Automatic Lumbar Vertebra Segmentation from clinical CT
for Wedge Compression Fracture Diagnosis

Subarna Ghosh®, Raja’ S. Alomari® Vipin Chaudhary? Gurmeet Dhillon®
{sghosh7, ralomari, vipin}@buffalo.edu {gdhillon}@proscan.com
“University at Buffalo, SUNY, Buffalo, NY 14260
bProScan Imaging of Buffalo, Williamsville, NY 14221

ABSTRACT

Lumbar vertebral fractures vary greatly in types and causes and usually result from severe trauma or pathological
conditions such as osteoporosis. Lumbar wedge compression fractures are amongst the most common ones where
the vertebra is severely compressed forming a wedge shape and causing pain and pressure on the nerve roots
and the spine. Since vertebral segmentation is the first step in any automated diagnosis task, we present a fully
automated method for robustly localizing and segmenting the vertebrae for preparation of vertebral fracture
diagnosis. Our segmentation method consists of five main steps towards the CAD(Computer-Aided Diagnosis)
system: 1) Localization of the intervertebral discs. 2) Localization of the vertebral skeleton. 3) Segmentation
of the individual vertebra. 4) Detection of the vertebrae center line and 5) Detection of the vertebrae major
boundary points. Our segmentation results are promising with an average error of 1.5mm (modified Hausdorff
distance metric) on 50 clinical CT cases i.e. a total of 250 lumbar vertebrae. We also present promising
preliminary results for automatic wedge compression fracture diagnosis on 15 cases, 7 of which have one or more
vertebral compression fracture, and obtain an accuracy of 97.33%.

Keywords: Lumbar Spine, Wedge Compression Fracture, Computer Aided Diagnosis, CT, lumbar vertebra
segmentation.

1. INTRODUCTION

Lower back pain (LBP) is the second most common neurological ailment in the United States after headache®
with $50 billion spent annually on rehabilitation and health care of LBP. Vertebral and intervertebral disc
abnormalities are the major causes of LBP. Hence, lumbar area research mainly focuses on the automation (and
semi-automation) of disc and vertebral abnormality detection. Localization and segmentation of the vertebrae
and the intervertebral discs are usually the first steps for most diagnosis tasks. Currently various imaging
modalities are used in clinical settings for scanning the lower spine depending on the severity of pain, availability
of scanners, cost and total time required for the acquisition. X-ray radiography and DXA (Dual-emission X-ray
absorptiometry) are usually the cheapest and are taken as an initial step for diagnosis. CT and/or MRI, due to
their substantially higher cost and better diagnostic value comes next. While CT is the preferred modality for
trauma patients, MRI (which is more expensive than CT and has a higher acquisition time) is used more often
for pathological conditions.

Wedge fractures are the most common type of lumbar

fracture and are the typical compression fracture of malig- l" x o

nancy or osteoporosis.? They occur as a result of an axially - ’\Lfl e /\\%
directed central compressive force combined with an eccen- N;}L_ R:}I\_t‘.‘;
tric compressive force as shown in Fig. 1. Although wedge 3 \—""' e

fractures are usually symmetric, 8-14% are asymmetric and
are termed as lateral wedge fractures.

The symptoms of a compression fracture are sudden
back pain, often with radiculopathic pain (shooting pain
due to nerve root compression). Multiple vertebral frac- Figure 1: Anterior Wedge Compression Fracture
tures lead to a stooped posture, loss of height, and chronic
pain with resultant reduction in mobility.?

(a) Normal (b) Wedge Fracture.



Fractures in the lumbar spine occur for a number of reasons. In younger patients, fractures are usually due
to violent trauma like car and sport related accidents. In older patients, lumbar compression fractures usually
occur in the absence of trauma, or in the context of minor trauma, such as a fall. The most common underlying
reason for these fractures in geriatric patients, especially women, is osteoporosis.* Malignancy, infections, and
renal disease can also contribute to the occurrence of compression fractures. Lumbar compression fracture can
be a devastating injury not only because it can cause significant pain, but also because it can alter the mechanics
of the posture to the point that the patient cannot stand upright. Hence rapid diagnosis of compression fracture
is extremely important for immediate orthopedic attention.

2. PREVIOUS WORK

Although discs and vertebra in CT and MRI images are prominent and have well-defined boundaries from a
human observer’s point of view; labeling and segmentation is challenging for a fully automated algorithm since
the CT and MRI images can be extremely inhomogeneous, neighboring irrelevant structures can be connected
and might have similar intensities. Recent research on spine has been focusing on vertebral and disc localization
and segmentation from various medical modalities including X-rays and DXA,> CT® and MRI."® The purpose
of the segmentation is to provide robust and automated tools for further diagnosis tasks such as our previous
work.? 11

Probabilistic graphical models have been used for spine localization and labeling such as Schmidt et al.” whose
work focuses on the whole spine and Alomari et al.® focusing only on lumbar area. Their models incorporated
both appearance and space information of the discs to localize and label the discs from MRI. Schmidt et al.”
presents a probabilistic graphical model for representing both the appearance of local parts and the shape of the
anatomy in terms of geometric relations between parts. Intially, features for detecting parts are learned from
a set of training data in manually marked image regions, then, in the detection stage, a multi-class classifier
is applied to detect potential locations for each part in a new image. Finally, the graphical model provides a
contextual decision by fusing these data with the geometrical prior knowledge and infers the globally optimal
configuration of the parts. Alomari et al.® proposes a two-level probabilistic model for the localization of discs
from lumbar clinical MRI data that captures both pixel- and object-level features. Using a Gibbs distribution,
they model appearance and spatial information at the pixel level, and at the object level, they model the spatial
distribution of the discs and the relative distances between them. They use generalized expectation-maximization
for optimization, which achieves efficient convergence of disc labels.

Roberts et al.? present a fully automatic method of segmenting vertebrae in spinal radiographs using parts-
based graphs and Active Appearance Models, but have a high failure rate for fractured vertebrae. Research using
CT volumes for interactive and fully-automatic vertebra segmentation are also investigated in the literature.!? '3
However, they work poorly for defective and fractured vertebra, and cases with disc disorders. Naegel et al.!3
describes a method for the labeling and segmentation of vertebrae in CT scans based on the computation of
the separation planes of the vertebrae and mathematical morphology operators using anatomical assumptions.
In order to detect the intervertebral spaces, they use a morphological operator which detects the dark spaces
corresponding to intervertebral discs in combination with an analysis of the shape of the vertebrae in the axial
plane. To reconstruct the vertebrae they find internal and external markers and then perform watershed segmen-
tation. Finally, to label the vertebrae, they deduce the T12 vertebrae by marking all the vertebrae connected
to the ribs and keeping the lowest one. Kaminsky et al.'? presents a fast 3D visualization and segmentation
system that uses two special interactive tools and a standardized protocol for segmentation adapted to the needs
for segmentation procedures of spine segments. It consists of both automated and interactive steps and is also
applicable to instrumented and severely degenerated regions of the spine, although, additional interactive steps
were necessary making the process very slow.

Precise segmentation of lumbar vertebrae in CT images was proposed by Mastmeyer et al. ¢ They developed
a hierarchical 3D technique to segment the vertebral bodies in order to measure bone mineral density(BMD)
with high trueness and precision in volumetric CT datasets of the lumbar spine. However, initial landmarks had
to be manually placed in the vertebral bodies. For thoracic CT volumes Shen et al.'* recently presented an
automatic vertebra segmentation algorithm where vertebra labeling was not addressed. They proposed a prior
knowledge base that contains localized priors - a group of high-level features whose detection augments their



surface model. They validated their algorithm on 21 CT volumes, but do not specify the presence or absence of
vertebral abnormalities or fractures. Klinder et al.'® proposed statistical surface models for each of the vertebra
and the sacrum. They automate the detection of vertebra from unspecified spinal regions by using generalized
Hough transform models, but are highly dependent on the training data.

In this paper, we only focus on clinical lumbar CT scans. In everyday clinical routine, radiologists order
separate spinal areas for CT and MRI due to both cost and acquisition time-related issues. We propose an
automatic and accurate method for segmentation of each vertebra and prepare it for feature extraction and
wedge compression fracture diagnosis.

3. PROPOSED METHOD AND DATA

Our data consists of 50 anonymized clinical CT volumes. These cases contain various types of fractures, bone
spurs, and several disc abnormalities. We also obtain the clinical diagnosis report along with each case from
which we obtain our gold standard for the diagnosis. The following steps summarize our proposed method.

3.1 Discs localization

We utilize our previous work® for this step as this method proves its robustness on clinical data. This method
provides a point inside each disc from Lumbar MRI images. We applied the method on lumbar clinical CT and
found its high accuracy that made it the best choice for this step. This method presents a two-level probabilistic
model that labels the set of discs with high level labels D = {dy,ds,...,ds} where each d; = (gcl-,yi)T is the
coordinates of the disc point (some point in the disc). Then the following optimization problem is solved using
a generalized expectation maximization (GEM) algorithm:8

D* = argmngL:P(L,D\I) = argméisz: P(L|D,I)P(D) (1)

where L = {l;, Vi € L} is a set of auxiliary variables, called disc-label variables that are introduced to infer D
from the sagittal image. Each disc-label variable can take a value of {—1,+1} for non-disc or disc, respectively.
The disc-labels make it plausible to separate the disc variables from the image intensities, i.e., the disc-label L
variables capture the local pixel-level intensity models while the disc variables D capture the high-level geometric
and contextual models of the full set of discs.

3.2 Vertebral skeleton localization

We start this step from the middle sagittal slice of the CT volume as shown in Fig. 2(a) where we convert
it into the Hounsfield scale and clamp the image between 0 and 1000. This is based on the fact that bone
is usually around 400 HU and higher.'® We then segment the vertebral skeleton, i.e. the vertebral column
region, by morphological operations including an opening-closing by reconstruction and subsequently dilating
the threshholded image which gives us a rough ROI(Region of Interest) as shown in Fig. 2(b).

3.3 Individual Vertebra segmentation

After the first two steps, we segment each vertebra as shown in Fig. 2(d). We base this step on two main aspects:
1) Intensity and 2) Geometry. The intensity is represented by calculating the Gradient Image as:

G[I] = /(G2 + GY) (2)

where I is the image obtained after the vertebral skeleton localization, (z,y) represents the image pixel coordi-
nates, G, and G, are the image gradients in the x and y direction respectively. This gradient image is used to
detect Hough lines representing the horizontal edges of the lumbar vertebrae at each disc level as shown by the
green lines in 2(c). These lines result from the Hough Transform which is parameterized as:

p=axcosf + ysinf (3)



(a) (b) (c) (d) (e) ()
Figure 2: Fully automated processing steps for a case with vertebral fracture at L1 and L2: (a) shows the original
CT scan, (b) shows the extracted ROI, (c) shows the Hough Lines in green and the vertebra separating lines in
blue, (d) shows the segmented and labelled vetebrae, (e) shows the vertebral centerline in red and orientation
of each vertebra in green, (f) shows the automatically detected vertebral corners in red and the left and right
vertebra height in green.

where 6 is the angle of the vector from the origin to the line and p is distance between the line and the origin.
Thus at each disc level, we calculate the mean Hough line slope as m; where 1 <4 < 6.

Subsequently, geometry uses the set of points D resulting from Eq. 1 to find straight lines crossing the
intervertebral discs at a suitable angle to separate two adjacent vertebrae as shown in Fig. 2(c) by the blue lines.
These lines result from the line equation y = ma + ¢ where m is the slope and c is the y-intercept of the line.
To compute each line, we use the point inside the disc d; (detailed in subsection 3.1) and the slope m; which is
the mean slope of the Hough lines as generated in the previous step. Thus, we extract angle-constrained Hough
lines from the gradient image G which gives us information about the inclination of line segments that separate
two adjacent vertebrae.

After we obtain the rough horizontally segmented vertebrae, we perform image processing operations on each
of the five lumbar vertebral regions to obtain smooth contours. First we convert the gray-scale image to black
and white, then perform a hole filling operation followed by a morphological opening to remove tiny blobs. Then
we retain the largest blob in that specific vertebral region and perform closing and hole filling operations to get
a smooth vertebra boundary as shown in 2(d).

3.4 Vertebrae center line

This step aims at preparation of the vertebrae to extract features for the automatic diagnosis of compression
wedge fracture. Using the disc center points D (from Eq. 1), we compute a third-degree polynomial to fit the
lumbar curvature. The red curve in Fig. 2(e) shows a sample. We only concentrate on the lumbar area where
the center line smoothly crosses the centers of the vertebrae. The accurate computation of the centerline allows
accurate calculation of the normals that crosses each vertebrae as shown in Fig. 2(e) in green lines.

3.5 Vertebrae major boundary points

In this step, we compute eight boundary points for each vertebra that represent four corners and four mid-way
points for the four edges. Calculation of these points is completely based on geometry operators using the disc
localization points D, the lines crossing the discs, the smooth vertebral centerline and the normals within each
vertebra. The computation of these points presents us with various features for designing suitable classifiers for
the wedge fracture diagnosis as well as various vertebral abnormalities.

Figure 3 shows the automated processing steps of a case with no vertebral fracture while Figure 2 shows
similar steps for a case with fractures at the L1 and L2 vertebrae.
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Figure 3: Fully automated processing steps for a case with no vertebral fracture : (a) shows the original CT scan,
(b) shows the extracted ROI, (c) shows the Hough Lines in green and the vertebra separating lines in blue, (d)
shows the segmented and labelled vetebrae, (e) shows the vertebral centerline in blue and orientation of each
vertebra in red, (f) shows the automatically detected vertebral corners in red and the left and right vertebra
height in green.

3.6 Classification

After extracting the vertebrae major boundary points, we compute the left height H;(7), center height H.(%)
and right height H,.(7) of the ith vertebra of each case where 1 < ¢ < 5 (five lumbar vertebrae) as shown in
Figures 2(f) and 3(f). This helps us extract a series of height features for each vertebra for automatic detection
of wedge/compression fracture as discussed below.

3.6.1 Vertebra Height Features

We calculate three height ratio features as H;(i)/H, (i), Hi(i)/H.(3), H.(i)/H.(i) for each vertebra. These are
important since for wedge/compression fractures, the relative left, right and center heights of a vertebra are very
different from a vertebra with no fracture. We also calculate three height deviation features Deuw;(i), Dev. (i),
Deuw, (i) for the ith vetebra defined as :

Dev (i) = max(H;) — Hi(i) ; Dev.(i) =max(H.) — H.(1) ; Deuv,.(i)=max(H,)— H.(7) (4)

where max(H;) is the maximum left vertebra height amongst the left heights of L1 to L5 vertebrae in that case.
Similarly, max(H.) and max(H,) are defined for the center and right heights. These deviation features are
inspired from the radialogist’s reports which quantify the compression of a fractured vertebra by comparing with
a normal vertebra.

3.6.2 Classifiers

We experiment on a total of 15 cases for our automatic fracture detection out of which 7 cases have one or more
than one lumbar vertebrae with wedge/compression fracture. We did not use all the 50 cases for classification
since that would cause an imbalance in training data due to very few number of vertebrae with the kind of
fracture we are trying to diagnose automatically. After the relevant features are extracted from each vertebra,
we build five individual classfiers using existing modeling methods. The first classifier is an SVM (Support Vector
Machine),!” implemented using a polynomial kernel of degree 3. The second one is a kNN (k Nearest Neighbor)
classifier, where k has been empirically fixed to 3. The third and fourth ones use LDA (Linear Discriminant
Analysis) and QDA (Quadratic Discriminant Analysis) as classifiers respectively while the last one is a Naive
Bayes classifier. Finally, we construct a majority voting classifier and discuss the results in the following sections.



4. EXPERIMENTS AND RESULTS
4.1 Segmentation

We validate our segmentation algorithm with 50 clinical CT volumes which are divided into 5 sets each having
10 cases. We evaluate the performance of our algorithm using two metrics:

1) The modified Hausdorff distance (average deviation of the contour):'®

|R|

MR, G) = (Z min[|| R, G|[])/| R| (5)

where G € Gold standard contour pixels and R € automatic segmentation contour pixels and |R| denotes the
total number of pixels in the automatic contour.

2) Over-segmentation (false positive rate) and under-segmentation (false negative rate),'* are defined as follows,
respectively:

O(S;|Sg) = (|0]/|S4l) * 100 where O ={plpe S, and p¢ Sy} (6)

U(S,1S5) = (U1/1S,]) #100 where U ={plpe S, and p¢ S} (7)
where S, and S, are the pixels in the segmented region by automation and by hand (gold standard), respectively.
For generation of the gold standard, we average the manually drawn contours from three experts (one radiologist

and two trained students).

Table 1: Hausdorff distance in mm for 50 cases (10 cases each set).

Set | L1 | L2 | L3 | L4 | L5 | Avg (mm)

1 1.2 11212 (12|14 1.2

2 1.3 1515|1518 1.5

3 1.5 112 |14]16]|18 1.5

4 1.0 (11 114]14]| 14 1.3

5 1.0 1010|1214 1.1

Avg | 1.2 |12 |13 |14 1.6 1.5
Table 2: Over-segmentation in percentage.'* Table 3: Under-segmentation in percentage.'
Set | L1 | L2 | L3 | L4 | L5 | Avg (%) Set | L1 | L2 | L3 | L4 | L5 | Avg (%)
1 12.1 | 13.0 | 14.3 | 144 | 16.9 14.1 1 59 | 6.1 38| 3.7 | 5.1 4.9
2 125 16.9 | 19.3 | 13.8 | 25.6 17.6 2 10.1 | 8.8 | 7.2 | 13.3 | 5.2 8.9
3 17.0 | 16.9 | 17.7 | 20.1 | 25.2 19.4 3 4.9 | 44144 | 3.0 | 3.0 3.9
4 12.8 | 12.2 | 15.8 | 194 | 16.7 15.4 4 34 | 3137 | 15 |38 3.1
5 10.6 | 12.9 | 104 | 12.9 | 14.5 12.3 5 44 13051 39 |6.0 4.5
Avg | 13.0 | 144 | 15.5 | 16.1 | 19.8 15.8 Avg | 5.7 | 5.1 |48 | 5.1 | 4.6 5.1

Performance results ie. the Hausdorff distance, over-segmentation and under-segmentation are displayed in
Tables 1, 2 and 3 respectively.



4.2 Classification

We experiment on 15 CT cases which have corresponding ground truth in the form of a radiologist’s report. Here
a positive class indicates presence of wedge/compression fracture while a negative class means absence of such
fracture.

The performance metrics, specificity and sensitivity are defined as follows :

TNs TPs

~ TNs q tiviby — — TDS
TNs £ Fps " Sensitivity TPs 4 FNs (8)

Specificity =
where TNs is the Number of True Negatives, FNs is the Number of False Negatives, TPs is the Number of
True Positives. FPs is the Number of False Positives. The False Positive Rate(FPR) and the True Positive
Rate(TPR), are defined as:

FPR = 1 — Specificity and TPR = Sensitivity (9)

5. DISCUSSION
5.1 Segmentation

From Table 1 we observe that the Hausdorff distance (contour deviation from the gold standard) is the maximum
for L5 vertebra with an average of 1.6mm while the average deviation for both L1 and L2 is 1.2mm. Also the
overall average is observed to be 1.5mm. From Tables 2 and 3 we see that the over-segmentation(15.8%) is much
higher than the under-segmentaton(5.1%). Moreover, over-segmentation rates are in the range of 14% - 26% for
the L5 vertebrae and could be improved.

(a) (b) ()

Figure 4: Some sample automatic segmentation results : (a) and (b) shows 2 samples of successful segmentation
of L1 to L5 vertebrae , (c) shows a sample of an unsuccessful segmentation where L1,1.2,1.3 and L5 are successful
but L4 fails.

Figure 4 shows a few sample segmentation results of our automatic algorithm. While 4(a) and 4(b) shows 2
cases where segmentation of all the five lumbar vertebra is successful, 4(c) shows a case where L4 segmentation
fails completely due to very low pixel intensities.



Table 4: Classifier performance results in percentage for 15-fold cross validation

Classifier Accuracy | Specificity | Sensitivity
SVM 94.667 96.825 83.333
3NN 94.667 100 66.667
LDA 94.667 98.413 75.0
QDA 97.333 98.413 91.667
Naive Bayes 96.0 96.825 91.667
Majority Vote
(SVM+QDA+NaiveBayes) 97.333 98.413 91.667

5.2 Classification

We perform 15-fold cross-validation experiments on each of our classifiers and observe that while the all the
classifiers show a high accuracy, the kNN and LDA classfiers have a low sensitivity i.e. a low true positive
rate (Table 4). Hence, we construct a majority voting classifier, by combining the results from three of our
classifiers : SVM, QDA and Naive Bayes and selecting the label given by two or more classifiers as the final
result. Majority voting not only guarantees better performance than the worst individual classifier, it also
avoids classifier evaluation steps used in complex fusion algorithms. It has also been shown experimentally!?
and mathematically?® that a majority voting classifier can show improvement over individual classifier accuracy.
The performance results of all our classifiers are shown in Table 4. The accuracy values indicate that the feature
selection for classification is fairly good and that quadratic classifiers perform better than the linear ones due to
the nature of our data. Further, QDA and the majority vote classifier show a high accuracy 97.33%, along with
a high sensitivity (True Positive Rate) of 91.67%.

6. CONCLUSION

We proposed a fully automated method for segmentation of lumbar vertebrae from clinical CT volumes based
on geometry and intensity features. Initially, we localize and label the intervertebral discs using a two-level
probabilistic model using both pixel-level (intensity) and object-level (location) features. Then we segment a
rough Region of Interest (ROI) of the vertebral body using a series of morphological operations. After that
we detect angle-constrained Hough lines for each disc level from the gradient image and average their slopes to
calculate the lines separating the five lumbar vertebrae. Finally we segment the individual lumbar vertebrae by
morphological and hole-filling operations. Our segmentation shows an average contour deviation of 1.5mm on
50 CT cases which contain various types of fractures, bone spurs and many disc abnormalities. We have also
presented the step by step preparation of the segmented vertebrae to provide suitable height related features to
detect wedge compression fractures with an accuracy of 97.3% and sensitivity of 91.67%. A high sensitivity (or
high true positive rate) is very essential for any lumbar diagnosis system. This is because, while a high false
positive rate can be quickly rectified by the radiologist, a low true positive rate might lead to a fractured vertebra
not being diagnosed at all, and hence a greater penalty. Thus we have designed a fully automatic, high accuracy
and high sensitivity computer-aided system for lumbar compression fracture diagnosis. Implementation of such
systems in large-scale facilities will not only reduce the burden on a radiologist, but will also boost confidence on
a diagnosis. Occasionally, a robust CAD system, might also detect a disorder that a radiologist could have missed
due to insufficient time to analyze a case. Currently we have experimented with a total of 15 clinical CT cases for
the automatic diagnosis out of which 7 cases have one or more wedge compression fractures. We did not use all
the 50 CT cases due to the low number of cases with compression fracture. In the near future we aim to collect
more CT cases with the relevant type of fracture, so that we can model our classifiers accurately and build robust
CAD systems. We will also extend our work to clinical MRI cases to detect fractures and diagnose pathological
conditions like osteoporosis and malignancies. In today’s world, there are numerous lumbar disorders affecting
a vast number of people thoughout the planet; hence the future holds a large scope for autonomous automatic
diagnostic systems.
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