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ABSTRACT

In this paper we propose a robust and fully automated
lumbar herniation diagnosis system based on clinical MRI
data which will not only aid a radiologist to make a deci-
sion with increased confidence, but will also reduce the time
needed to analyze each case. Our method is based on three
steps : 1) We automatically label the five lumbar interverte-
bral discs in a sagittal MRI slice using a probabilistic model
and then extract an ROI for each disc using an Active Shape
Model. 2) We generate relevant intensity and texture fea-
tures from each disc ROI. 3) We construct five different clas-
sifiers (SVM, PCA+LDA, PCA+Naive Bayes, PCA+QDA,
PCA+SVM) and combine them in a majority voting scheme.
We perform5-fold cross-validation experiments and achieve
an accuracy of94.85%, specificity of95.9% and sensitivity
of 92.45% for 35 clinical casesi.e. a total of175 lumbar in-
tervertebral discs.

Index Terms— CAD, Lumbar MRI, Lumbar herniation

1. INTRODUCTION

Healthcare facilities in the U.S. have been battling a severe
shortage of radiologists for quite some time [1]. While PACS
(Picture Archiving and Communication System) has solved
the visualization part of the problem, a CAD (Computer
Aided Diagnosis) system to generate diagnostic results from
MRI and CT scans would not only reduce the burden on a
radiologist, but also boost the confidence on a diagnosis. Oc-
casionally, a CAD system, might also detect a disorder that a
radiologist could have missed due to insufficient time to ana-
lyze a case. This realization motivates us to develop a highly
accurate and fully automated system to detect herniation in
lumbar intervertebral discs.

The termherniated disc initially meant a focal extension
of the nucleus pulposus beyond the margin of the disc. Over
time, this impractical definition gave way to the more real-
istic definition proposed by Herzog [2]: ‘focal displacement
of nuclear, annular, or end plate material beyond the normal
peripheral margins of the disc delimited by the margins of the
vertebral body end plates’ as shown in Fig 1.

Fig. 1. (Left) Sagittal view of a lumbar MRI showing an L5-
S1 disc herniation and (Right) the corresponding axial view
of the lumbar MRI confirming a left sided herniation.

Currently MR imaging with its numerous modalities is the
most accurate non-invasive imaging technique to diagnose a
disc herniation and to determine its exact location [3]. Hence
we concentrate on CAD systems from MRI as an preliminary
diagnostic aid.

In this paper, we propose a robust lumbar intervertebral
disc herniation detection CAD system that does not require
an exact disc segmentation. We use T2-SPIR sagittal images
from 35 clinical cases to extract suitable intensity and texture
features from each of the five intervertebral discs in the lum-
bar region. Each of these cases has at least one out of five
lumbar discs that is herniated as shown in Fig. 2. Otherwise,
they are random with respect to age, sex, symptoms and other
lumbar disorders.

We use a probabilistic model for automatic localization
and labeling of the discs [4] from each sagittal slice which
results in a point inside each disc. Subsequently, using the
angle of the corresponding axial MRI images, we orient each
disc horizontally and then we use an Active Shape Model [5]
to get a bounding box of each disc. We proceed with this
ROI to extract intensity and texture features from each disc.
Then we construct five classifiers by running heterogeneous



learning algorithms(SVM, PCA+LDA, PCA+Naive Bayes,
PCA+QDA and PCA+SVM) to detect if a disc is herniated or
not. Finally, we combine them in a majority voting scheme
which results in a robust diagnostic system.

Fig. 2. Two lumbar MRI cases (T2-SPIR sagittal view) la-
beled with the ground truth. (Left) Case has one (L5-S1) her-
niated lumbar disc. (Right) Case has two (L3-L4 and L5-S1)
herniated lumbar discs.

2. RELATED WORK

There has been a growing interest in the research community
for automatic diagnosis of lumbar abnormalities from MRI
and CT scans. Chwialkowski et al. [6] presented a method
to detect lumbar pathologies in MR images. This algorithm
localizes candidate vertebrae with an estimated vertebrae
model, and also studies the change in gray level intensities
in healthy and damaged discs. Tsai et al. [7] detects herni-
ation from 3D MRI and CT volumes of the discs by using
geometric features like shape, size and location. However,it
is a computationally expensive method and serves better for
visualization. Michopoulou et al. [8] showcased the classifi-
cation of intervertebral discs into normal or degenerated,by
using fuzzy-c means to perform semi-automatic atlas-based
disc segmentation and then used a Bayesian clssifier. They
achieved86-88 % accuracy on34 cases. The same group
reported94 % accuracy for a normal vs. degenerated discs
classifier using texture features [9]. However they used50
manually segmented discs for their experiments. In our pre-
vious work, Alomari et al. [10] presented a fully automated
herniation detection system using GVF snake for an initial
disc contour and then trained a Bayesian classifier on the
resulting shape features. They achieved92.5% accuracy on
65 clinical MRI cases but a low sensitivity of86.4%.

3. PROPOSED APPROACH

Researchers have mostly concentrated on the intervertebral
disc intensity levels and shape features for automatic herni-
ation detection from sagittal MRI. This makes detection de-
pendent on accurate segmentation of the disc. In-depth ob-
servations show that, a non-herniated disc might just as well
have shape and intensity similar to a herniated one due to disc
degeneration, desiccation and other abnormalities. Hencewe
focus on both intensity and texture features in our approach.
Moreover, we try to finalize on features that are not dependent
on an accurate segmentation of each disc, but rather works on
a rectangular bounding box of the disc. From each disc ROI
we extract a series of features as described below.

3.1. Feature Extraction

Fig. 3. The disc ROI is divided into 8 equal parts for feature
extraction.

3.1.1. Intensity features

First, we calculate the general intensity features like mean,
min and max intensity from the disc ROI. Then we divide the
ROI into 8 parts as shown in Fig. 3 and calculate the feature
setX as :

X = { I(i)
I(j) | 1 ≤ i, j ≤ 8 andi 6= j } (1)

whereI(i) is the average intensity of theith part of the
ROI andX = < xf >; 1 ≤ f ≤ 56. These contextual in-
tensity features are very essential to discriminate between a
herniated and a non-herniated disc.

3.1.2. Shape features

We use an important, but simple shape featureR given by
R = a/b ≈ w/h, wherea andb are the lengths of the major
axis and the minor axis of the disc, respectively; whereasw
andh are the width and height of the disc ROI bounding box,
respectively. We do not use any other contour features that
can be generated from the ASM step, since we deliberately
avoid a precise segmentation of each disc.



3.1.3. Texture features

We calculate a series of texture features from the GLCM
(Gray level co-occurrence) matrix of the disc ROI in8 direc-
tions. Mathematically, a GLCM matrix G is defined over an
n x m imageI, parameterized by an offset(∆x,∆y) as :

G∆x∆y(i, j) =

n
∑

p=1

m
∑

q=1











1, if I(p, q) = i and

I(p + ∆x, q + ∆y) = j

0, otherwise

(2)

We calculate five well-known texture features from the
normalized GLCMGn : Contrast, Correlation, Energy, Ho-
mogeneity and Entropy [11]. Similar features are also gener-
ated from the right quarter of the disc ROI marked as4 and8
as shown in Fig. 3. This step is necessary because a posterior
herniation has distinct seepage near the spinal sac and hence
distinct texture features.

3.2. Classification

After features are extracted from the disc ROIs, we build six
individual classfiers using existing dimensionality reduction
techniques and modeling methods. The first classifier is an
SVM (Support Vector Machine) [12, 13], implemented us-
ing a linear kernel. The second classifier uses PCA(Principal
Component Analysis) for dimensionality reduction followed
by LDA (Linear Discriminant Analysis) as classifier. Simi-
larly the third, fourth and fifth ones are a combination of PCA
and a Naive Bayes Classifier; a combination of PCA and QDA
(Quadratic Discriminant Analysis) as classifier and a combi-
nation of PCA and an SVM classifier, respectively. The sixth
classifier is a KNN (k Nearest Neighbor) classifier, where k
has been empirically fixed to5. Finally, we construct a ma-
jority voting classifier as described in the following section.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

We experiment on35 lumbar MRI cases which have corre-
sponding ground truth in the form of a radiologist’s report.
We perform5-fold cross-validation experiments on each of
our six classifiers and observe that while the first five show
well above90% accuracy, the kNN classifier shows around
80-85% accuracy. Hence, we construct a majority voting clas-
sifier, by combining the results from our first five classifiers
(i.e. SVM, PCA+LDA, PCA+Naive Bayes, PCA+QDA and
PCA+SVM) and selecting the label given by three or more
classifiers as the final result. Majority voting not only guar-
antees better performance than the worst individual classifier,
it also avoids classifier evaluation steps used in complex fu-
sion algorithms. It has also been shown experimentally [14]
and mathematically [15] that a majority voting classifier can
show improvement over individual classifier accuracy. The

performance results of all our classifiers are shown in Fig. 4
and Table 1.
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Fig. 4. ROC for the individual classifiers and the Majority
Vote classifier.

The performance metrics, specificity and sensitivity are
defined as follows :

Specificity=
TNs

TNs + FPs
Sensitivity=

TPs
TPs + FNs

(3)

where TNs is the Number of True Negatives, FNs is the Num-
ber of False Negatives, TPs is the Number of True Positives.
FPs is the Number of False Positives. The x-axis and y-axis
of the ROC curve in Fig. 4, are the False Positive Rate(FPR)
and the True Positive Rate(TPR) respectively, defined as:

FPR= 1 − Specificity and TPR= Sensitivity (4)

Table 1. Classifier performance results in percantage for 5-
fold cross validation

Classifier Accuracy Specificity Sensitivity
SVM 94.29 96.72 88.68

PCA+LDA 93.14 93.44 92.45
PCA+Bayes 92.0 92.62 90.57
PCA+QDA 92.57 95.08 86.79
PCA+SVM 93.14 95.08 88.68

5-NN 80.57 89.34 60.37
Majority Vote 94.86 95.90 92.45

4.2. Discussion

Amongst the individual classifiers, we observe that, SVM,
PCA+LDA and PCA+SVM have better ROC curves (Fig. 4)



and higher accuracies (Table 1) than PCA+Naive Bayes and
PCA+QDA. Also, PCA+LDA and PCA+Naive Bayes shows
high sensitivity (or low FNs) which is very essential for a lum-
bar diagnosis system. This is because, while high FPs can be
quickly rectified by the radiologist, high FNs might lead to a
herniated disc not being diagnosed at all, and hence a greater
penalty. Thus a majority voting scheme combining these five
individual classifers is a good choice to build a high accuracy
system, that maintains a high sensitivity as well. From Ta-
ble 1 we observe that Majority Vote has a higher sensitivity
than SVM, ie. SVM it has too many undesirable FNs and
the majority voting scheme helps to bring that number down.
Hence we see that Majority Voting Classifier not only shows
a slightly increased accuracy (94.86%) compared to the indi-
vidual classifiers, it also maintains a high value of sensitivity
(92.45%) and specificity (95.9%).

5. CONCLUSION

We have proposed a fully automated system to detect herni-
ated discs from sagittal lumbar MRI using robust intensity
and texture features. The major advantage of this system is
that, it does not require precise segmentation of the lumbar
intervertebral discs. Also it does not require the MRI sagit-
tal slice to be in the middle with a perfect view of the spinal
sac. Moreover, this approach extracts good features which is
evident from the high accuracies of the individual classifiers.
Another added advantage is the fact that the final majority
voting classifier not only shows a high accuracy and sensi-
tivity; it also boosts the confidence of the diagnosis. As an
extension to this approach, we will be working on associating
information from the MRI axial modality to further decrease
the diagnostic error rates. Moreover, based on the disc hernia-
tion location, we will also work on automatic classificationof
herniation into lateral right, central and lateral left herniation
from MRI axial views.
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