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ABSTRACT
Lower back pain is the second most common neurological ail-
ment in the United States after headache with over 12 mil-
lion Americans having intervertebral disc disease (IDD). An
emerging need for a Computer-Aided Diagnosis (CAD) sys-
tem is due to the increasing number of patients (about 8%)
that is not correlated with an increase in radiologists (about
1%). Thus, utilization of radiologists’ time by having CAD
systems is necessary to maintain the quality of the patient
service. Furthermore, inter- and intra-radiologists variability
in decision-making especially between novice and experienced
teams urge the necessity of CAD systems that aid in pre-
senting radiologists with reproducible diagnosis results. The
design of a clinical CAD system requires active collaboration
between computer scientists, engineers, and health profession-
als. In this paper, we present our efforts for designing a clini-
cal CAD system for lumbar area. We closely work to integrate
all our proposed machine-learning CAD methods within the
clinical routine of our collaborating radiologist. We present
the work flow of our system and its minimal interaction with
the PACS system.
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1. INTRODUCTION
Computer-Aided Diagnosis (CAD) research has been gaining
substantial attention from the medical imaging community.
There is a large corpus CAD research papers for many organs
in the body using various possible medical imaging modali-
ties. A few CAD systems have been utilized within the clinical
work flow as both experimental setting and commercial prod-
ucts. Major focus of these CAD systems are on life threat-
ening diseases such as cancers [12, 13, 14] and well-funded
projects such as nodule-detection from lungs CT images [16].

CAD has become an integral part of the clinical routine for
screening and detection of several types of abnormalities in
medical imaging. Moreover, the increasing demand on di-
agnosis from radiology scans has been attracting many re-
searchers to integrate CAD into radiologists work flow to ef-
ficiently utilize radiologists’ time and provide computerized
algorithms for diagnosis and clinical report generation [9].
However, the lack of integration of CAD with the PACS (Pic-
ture archiving and communication system) has been one of
the biggest barriers for utilizing the many CAD research ef-
forts [10]. Furthermore, the lack of a clinical standard for
specific abnormality across various clinics and hospitals add
to the burden of generalizing CAD systems and integrating
them within the clinical work flow.

Fig. 2 shows the typical work flow of the clinical setting. Ini-
tially, the technician administers MRI acquisition for all sagit-
tal, axial, and rotational views. The full MRI is then saved
in a central database along with patient information record.
Then using the DICOM viewer, the radiologist visualizes the
images and diagnoses the case which is stored back in the
central database. The diagnosis interface automatically gen-
erates the diagnosis report based on the manual radiologist
input in a standard form.

Our main research focus is on CAD for lumbar area that we
call our collective system: LumbarCAD. There has been var-
ious research efforts that target the lumbar spine area includ-
ing ours [1, 2, 6, 5, 3]. However, the integration of these efforts
within the clinical work flow requires special attention and is



Figure 1: Clinical work flow of lumbar diagnosis. LumbarCAD main components in dashed boxes.

Figure 2: Clinical work flow of lumbar diagnosis.

highly dependent on the clinical setting that greatly varies
from one clinic to another. The variations include the PACS
system access, imaging modalities, and even the acquisition
protocols and resulting images. In this paper, we present our
LumbarCAD system that we integrate within the work flow
of our collaborating radiology center. We describe the clin-
ical setting and the data acquisition protocols and how our
LumbarCAD system integrates seamlessly.

2. PROPOSED LUMBAR CAD SYSTEM
The integration of our collective CAD system within the work
flow of the clinical routine faces many challenges starting from
the variability in platforms, the access to PACS, the access
to the viewer, and, more importantly, the convenience of the
radiologist so that we don not change the clinical workflow.
Our LumbarCAD system has four standalone components to
the clinical routine highlighted by the dashed boxes in Fig. 1.

2.1 Safe CAD Box: Automatic CAD System
This module represents a black-box processing unit, that we
provide. It interacts with the PACS via SQL query protocol
to acquire full MRI case (or a batch of cases) and save back the
case (after inserting our diagnosis within the DICOM header)
to the PACS. This processing unit contains the research part
of the automated labeling and diagnosis of lumbar spine. We
save the resulting labeling and diagnosis information in a data
structure; then we encrypt the data structure and store the

resulting information in specific attributes within the header
file of specific protocols within the MRI case. We duplicate
storage of this information in multiple headers for fault tol-
erance purposes. This ”Safe CAD Box” stays on site to elim-
inate the risk of any patient information leak and preserve
their privacy. The encryption key is unique for each of these
processing boxes. In the current status of our system, we inte-
grated our labeling [1], herniation [5, 6, 8], and desiccation [3]
diagnosis.

2.2 Interactive Diagnosis Report
This module provides an interactive automated diagnosis re-
port. It allows the radiologist to fetch patient information
and presents the radiologist with an interactive report show-
ing automated diagnosis results with confidence for each de-
cision. It allows the radiologist to invoke the DICOM viewer
to manually verify the results and edit the diagnosis manu-
ally. This interface contains the decryption key to decrypt
the automated diagnosis information.

2.3 Diagnosis Log System
This system keeps track of the cases along with the automated
and manual decisions. This is useful for building the training
data for future enhancements of our automatic CAD system.
This module prepares the necessary data to re-train the auto-
matic supervised machine learning algorithms. Ground truth
becomes the manual decision of the radiologist for every case.
Ultimately, it will enhance the automatic decision and adapt
it to the radiologist decisions.

2.4 Billing System
This system keeps track of the usage of the automated deci-
sion. We have two billing models: pay-per-use and license-
based. Pay-per-use enters a log for the billing system when-
ever the decryption step is performed and it is triggered every
time the radiologist wants to see the automated results. On
the other hand, the license-based billing model allows a cer-
tain time frame of usage.



Figure 3: Sample slice from the six axial slices for the

L5-S1 disc.

3. CLINICAL DATA
Clinical MRI data for lumbar spine diagnosis varies across
various clinics and hospitals. However, there are some com-
mon acquisition protocols. Specifically, for our LumbarCAD
system, we customize it to fit the available clinical MRI. Ini-
tially, the technician acquires a survey view which is a lower
quality quick scan of the lower spine including sagittal and
coronal views. This step helps the technician determine the
positioning of the patient and decide the acquisition proto-
cols.

Then the technician acquires sagittal views consisting of twelve
to fourteen slices for both T1- and T2-weighted protocols.
Then she manually plans for the axial views where she draws
a bounding box around each of the discs starting from the
L5-S1 up to L1-L2 or T12-L1 depending on the initial judg-
ment of the case and whether abnormalities might be noticed
on the higher discs. The acquisition protocols produces six
axial slides per disc in the orientation specified by the tech-
nician. This guarantees that the axial slices are parallel, to
the best that a technician can have, with the major axis of
the disc. Axial views are T1-weighted MRI. Finally, the tech-
nician acquires a lateral rotational back view for the lumbar
spine using Myelo protocol. This Myelo protocol shows only
the thecal sac suppressing all other structures in that area.
During this whole time, the patient is asked not to move at
all and if any movement in the position happens, the entire
process is repeated. This guarantees the registration of all
views on each other. It takes approximately 24 minutes for
the whole acquisition for one case. Fig. 3 shows an example
of an axial slice from the six axial slices for the L5-S1 disc.

Our dataset that we have been using exceeds one thousand
cases that has been acquired over the last six years (2006 -
2011) on both 1.5 and 3 Tesla Philips Intera MRI scanners.
Over 90% of the cases are cases on the 3 Tesla machine. Pa-
tient ages varies between 17 to 83 years old.

4. TECHNICAL VIEW
Within the automatic CAD system, there are two main steps
to automate: labeling and diagnosis. Labeling includes de-
tection of discs and naming them based on the anatomical
convention. Then diagnosis tasks are executed serially to ob-
tain the automated diagnosis result for each abnormality. Our
area of interest includes the discs from L5-S1 up to T12-L1.

4.1 Localization and Labeling

We refer to the labeling problem as naming each disc level
upon the anatomical naming convention for discs from L5-
S1 up to T12-L1. On the other hand, localization refers to
having a point within the boundary of each disc. This point
is useful for producing a bounding box around each disc in
preparation for the CAD methods for diagnosis.

We perform labeling of the discs on the sagittal view uti-
lizing our two-level probabilistic model proposed in [1]. We
marginalize over the possible disc-labellings D since these are
auxiliary variables giving the following optimization function:

D∗ = argmax
D

∑

L

P (L,D|I)

= argmax
D

∑

L

P (I|D,L)P (D,L)

P (I)

= argmax
D

∑

L

P (I|L)P (L|D)P (D) (1)

where the second equality follows from the multi-level nature
of the model (the disc variables are assumed independent of
the intensities) and the P (I) in the denominator is indepen-
dent of the maximization over D and can be ignored. Note
the summation is over a very large set of possible assignments
(2|Λ|). We model it as a Gibbs distribution:

P (I|L) =
1

Z[I|L]
exp

[

− β1

∑

s∈Λ

UI(ls, I(s))

]

← intensity

(2)

P (L|D) =
1

Z[L|D]
exp

[

− β2

∑

s∈Λ

UD(ls,D)

]

← spatial

(3)

P (D) =
1

Z[D]
exp

[

− β3

∑

di∈D

UL(di) ← location

− β4

∑

(i∼j)

VD(di, dj)

]

← context

(4)

where s is a pixel on the lattice Λ (s ∈ Λ), I(s) is the inten-
sity level of the pixel s, βk ≥ 0, k = {1, . . . , 4} are tunable
parameters, the (· ∼ ·) notation denotes the set of neighbor-
ing elements on the disc chain. Z[I|L], Z[L|D], and Z[D] are
the partition functions that make the normalizing constant for
the Gibbs distribution for each model, respectively. The po-
tentials UI(ls, I(s)) and UD(ls,D) describe the low-level disc
intensity and the spatial relationship at the disc level, respec-
tively, while the potentials UL(di) and VD(di, dj) describe the
high-level object location and context, respectively. Both i
and j are indexes for the six discs centers xy-coordinates. All
four potentials are discussed in detail in the next two subsec-
tions.

The first level, P (I|L)P (L|D), captures the probability of a
particular labeling given both the underlying image and the
overlying disc variables. Each potential function models a
different aspect of the local pixel-level information (the aspect
is mentioned on the right of each equation-line). The second
level P (D) models the high-level information about the disc
locations and context.



Figure 4: This figure shows the extraction of a rough bounding box for each disc in the sagittal mid-slice

using information from the corresponding axial slices and subsequently giving a tighter bounding box in the

anterior-posterior direction.

To prepare for the diagnosis step, we produce a bounding
box surrounding each disc. To obtain such bounding boxes
we utilize the axial views geometry as follows:

• Extraction of rough bounding box: In this step we use
the lower and upper intersecting line of the mid-sagittal.

• Tightening the bounding box: the previous step delim-
its the disc from top-bottom , but not in the anterior-
posterior direction. We detect the high-intensity spinal
cord on the right-hand side of each disc in R1 and hence
get a right side cut-off. For the left side, we empirically
set 2/9th of the width of R1 to get the cut-off, finally
resulting in a better bounding box for each disc as illus-
trated in Fig. 4.

Figure 5: LumbarCAD results projected on a Mid-

Sagittal clinical MRI.

4.2 Automated Diagnosis

We have been developing the CAD system for diagnosis of
various lumbar spine abnormalities from MRI [7, 15, 11]. Un-
til now we have incorporated two major abnormalities in the
lumbar discs, namely: disc herniation [7, 11] and desicca-
tion [3]. We proposed many other CAD efforts but they are
still under thorough testing to meet the clinical accuracy be-
fore being incorporated in LumbarCAD system.

For herniation diagnosis, we presented a fully automated her-
niation detection system [8] using GVF snake for an initial
disc contour and a Bayesian classifier. Initially, we apply a
range filter on the images to produce an edge map from the
sagittal views [7]. Both the point inside the disc and the edge
map (initial contour) are used to initiate the GVF-snake from
within the disc. This guarantees that the final disc segmenta-
tion lies within the disc and thus a successful segmentation.
Once the segmentation is performed, we use a build a binary
Bayesian classifier:

n∗ = argmax
n

P (n|S) (5)

where n is a binary random variable stating whether it is
a herniated or a normal disc, S incorporates shape features
extracted from GVF-snake final contour. We utilize a Gibbs
distribution with two shape potentials:

P (n|S) =
1

Z[n]
exp−[α1US1+α2US2] (6)

where S represents the shape features extracted from the
GVF-snake, Z[n] is the normalization factor of the Gibbs dis-
tribution, α1 and α2 are tuning parameters. We define two
shape potentials: 1) US1 models the major axis of the GVF-
snake final contour . 2) US2 models the minor axis of the
GVF-snake final contour. Detailed are outlined in [8]



For Desiccation, we utilize our algorithm that uses a prob-
abilistic model that incorporates intervertebral disc appear-
ance and contextual information for automating the diagnosis
of lumbar disc desiccation [4]. We capture desiccation (loss
of disc water contents) ni with a Gibbs model:

P (ni|di, σI(di)) =
1

Z[ni]
exp−Eni

(di,σI(di)
) (7)

where ni is a binary random variable for desiccation of the
disc i and ni ∈ N = {ni : 1 ≤ i ≤ 6}; di is the location of the
disc i and di ∈ D = {di : 1 ≤ i ≤ 6}; σdi is a neighborhood of
pixels around the disc location di. Eni

(di, σI(di)) is the energy
function identified by disc location di and the intensity of a
pixel neighborhood σI(di).

We use two potentials that represent the appearance I and
the context in intensity between discs (i ∼ j). Our energy
function is:

Eni
(di, σI(di)) =

[

β1

∑

d∈D

UI(di, σI(di))

+ β2

∑

(i∼j)

VD(σ̃I(di), σ̃I(dj );ni, nj)

]

(8)

where β1 and β2 are the model parameters that control the
effect of appearance and context on the inference. σ̃I(di) is the
median intensity level for the disc pixel neighborhood σI(di).
UI is the appearance potential which is a model of disc in-
tensity neighborhood surrounding each disc di ∈ D and the
intensity of the pixel neighborhood σI(di) of that location. VD

is the context potential which we model as a Bayesian model-
aware affinity that handles context D between neighboring
discs (i ∼ j). The general framework for our methods utilizes
various intra- and inter-discs features. We also approach the
diagnosis tasks via typical machine learning methods includ-
ingNeural Networks, SVM, and others [11].

5. CONCLUSION
We presented an overview of our LumbarCAD system and our
efforts in integration of the CAD system within PACS. Our
LumbarCAD system consists of four standalone modules that
have limited interaction with PACS only with minimal inter-
action. The four components are: The Safe CAD Box, inter-
active diagnosis report, diagnosis log system, and the billing
system. The Safe CAD Box implements the combination of
our published research efforts in lumbar discs labeling, de-
tection, and diagnosis. We presented a technical overview of
the methods for both herniation and desiccation. The inter-
active diagnosis report system comprises an interface for the
radiologist that interacts with the PACS through SQL query,
presents the radiologist with the automated diagnosis report,
allows him to manually change any result by invoking the DI-
COM viewer, and then print out the final report. The third
component keeps track of each case along with the automatic
and manual diagnosis. This will incrementally collect training
data for our CAD algorithms for future enhancements. The
last component is for billing purposes where we provide either
a pay-per-view model or a license-based billing model. Our

LumbarCAD is now fully functional within a testing environ-
ment.
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