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ABSTRACT

The spinal cord is a vital organ that serves as the only com-
munication link between the brain and the various parts of
the body. It is vulnerable to traumatic spinal cord injury and
various diseases such as tumors, infections, inflammatory dis-
eases and degenerative diseases. The exact segmentation and
localization of the spinal cord are essential to effective clin-
ical management of such conditions. In recent years, due to
the advances in imaging technology, the structure of internal
organs and tissues can be captured accurately, and various ab-
normalities are diagnosed based on scanned images. In this
paper, we present an unsupervised segmentation method that
automatically extracts the spinal canal in the sagittal plane of
magnetic resonance (MR) images. This segmentation method
based on a novel saliency-driven attention model and a stan-
dard active contour model requires no human intervention and
no training. Experiments based on 60 patients’ data show that
this procedure performs segmentation robustly, achieving the
Dice’s similarity index of 0.71 between the segmentation by
our model and reference segmentation, as compared to the
Dice’s similarity index of 0.90 between two observers.

Index Terms— spinal canal, segmentation, saliency map,
active contour, level set

1. INTRODUCTION

The spinal cord is a vital structure of the central nervous sys-
tem that relays messages back and forth between the brain
and the body. Thus, damage to the spinal cord can result in
loss of sensation and loss of the ability to voluntarily control
muscles, sometimes leading to paralysis. It is also of great
clinical importance since it can develop traumatic spinal cord
injury and various diseases such as tumors, infections, in-
flammatory diseases and degenerative diseases. As a result,
the exact segmentation and localization of the spinal cord are
considered as a prerequisite to understanding the conditions
of it. Moreover, the quantification based on the segmenta-
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tion of the spinal cord helps analyze and diagnose many cord-
related diseases. Recently, due to the advances in imaging
technology that can capture the structure of internal organs
and tissues with high precision, a lot of techniques have been
proposed and clinically used in the diagnosis of spine-related
diseases based on computed tomography (CT) and magnetic
resonance imaging (MRI). In the sagittal view of the lumbar
MRI, the spinal cord terminates around the level L2. Below
the spinal cord, the thecal sac, the protective insulating mem-
brane that wraps around the spinal cord and cauda equina, is
housed. These two structures are relatively bright compared
to vertebrae and discs in MR images and constitute the central
spinal canal. Clinically, T2-weighted sagittal images are more
frequently examined in diagnosing conditions related to the
spinal cord since they give better contrast than T1-weighted
ones, allowing to capture boundaries of soft tissues and bones
more accurately as in Figure 1.

Fig. 1. Examples of T1-
weighted (left) and T2-weighted
(right) sagittal images of the
same patient

The spinal cord seg-
mentation is a hard
problem since its mor-
phology is usually di-
verse in different re-
gions: cervical, tho-
racic, lumbar and sacral.
Inhomogeneity in in-
tensity due to varying
amount of white matter
and gray matter makes
the segmentation task
much harder. In spite of those challenges, semi-automatic
or fully-automatic segmentation is known to be less time-
consuming, more accurate and less sensitive to intra- and
inter-observer variability than manual segmentation [1], [2],
[3]. Accordingly there have been many attempts made in the
semi-automatic segmentation of the spinal cord.

1.1. RELATED WORK

Nieniewski and Seneels [4] proposed a morphological method
for segmenting the spinal cord from MR images. The method



was tested on images from cross-sections of the spinal cord.
Archip et al. [5] proposed a top-down knowledge-based tech-
nique that identified the spinal cord in the CT images. The
technique was flexible enough to handle a large amount of
inter-patient variation but required a high computational cost.
Schmit and Cole [6] employed three-dimensional seeded re-
gion growing technique for the segmentation of the spinal
cord. However, the authors did not give any validation anal-
ysis on the segmented results. Uitert et al. [2] presented
a semi-automatic process for segmenting the spinal cord
from MRI. However, they did not provide any validation
on the computed quantification. Nyúl et al. [3] proposed
an semi-automatic segmentation method that extracted the
spinal cord/canal from CT images. With an initial seed point
set by a human, this method was validated by comparing
with gold standards, i.e., manual segmentation. McIntosh
and Hamarneh [7] proposed a semi-automatic spinal cord
segmentation and analysis technique from MRI with high-
level control mechanisms. The model was quantitatively
validated and compared against manual, and the Itk-SNAP
method. However, it had very high computational cost and
user intervention was required. Horsfield et al. [8] proposed
a semi-automatic method for the segmentation of the spinal
cord from MRI. The method utilizing active surface model
was applied to assessing multiple sclerosis. Validation was
done by evaluating the intra-observer reproducibilities.

The above-mentioned methods are either semi-automatic
or not validated in terms of performance metrics. In this pa-
per, we present a novel fully-automatic segmentation method
of the spinal cord in T2-weighted sagittal images of lumbar
spine that combines an attention model with the standard ac-
tive contour model. Since T2-weighted sagittal images are
frequently evaluated in the preliminary stage of diagnosing
lumbar spinal disorders in the clinical settings, we tested our
segmentation method on images in that protocol. As [3] men-
tioned that the spinal cord can be only detected with some
prior knowledge, we use the saliency map as prior knowledge
and compare the segmentation results with reference segmen-
tation in terms of a similarity index, Dice’s coefficient.

1.2. Active Contour Model

Deformable image segmentation has been widely investigated
since it allows for variability of object structures indexed by
time or by cross-section location. It may also serve as a pre-
processing step to image analysis and understanding. Among
a variety of deformable contour models, active contours (or
snakes) are widely adopted and applied to many problems
such as edge detection, object classification, and motion
tracking since they can reduce human intervention in the task
of segmentation [9]. A snake approximates the boundary of
an object through the evolution of a curve by minimizing a
selected energy functional. However, it has some disadvan-
tages. One of them is that the initial contour must be specified
before the curve evolution can begin, and the resulting bound-

ary is dependent on this selection. In addition, the evolving
snake contour is sensitive to noise.

The first active contour model was proposed by Kass et
al. [9] and is defined as C(s) := (x(s), y(s))

>
: R2 → Ω

where x(s), y(s) are x, y-coordinates along the contour
and s ∈ [0, 1]. Plus Ω represent the entire domain of
an image I(x, y). Here the energy functional F (C) to be
minimized can be defined on the contour C as follows:

F (C) :=
∫ 1

0

(
Eint + Eext

)
ds, where Eint is the inter-

nal spline energy function term, and Eext is external energy
function term, respectively. Given the set of parameters, a so-
lution to the snake problem finds the contour C that minimizes
the total energy functional. The internal energy function de-
termines the smoothness of the contour and is usually defined

as Eint := α

∣∣∣∣dCds ∣∣∣∣2 + β

∣∣∣∣d2Cds2 ∣∣∣∣2, where α and β specify the

elasticity and stiffness of the contour, respectively. The ex-
ternal energy term Eext determines the constraints of contour
evolution depending on the image I(x, y) and is defined
as Eext :=

∫ 1

0
Eimg(C(s))ds, where Eimg(x, y) denotes a

scalar function defined on the image plane. Thus, the local
minima of Eimg attract the snakes to boundaries. Given the
set of weights α, β, and λ, a solution to the snake problem
finds the contour C that minimizes the total energy functional.

The rest of the paper is organized as follows. In Section 2,
our attention model and the level set method are introduced.
Experimental results and discussion are given in Section 3
and Section 4, respectively. Section 5 concludes this paper
and states future work.

2. PROPOSED METHOD

In this section, we study our models for spinal cord segmen-
tation. Our method is composed of the linking of two models,
the bottom-up attention model and the active contour model,
followed by a morphological process that removes noise-like
small blobs. The attention model is based on linear filtering
and the superposition of filtered components. The active con-
tour model is based on level sets. In the postprocessing stage,
a morphological analysis of blobs is conducted based on the
size of each blob.

Since intensities of the pixels that constitute the spinal
canal tend to be high compared with those of nearby bony
structures, we attend to bright regions using the bottom-up
approach. The attention model is then fused into the active
contour model, providing an initial contour that is required
for contour evolution.

2.1. Attention Model

The attention model is inspired by the structure and the func-
tionality of the primary visual cortex. Many computational
models of visual attention have been published in terms of
bottom-up, top-down or hybrid approaches. The top-down



mechanism usually simulates our long-term cognitive pro-
cess while the bottom-up mechanism attends to specific visual
cues.

Since the simple cells in the primary visual cortex are sen-
sitive to some localized signal orientation and frequencies, we
model them using a Gabor filter bank based on the following
formula as discussed in [10].

g(x, y, f0, θi, σx, σy) =
1

σxσyπ
· e
−
(
x′2
σ2x

+ y′2

σ2y

)
· e(2π·i·f0·x′),

(1)
where x, y denote the center coordinates of the filter, f0 is
the central frequency, θi determines the orientation of the fil-
ter, and x′ = x · cosθi + y · sinθi and y′ = −x · sinθi +
y · cosθi, respectively. In addition, σx and σy specify the
width of the Gabor filter bank in terms of horizontal and ver-
tical directions. We set both σx and σy to be 1 for compu-
tational simplicity. For the numerical studies to follow, we
select 3 central frequency bands f0 = {0.0625, 0.125, 0.25}
and 8 orientations θi = {π8 ,

π
4 ,

3π
8 ,

π
2 ,

5π
8 ,

3π
4 ,

7π
8 , π}. Ga-

bor filter banks of different orientations with a central fre-
quency of 0.25 are shown in Figure 2. The filtered responses
S1, . . . , S8,M1, . . . ,M8, L1, . . . , L8 are computed by con-
volving the image with a Gabor filter of different frequencies
as g(·) ∗ I where g(·) is a Gabor filter, I is an image, and ∗ is
a convolution operator.

Fig. 2. An example of Gabor fil-
ters with a large frequency and
different orientations

Then the interac-
tions between simple
cells are modeled by a
weighted bipolar linear
combination of simple
cells. These process
represents excitatory
and inhibitory connec-
tions between simple
cells. For our model, the
filtered responses with
f0 = 0.25 are labeled
L1 through L8 in the
order of increasing angles. Similarly, the responses with
f0 = 0.125 are labeled from M1 through M8 and the filter
outputs with f0 = 0.0625 from S1 through S8. The interac-
tion, Rj , is then formulated as follows:

Rj = Mj+1 −
1

2
(Mj +Mj+2) +

1

2
(Sj+1 + Lj+1) . (2)

The filtered responses become excitatory or inhibitory de-
pending on the responses of neighboring filters. That is, if the
neighboring responses are in the same direction to the current
response, they are fortified. On the contrary, if the neigh-
boring responses are orthogonal to the current response, they
are suppressed as seen in Figure 3. Finally, the saliency map
is generated by the normalized sum of the interaction maps:
S =

∑
|Rj |

max{
∑
|Rj |} where j ∈ {1, 2, 3, 4, 5, 6}. In this way, the

salient locations are chosen and those regions are used as the
contextual information for the segmentation model.

Fig. 3. Interactions between filtered responses

2.2. Level Set Method

Unlike classic snakes that only detect one boundary at one
time, the level set methods allow us to find multiple bound-
aries simultaneously [11]. The Chan-Vese active contour
algorithm solves a special case of the segmentation problem
formulated by Mumford and Shah [12]. Specifically, the
problem is described as follows: given an image u0, find a
partition Ωi of Ω and an optimal piecewise smooth approxi-
mation u of u0 such that u smoothly evolves within each Ωi
and across the boundaries of Ωi.

To solve this problem, Mumford and Shah [12] proposed
the following minimization problem:

inf
C

{
FMS(u, C)

=
∫

Ω
(u− u0)2dxdy + µ

∫
Ω\C |∇u|

2
dxdy + ν|C|

}
,

(3)

where µ, ν are nonnegative parameters and |C| is the magni-
tude of boundary curve. If the segmented image u is restricted
to piecewise constant function inside each connected compo-
nent Ωi, then the problem becomes the minimal partitioning
problem and its functional is given by

FMS(u, C) =
∑
i

∫
Ω

(u− ci)2dxdy + ν|C|. (4)

According to Chan and Vese [11], given the curve C = ∂ω
where ω ∈ Ω, an open subset and two unknown constants c1
and c2 as well as Ω1 = ω and Ω2 = Ω − ω, the minimum
partitioning problem becomes the problem of minimizing the
energy functional with respect to c1, c2, and C in accordance
with:

F (c1, c2, C) =
∫

Ω1=ω
(u0(x, y)− c1)

2
dxdy

+
∫

Ω2=Ω−ω (u0(x, y)− c2)
2
dxdy + ν|C|.

(5)

In level set formulation, C becomes {(x, y)|φ(x, y) = 0}.
Thus, the energy functional becomes

F (c1, c2, C) =
∫

Ω
(u0(x, y)− c1)

2
H(φ)dxdy

+
∫

Ω
(u0(x, y)− c2)

2
(1−H(φ)) dxdy + ν

∫
Ω
|∇H(φ)|dxdy,

(6)



where u0(x, y) is the given image, c1 and c2 represent the
mean intensities of the inside and outside of the segmented
objects, respectively. Here, H(z) is the unit step function. To
get the minimum of F , we need to take the partial derivatives
of F and set them to 0.

c1(φ) =

∫
Ω
u0(x, y)H(φ(t, x, y))dxdy∫

Ω
H(φ(t, x, y))dxdy

, (7)

c2(φ) =

∫
Ω
u0(x, y)(1−H(φ(t, x, y)))dxdy∫

Ω
(1−H(φ(t, x, y)))dxdy

, (8)

∂φ

∂t
= δ(φ)

[
νdiv

(
∇φ
|∇φ|

)
− (u0 − c1)2 − (u0 − c2)2

]
, (9)

where δ(z) is the Dirac function defined by δ(z) = d
dzH(z).

2.3. Postprocessing

After the segmentation is performed based on the active con-
tour model, small blobs containing foreground pixels are re-
moved in a way similar to the procedure used in [13]. To
be specific, all holes within each blob are filled by morpho-
logical operations and small blobs are removed based on the
number of pixels in each filled blob. Empirically, a small blob
is determined by the following criterion, that is, one smaller
than the half of the largest blob: 0.5 ×max

b∈B
|b| where b is an

individual blob, B is the set of blobs and | · | the number of
pixels in the blob.

3. EXPERIMENTS

Experiments were done based on linking the bottom-up at-
tention model and the level-set active contour model. In the
preprocessing step, the middle slice in a set of sagittal images
per patient is chosen since it gives relatively clear snapshot
of the lumbar spine. Then, the region of interest is extracted
as in Figure 4(a). Empirically, pixels between 150 from left
corner and 180 from the right corner of each slice contain the
spinal cord across all patient data. Only these regions of inter-
est (ROIs) are considered for subsequent processing. After a
saliency map is generated by the attention model as in Figure
4(b), it is binarized with a threshold of 0.9 and the contour of
the thresholded response forms the initial curve for the active
contour model as in Figure 4(c). The maximum number of
iterations for contour evolution is set to 1200. The threshold
and the maximum iteration values are set empirically. The
performance is compared with the manually marked bound-
aries by two trained medical specialists. Since the contextual
information is obtained automatically throughout the process,
no human intervention is required. Also our method does not
require any training stages in segmentation.

3.1. Image Dataset

For MRI segmentation, 60 T2-weighted mid-sagittal MR im-
ages from 60 patients were used. Images were taken by a 3-T
Philips scanner. The set consists of slices on the T2-weighted

(b) (c) (d) (e)(a)

Fig. 4. (a) ROI image; (b) Its saliency map; (c) Initial contour;
(d) Segmentation output; and (e) Reference segmentation

sagittal plane with flip angle 90◦, echo time of 100 ms, rep-
etition time of 2622 ms, slice thickness of 4.5 mm, and the
dimension of 512× 512.

3.2. Automatic Segmentation Based on Our Model

To compare the segmentation performance between the “ref-
erence segmentation” marked by two specialists and an out-
line from our model, we employed the Dice’s coefficient as a
similarity index (SI). The Dice’s coefficient D(G,M) is de-
fined as the ratio of twice the intersection over the sum of
the two segmented results, the gold standard G and the our
model-generated result M , i.e., D(G,M) = 2 · n{G∩M}

n{G}+n{M}
where n{G} is the number of elements in set G [14]. This
measure is derived from a reliability measure known as the
kappa (κ) statistic to evaluate the inter-observer agreement in
regard to categorical data. According to this D > 0.8 indi-
cates near-perfect agreement, 0.6 < D ≤ 0.8 represents sub-
stantial agreement, and 0.4 < D ≤ 0.6 moderate agreement
[15].

4. DISCUSSION

As we expect, the saliency map correctly extracted meaning-
ful information about the spinal canal in a given image and
provided that to the segmentation model as shown in Figures
4 and 5. Since the intensities of the spinal canal in the sagittal
scans of MRI are relatively brighter than the vertebra or disc
regions, the saliency map successfully finds that area.

We classified the initial contour into three classes depend-
ing on how much of the initial contour is contained in the
spinal cord as in Figure 5. If more than half of the contour is
contained in the spinal cord, it is classified as fully contained.
If the initial contour is partly contained in the spinal cord, we
called it semi-contained. If the initial contour is not contained
in the spinal cord, it is classified as not contained. Table 1 also
shows the hit rate of the initial contour landing on the spinal
canal. Overall, 95% of initial contours fall within the spinal
canal. Figures 4(d) and 4(e) compare the segmentation re-
sults from our model with a reference segmentation. Table 2
shows that the means and the standard deviations of SI for two
different reference segmentation by two medical specialists.



Fig. 5. Types of initial contours: Fully contained (left), Semi-
contained (middle), Not contained (right) in the spinal cord

Hit criterion Full hit Semi-hit
Rate 67% 28%

Table 1. Hit rates of initial contours based on saliency map

Overall, SI remains relatively consistent across all gold stan-
dards (i.e., reference segmentation). Specifically, the value
of similarity index D calculated from our model is 0.71 on
average, which indicates substantial agreement. Along with
the comparison between results from our model and reference
segmentation, we compared two reference segmentations in
terms of the same similarity index D. The mean index value
D between two observers is 0.90, implying that 90 percent of
the reference segmentation by two observers is overlapping.
The difference of the similarity index between two observers
accounts for inter-observer variability.

The saliency map generated from the model is a global
data structure. Thus, in order to extract the local features such
as vertebrae or intervertebral discs, other elements might be
added to this model.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we present a fully automatic segmentation
method using contextual information derived from MR im-
ages. In order to extract contextual information, a bottom-up
Gabor filter attention model is used. The thresholded saliency
map from the attention model is then integrated into an level-
set active segmentation model for extracting out the spinal
canal that houses the spinal cord and the thecal sac, followed
by a morphological blob removal process. Experiments show
that this procedure performs segmentation robustly achiev-
ing the Dice’s similarity index of 0.71, a score considered
to reflect substantial agreement. Segmentation results on
medical MR images with comparison against hand annota-
tion of trained medical observers also show a high degree of
consistency between the automated and human-intervention
methods. In the future, we plan to study the performance of
our model in terms of speedup and over a larger variety of
test environments.
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