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Abstract

Iris segmentation is one of the crucial steps in build-
ing an iris recognition system since it affects the accu-
racy of the iris matching significantly. This segmenta-
tion should accurately extract the iris region despite the
presence of noises such as varying pupil sizes, shadows,
specular reflections and highlights. Considering these
obstacles, several attempts have been made in robust
iris localization and segmentation. In this paper, we
propose a robust iris localization method that uses an
active contour model and a circular Hough transform.
Experimental results on 100 images from CASIA iris im-
age database show that our method achieves 99% accu-
racy and is about 2.5 times faster than the Daugman’s
in locating the pupillary and the limbic boundaries.

1. Introduction

Biometrics is the science of automated recognition
of persons based on one or multiple physical or be-
havioral characteristics. Among several biometrics, iris
biometrics have gained lots of attention recently be-
cause it is known to be one of the best biometrics [4]
[15]. Also, iris patterns possess a high degree of ran-
domness and uniqueness even between monozygotic
twins and remain constantly stable throughout human’s
life. Additionally, encoding and matching are known to
be reliable and fast [4] [15] [11].

One of the most crucial steps in building an iris secu-
rity system is iris segmentation in the presence of noises
such as varying pupil sizes, shadows, specular reflec-
tions and highlights. The step definitely affects the per-
formance of the iris security system since the iris code is
generated from the iris pattern and the pattern is affected
by iris segmentation. Thus, for a secure iris recogni-
tion system, robust iris segmentation is a prerequisite.
However, two best known algorithms by Daugman and
Wildes [4] [15] along with other algorithms are tested
on their private database, making it hard to compare the
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Figure 1. Iris localization

performance among algorithms. Also, subject coopera-
tion and the good image quality are necessary for both
methods to get the maximum performance [15]. Thus,
there is a growing need for a robust iris recognition sys-
tem that requires little subject cooperation and works
well under varying conditions. In this paper, we pro-
pose a robust iris segmentation algorithm that localizes
the pupillary boundary and the limbic boundary based
on an active contour model and a circular hough trans-
form. One advantage of our method is that it accurately
localizes the pupillary boundary even though the pri-
ori estimate is set inaccurately. Experimental results on
100 randomly chosen iris images from one of the widely
used public iris image database, CASIA version 3, show
that our method outperforms Daugman’s approach.

2. Related Work

The iris segmentation involves the following two
steps: data acquisition and iris segmentation. The data
acquisition step obtains iris images. In this step, infra-
red illumination is widely used for better image qual-
ity. The iris segmentation step localizes an iris region in
the image using boundary detection algorithms. Several
noises are suppressed or removed in this step. There are
many attempts in the area of iris localization and seg-
mentation. The first attempt was made by Daugman
et al. [4] [5] [6] [7] [8] and Wildes et al. [15] [16].
Daugman’s method is widely considered as the best iris
recognition algorithm. It is reported to achieve a false
accept rate (FAR) of one in four million along with a



false reject rate (FRR) of 0. In the image acquisition
step, they used several thousand eye images that are not
publicly available. In the segmentation step, the iris is
modeled as two circular contours and is localized by an
integro-differential operator

max
(r,x0,y0)

∣∣∣∣ ∂∂rGσ(r) ∗
∮
r,x0,y0

I(x, y)

2πr
ds

∣∣∣∣,
where I(x, y) represents the image intensity at loca-
tion (x, y), Gσ(r) is a smoothing function with a Gaus-
sian scale σ, and ∗ denotes convolution. The operator
searches for the maximum in the blurred partial deriva-
tives in terms of increasing radius r of the normalized
contour integral of I(x, y) along a circular arc ds of ra-
dius r and center coordinates (x0, y0). Also, the eye-
lids are models as parabolic arcs. The Wildes’ system
also claims that it achieves a 100% verification accu-
racy when tested on 600 iris images. As in Daugman’s
case, the iris images used in Wildes’ system are not
publicly available. In the segmentation step, they used
the gradient-based Hough transform to form two circu-
lar boundaries of an iris. The eyelids are modeled as
parabolic arcs. Some researchers have tested their iris
localization algorithms using the public image database.
Ma et al. [11] developed algorithms and tested them on
CASIA version 1 data set that contains manually edited
pupils. They reported a classification rate of 99.43%
along with the FAR of 0.001% and the FRR of 1.29%.
In the segmentation step, the iris images are projected
to the vertical and horizontal directions in order to es-
timated the center of the pupil. Based on this infor-
mation, the pupillary boundary (between the pupil and
the iris) and the limbic boundary (between the iris and
sclera) are extracted. Chin et al. [3] reported 100%
accuracy on CASIA version 1 data set. In the segmen-
tation step, they employed an edge map generated from
a Canny edge detector. Then, a circular Hough trans-
form is used to obtain iris boundaries. Pan et al. [13]
proposed an iris localization algorithm based on multi-
resolution analysis and curve fitting. They test their al-
gorithm using CASIA version 2 database, claiming to
work better than both the Daugman’s algorithm and the
Wildes’ algorithm in terms of accuracy (i.e., the failure
enrollment rate and the equal error rate) and efficiency
(i.e., localization time). He et al. [9] [10] proposed a
localization algorithm using AdaBoost and the mechan-
ics of Hooke’s law. They tested the method on CASIA
version 3 database, achieving 99.6% accuracy. As we
reviewed, most of iris segmentation algorithms are eval-
uated in terms of detection rate and speed or accuracy
and efficiency.

Iris SegmentationEye Localization

Noise Removal

Figure 2. Overview of our method

3. Method

3.1. Problem Definition

In this paper, the iris region is localized and seg-
mented from the image database that is publicly avail-
able under the presence of noise. Fig. 1 briefly shows
this process. The image on the left is an ROI that cuts
off the original image. The one on the right in Fig. 1
contains two circles that represent a pupillary boundary
and a limbic boundary along with their respective radii
in pixel.

3.2. Overview of Our Method

Our segmentation algorithm broadly consists of the
following three stages as in Fig. 2: eye localization,
noise removal and iris segmentation. The eye localiza-
tion estimates the center of the pupil as a circle. The
noise removal reduces the effects of noise by Gaus-
sian blurring and morphology-based region filling. The
iris segmentation finds the center coordinate of two cir-
cles and their associated radii, representing the pupil-
lary boundary and the limbic boundary respectively.

The algorithm runs in the following sequence. Once
an ROI having the pupil and the iris of an eye is selected,
noises are suppressed by Gaussian blurring. Then the
image is binarized, histograms are generated, and the
center of the pupil is estimated based on the histograms.
Since the estimated center of the pupil in the ROI can
be erroneous as in Fig. 4, the iris segmentation based on
an active contour model is performed to overcome the
false initial estimate. Next the noisy holes in segmenta-
tion result are removed by a morphology-based region
filling. After that the pupillary boundary is computed by
applying the Hough transform to a Canny edge detector.
Once the pupillary boundary is localized, it is removed
forcibly. The Hough transform is carried out once again
for localizing the limbic boundary. Segmentation by the
active contour model and the circular Hough transform
makes our method robust to initialization errors caused
by noises.

2



3.3. Eye Localization

In this step, an ROI is computed by selecting the
eye image that contains the pupil and the iris. An
ROI should include as much pupil and iris regions pos-
sible while minimally having boundary skin regions.
This process reduces the computational burden of fu-
ture image processing since the size of the image gets
smaller without degrading the performance of segmen-
tation. Empirically, two thirds of the center regions of
the given image contain the pupil and the iris.

Then the iris image is binarized according to the
thresholding method defined as follows:

Iout(x, y) =

{
1 if Iin(x, y) ≥ τ
0 otherwise , (1)

where Iin is an original image before thresholding and
Iout is the resulting image after thresholding, Empiri-
cally, a threshold τ of 0.2 is used. After binarization, the
histograms for both directions are generated by project-
ing the intensity of the image to the horizontal direction
and the vertical direction as in Fig. 3. Then the cen-
ter coordinate of the pupillary boundary is estimated by
the following equations since the pixel intensity of the
pupil is lowest across all iris images:

x0 = argmin
x

(∑
y I(x, y)

)
,

y0 = argmin
y

(∑
x I(x, y)

)
,

(2)

where x0, y0 are the estimated center coordinates of the
pupil in the original image I(x, y). The estimated cen-
ter of the pupil is used in the task of pupil localiza-
tion based on a Chan-Vese active contour model. The
Chan-Vese active contour algorithm solves a subcase of
the segmentation problem formulated by Mumford and
Shah [2].

Specifically, the problem is described as follows:
given an image u0, find a partition Ωi of Ω and an
optimal piecewise smooth approximation u of u0 such
that u smoothly evolves within each Ωi and across the
boundaries of Ωi. To solve this problem, Mumford and
Shah [12] proposed the following minimization prob-
lem:

inf
C

{
FMS(u,C) =

∫
Ω
(u− u0)

2dxdy

+µ
∫
Ω\C |∇u|2dxdy + ν|C|

} , (3)

If the segmented image u is restricted to piecewise con-
stant function inside each connected component Ωi,
then the problem becomes the minimal partitioning
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Figure 3. Histograms of a binarized ROI

problem and its function is given by

FMS(u,C) =
∑
i

∫
Ω

(u− ci)
2dxdy + ν|C|, (4)

According to Chan and Vese [2], given the curve
C = ∂ω where ω ∈ Ω, an open subset and two un-
known constants c1 and c2 as well as Ω1 = ω and
Ω2 = Ω − ω, the minimum partitioning problem be-
comes the problem of minimizing the energy functional
with respect to c1, c2, and C in accordance with:

F (c1, c2, C) =
∫
Ω1=ω

(u0(x, y)− c1)
2dxdy

+
∫
Ω2=Ω−ω

(u0(x, y)− c2)
2dxdy + ν|C| , (5)

In level set formulation, C becomes {(x, y)|ϕ(x, y) =
0}. Thus, the energy functional becomes

F (c1, c2, C) =
∫
Ω
(u0(x, y)− c1)

2H(ϕ)dxdy
+
∫
Ω
(u0(x, y)− c2)

2(1−H(ϕ))dxdy
+ν

∫
Ω
|∇H(ϕ)|

, (6)

where H(·) is a Heaviside function and u0(x, y) is the
given image. To get the minimum of F , we need to take
the derivatives of F and set them to 0.

c1(ϕ) =

∫
Ω
u0(x, y)H(ϕ(t, x, y))dxdy∫

Ω
H(ϕ(t, x, y))dxdy

, (7)

c2(ϕ) =

∫
Ω
u0(x, y)(1−H(ϕ(t, x, y)))dxdy∫

Ω
(1−H(ϕ(t, x, y)))dxdy

, (8)

∂ϕ

∂t
= δ(ϕ)

(
νdiv

(
∇ϕ

|∇ϕ|

)
−(u0−c1)

2−(u0−c2)
2

)
,

(9)
where δ(·) is the Dirac function.

The active contour model allows to localize the
pupillary boundary in spite of a bad estimate of the pupil
center. Since the center coordinate of the pupil is esti-
mated by the intensity-based histogram, the initial his-
togram is not noise-free. Actually the distribution of the
histogram is affected by the intensity of the eyelids and
eyelashes as well as the highlights at the time the image
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is taken. This error of the center coordinates is corrected
by the active contour model and a circular Hough trans-
form in our method. Fig. 4 compares two localization
results of the pupillary boundary based on an incorrect
prior (top row) and on a correct prior (bottom row). As-
terisks (*) in the images represent the estimated cen-
ters. If the center is initially estimated incorrectly, the
segmentation result from the active contour model con-
tains more eyelid regions as in the middle image of the
top row in Fig. 4.

At the last step, the inner pupil boundary and the
outer pupillary boundary are detected on the basis of
the circular Hough transform [14]. The parameters of a
circle is modeled as the following circle equation:

(x− x0)
2 + (y − y0)

2 = r2, (10)

where (x0, y0, r) represents a circle to be found with the
radius r, and the center coordinates (x0, y0). Whether
or not the priori center coordinate of the pupil is posi-
tioned within the pupil, the segmentation result at least
contains the pupillary boundary and the circular Hough
transform finds the correct center of the pupil. We ex-
pect the model can handle various characteristics of iris
patterns in a natural setting.

3.4. Noise Removal

The effect of noises are suppressed twofold. The first
attempt is done by region filling where specular high-
lights generate white holes within the pupil. In addition,
the influence of noise are suppressed by a Gaussian blur
before finding the edges of the image. The following
Gaussian filter, centered at (x0, y0) with a standard de-
viation σ, is used for this purpose.

G(x, y) =
1

2πσ2
exp

[
− (x− x0)

2 + (y − y0)
2

2σ2

]
,

(11)

3.5. Iris Segmentation

After localizing the pupil, pixels within the inner
circle are marked as background in order to find the
outer circle known as the limbic boundary. The cir-
cular Hough transform is once again used to estimate
the center coordinate and the radius of the circle. Since
two boundaries are modeled as circles independently,
we apply a rule to two circles that the pupillary bound-
ary circle should be inside the limbic boundary circle.
If this condition is not met, an extra round of Hough
transform is performed. The final segmentation results
are shown in Fig. 5.
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Figure 4. Pupil Localization results based
on an incorrect prior (top row) and on a
correct prior (bottom row)

Figure 5. Iris localization results

4. Experiments

4.1. Image Database and Hardware

For the testing of our algorithms we used CASIA iris
image database version 3 (The Institute of Automation,
Chinese Academy of Sciences) [1]. The CASIA con-
tains a total of 22,035 iris images from more than 700
subjects. For our experiments, images in the IrisV3-
Lamp subset are used since they contain nonlinear de-
formations and noisy characteristics such as eyelash oc-
clusion. The experiments were performed in Matlab 7
environment on a PC with Intel Xeon CPU at 2GHz
speed and with 3GB physical memory.

4.2. Discussion

The segmentation results are compared against the
Daugman’s method, known to be the best iris recogni-
tion algorithm, as in Table 1. For comparison purpose,
Daugman’s algorithm is also implemented in Matlab.
According to the experimental results on 100 images,
the proposed method correctly segment the pupillary
and limbic boundaries with 99% accuracy while Daug-
man’s algorithm shows 96% accuracy. Furthermore, it
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Method Accuracy Mean Elapsed Time
Daugman’s Method 96% 569 ms
Proposed Method 99% 232 ms

Table 1. Comparison of performance

runs almost 2.5 times faster. The performance of the iris
segmentation is affected by several factors: a threshold
for binarization, the number of iterations for the evolv-
ing contour, and blurring parameters.

5. Conclusions and Future Work

In this paper, we proposed a robust iris segmentation
algorithm that localizes the pupillary boundary and the
limbic boundary in the presence of noise. For finding
edges of the iris, a region-based active contour model
along with a Canny edge detector is used. Noises are
reduced by a Gaussian blur and region filling. Exper-
imental results based on 100 images from the public
iris image database, CASIA version 3, show that our
method achieves an accuracy of 99%. Compared to
Daugman’s method achieving 96%, it also runs about
2.5 times faster. In the future, we plan to test our algo-
rithm on multiple public iris image databases since CA-
SIA iris database consists mostly of images from Chi-
nese subjects. In addition, segmentation results will be
compared against other algorithms.
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