost the same MCUPS
speed as the query size of 1420 without the prefetching.

6. Summary and future work

As the computing demands of the bioinformatics applications has continued to increase, and various applications from
drug design to forensic DNA analysis come to rely on this technology. Many solutions, especially FPGA-based reconfigurable
computing, to the problem of biological sequence database searches have been studied, but almost all implementations focus
on the processing engine design: FPGA reprogrammable logics. Unfortunately the impact of data transfer between the host
computer and the FPGA coprocessor is sometimes ignored by researchers. Recent technological advances have accelerated
the imbalances between data transfer speed and processor speed. Techniques to reduce communication latencies become
essential for achieving high FPGA utilization. We investigated the possibility of improving the communication efficiency be-
tween the host computer and the FPGA coprocessor for further accelerating the existing database search systems.
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In this research, we implemented a software data prefetching scheme by exploiting the overlap between computation and
communication. Performance is improved when the communication is overlapped with computations performed by the
FPGA coprocessor, because loading the database sequences requires a significant amount of time to accomplish. However,
the communication overhead of the inappropriate size of data buffer may decrease the prefetching performance gains. An
approach that dynamically determines the size of prefetched data has been shown to be very effective for reducing the com-
munication latency with the minimal overhead. The data prefetching design can yield up to 42% improvement in perfor-
mance compared to the non-prefetching implementation.

Our pre-fetching scheme can also be applied to any other PCI-based FPGA co-processing system. This technique can effec-
tively achieve significantly higher levels of FPGA efficiency by reducing the existent processor-to-coprocessor communica-
tion latency and making it useful for enhancing the performance of even those data intensive applications in which the
required bandwidth is high. The performance results indicate that a smaller and cheaper FPGA with the data prefetching
could deliver all of the performance that a bigger and more expensive one will meet. The high bandwidth and low latency
I/O, and high FPGA density would be critical to the performance, but the appropriate communication strategy can be even
more critical.

As a next step, we will apply the data prefetching scheme for a network-based heterogeneous parallel and distributed
biological database sequence search platform. We expect our strategy to be beneficial in reducing the network communica-
tion latency too. The limitation of the current Smith–Waterman implementation on FPGA, such as the length limitations of
query and database sequences, will also be solved via heterogeneous parallel computing.
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