
CSE 250 Spring 2024

Programming Assignment #3
Tests due: 4/21/24 @ 11:59pm

Implementation due: 4/28/24 @ 11:59pm

Assignment Link: https://classroom.github.com/a/AJ1PVwXA

Please read through the entire writeup before beginning the programming assignment

Objectives
1. Implement a basic HashTable utilizing Cuckoo Hashing
2. Use your HashTable to perform common data science operations

a. Join two tables of data on a common key to demonstrate how data can be
efficiently de-anonymized if not carefully protected

b. Aggregate the sensitive data on a common key to compute aggregate statistics
that can be used for various types of analysis without potentially exposing
sensitive information

Useful Links
1. The Java API

a. hashCode

b. floorMod

2. Testing with JUnit

https://classroom.github.com/a/AJ1PVwXA
https://docs.oracle.com/javase/8/docs/api/
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#floorMod-int-int-
https://junit.org/junit5/docs/current/user-guide/

CSE 250 Spring 2024

Submission Process, Late Policy and Grading
Testing due date: 4/21/24 @ 11:59PM
Implementation due date: 4/28/24 @ 11:59PM
Total points: 30 (5 for testing + 20 for implementation + 5 for runtime)

The project grade is the grade assigned to the latest (most recent) submission made to Autolab
(or 0 if no submissions are made). Autolab will pull your submission from your GitHub repository,
so you must make sure that any changes you want to be included in your grade have been
committed and pushed.

● If your submission is made before the deadline, you will be awarded 100% of the points
your project earns.

● If your submission is made up to 24 hours after the deadline, you will be awarded 75% of
the points your project earns.

● If your submission is more than 24 hours after the deadline, but within 48 hours of the
deadline, you will be awarded 50% of the points your project earns.

● If your submission is made more than 48 hours after the deadline, it will not be accepted.

You will have the ability to use three grace days throughout the semester, and at most two per
assignment (since submissions are not accepted after two days). Using a grace day will negate
the 25% penalty per day, but will not allow you to submit more than two days late. Please plan
accordingly. You will not be able to recover a grace day if you decide to work late and your score
is not sufficiently higher. Grace days are automatically applied to the first instances of late
submissions, and are non-refundable. For example, if an assignment is due on a Friday and you
make a submission on Saturday, you will automatically use a grace day, regardless of whether
you perform better or not. Be sure to test your code before submitting, especially with late
submissions in order to avoid wasting grace days.

Keep track of the time if you are working up until the deadline. Submissions become late after
the set deadline. Keep in mind that submissions will close 48 hours after the original deadline
and you will not be able to submit your code after that time.

Note: No late submissions will be accepted for the testing portion of the assignment, and
no grace days can be used on the testing portion of the assignment.

CSE 250 Spring 2024

Background on Anonymization
Suppose you are working for Company X and your team is tasked with producing a health
record data set to be released to the participants in an upcoming hackathon. Your colleague
removed the columns for names and says that the data is ready to go but you aren't convinced.
After reviewing the data set, you are concerned that if someone were to combine your
"anonymous" data with other publicly available sources, there could be trouble. Unfortunately
your colleague doesn't share your concerns and requires proof.

Is this so far-fetched? In 2007, Netflix held a competition to improve their recommendation
algorithms. This required releasing a large amount of anonymous data from their customers'
movie ratings and viewing histories. By combining the Netflix data set with the Internet movie
database (IMDb) site data, researchers found a way to link the identity of a Netflix user to a
user's IMDb profile based on the select reviews that they published.

With more data being generated and released (and redacted) every day, this is not limited to an
old and irrelevant data set. Consider the APIs that expose locations of bikeshare/scooter
information (e.g., NABSA). Making these locations publicly available through an API allows for
this data to be incorporated into ecosystems that extend beyond the provider's control. As a
result you can get useful features like Google maps providing walking directions to the closest
scooter/bike within a city, regardless of the service provider. But what is the cost of this? After
all, these locations are public knowledge since we can physically see these bikes and scooters
on the street. So the exact location of a scooter at a given time may not expose much. What
about the pairs of start and end locations along with the date and time of usage? Now we can
track usage habits at a particular location and possibly an address. Combining this data and
auxiliary information we may be able to identify a set of candidates that are using the scooters.
Further analysis may expose things such as daily habits -- particularly when someone normally
leaves their house and returns, exposing further sensitive information. Fortunately there are
techniques to thwart this.

To address this we have two main problems to tackle: (i) maintain the statistical relevance of the
sensitive data and (ii) protect the people represented by the data. Fortunately, there is a
well-studied body of tools and techniques under the umbrella of differential privacy for exactly
this purpose. By training a model to understand an originally sensitive, but anonymized, data set
we can generate synthetic data that looks statistically similar but further protects the individuals
contained within. To see more about this, you can read the blog post by Alexander Watson and
follow along with the example notebook they provide to understand further.

https://ieeexplore.ieee.org/document/4531148
https://ieeexplore.ieee.org/document/4531148
https://github.com/NABSA/gbfs
https://gretel.ai/blog/using-generative-differentially-private-models-to-build-privacy-enhancing-synthetic-datasets-from-real-data
https://gretel.ai/blog/using-generative-differentially-private-models-to-build-privacy-enhancing-synthetic-datasets-from-real-data

CSE 250 Spring 2024

Setup
In order to complete this project, you must have completed PA0. If you are working on a
machine other than the one you used in PA0, you must at least complete steps 2 and 4 in order
to get IntelliJ and GitHub working properly.

Once you have ensured your development environment is setup as in PA0, you can accept the
PA3 assignment in GitHub Classroom (here), and create a new IntelliJ project from VCS with
your newly created repository.

Instructions
In this assignment you will implement your own Hash Table, use it to do some data analysis on
two different sets of data, and demonstrate some of the risks associated with releasing
"anonymized" data. In addition to implementing the functions that make your Hash Table work,
you will implement functions that perform two common tasks in data science: joining two
different data sets, and computing aggregate statistics for different features of a data set.

Note: You must NOT modify any files other than CuckooHash.java, DataTools.java and
DataToolsTests.java to complete the programming assignment. You may add your own CSV
files for testing to the data directory of your repository.

As with PA2, the first phase of PA3 will be to write tests which must be able to pass on perfect
implementations of the CuckooHash and DataTools functions, and fail broken implementations.
The second phase will be to implement the CuckooHash and DataTools functions yourself.

After you complete your tests, make sure to commit and push your work to GitHub, and submit
to the PA3 testing submission in Autolab. After completing your implementation, make sure to
commit and push your work to GitHub, and submit to the PA3 implementation submission in
Autolab.

Hint: It is advised that you commit and push frequently rather than waiting until you've
completed everything.

Hint: Although you will get feedback from Autolab about correctness of your solutions, you
should get in the habit of testing locally, and adding test cases as needed. This will be a more
effective/efficient means of development, and will also give you a better understanding of the
content of this programming assignment in the process.

https://classroom.github.com/a/AJ1PVwXA

CSE 250 Spring 2024

0. Testing Phase (due 4/21/24) [5/30 points]

Modify the file DataToolsTests.java to include new test cases.

Your test cases will first be run against correct implementations of CuckooTable and
DataTools. If your tests fail the correct implementation you will receive 0 points for the testing
phase.

Your test cases will then be run against several broken implementations of CuckooTable and
DataTools. You earn points for each broken implementation that at least one of your tests fails.

1. Implement the CuckooTable functions [10/30 points]

Implement the following functions in CuckooTable:

public Optional<V> put(K key, V value)

The put method inserts the specified key-value pair into the map. If the specified key was
already in the map, then this method updates the value and returns the previously mapped
value. Otherwise it inserts the key-value pair and returns Optional.empty().

The method utilizes Cuckoo Hashing to determine where to place the key-value pair in the
underlying array. It uses the two hash functions passed in at construction on the key to
determine the two possible locations.

● If both locations are free, it should store the key value pair in the location returned by the
first hash function

● If one location is free, it should store the key value pair at that location
● If neither location is free, it should evict the key-value pair stored in the location returned

by the first hash function, store the new key-value pair there, and then attempt to
re-insert the evicted pair in its other location. Repeat as needed until there are no
evicted key-value pairs.

This function must respect the maximum load factor and maximum eviction count. If the
hash table would exceed the maximum load factor upon insertion, or a suitable location cannot
be found for all elements after hitting the maximum eviction count, then the table should be
rehashed. The new size of the underlying array should be the (old_size * 2) + 1.

The expected runtime of the put method should be O(1).

CSE 250 Spring 2024

public Optional<V> get(K key)

The get method looks up the key-value pair that matches the passed in key and returns the
value. If there is no key-value pair matching the passed in key, then the function should return
Optional.empty().

The guaranteed runtime of the get method should be O(1).

public Optional<V> remove(K key)

The remove method looks up the key-value pair that matches the passed in key, removes it from
the hash table and returns the value. If there is no key-value pair matching the passed in key,
then the function should return Optional.empty().

The guaranteed runtime of the remove method should be O(1).

public Set<K> keySet()

The keySet method returns a Set containing all of the keys currently in the hash table.

For a hash table with N total buckets storing n key-value pairs, the guaranteed runtime of the
keySet method should be O(N + n).

public int size()

The size method has been implemented for you to return the value of the size field. Your other
functions should make sure that the size field always accurately represents the number of
key-value pairs in the hash table.

public Optional<Entry<K,V>>[] data()

The data method has been implemented for you to return the underlying data array that holds
the contents of your hash table. Your other methods should make sure to update the data field
appropriately.

CSE 250 Spring 2024

2. De-Anonymize the Data [5/30 points]

Implement the following function in DataTools:

public static CuckooTable<String, HealthRecord> identifyPersons(

List<VoterRecord> voterRecords,

List<HealthRecord> healthRecords

)

The identifyPersons function shows the dangers of releasing "anonymized" data, by showing
how easily that data can be de-anonymized if it can be related to other publicly available data.
The function receives as input "anonymized" HealthRecords (personally identifiable information
has been removed), and publicly available VoterRecords.

This function should return a CuckooTable of voters' full names (given by the fullName method
of the VoterRecord class) mapped to that person's HealthRecord if a unique match exists
based on the person's Birthday and Zip Code.

A match between a VoterRecord and a HealthRecord exists if they have the same Birthday
and Zip Code. The match is unique if there is only one HealthRecord that matches the
VoterRecord, and there is only one VoterRecord that matches the HealthRecord.

Hint: See the later section on joins for an explanation of how this matching can be done
efficiently.

Note: This function must use your implementation of CuckooHash to efficiently perform the join.
AutoLab will substitute the reference implementation of CuckooHash during testing, so you can
still get credit for correctly implementing the join algorithm even if your CuckooHash
implementation is not quite perfect.

For m VoterRecords and n HealthRecords, the expected runtime of this function is O(m + n).

CSE 250 Spring 2024

3. Compute Statistics [5/30 points]

Implement the following function in DataTools:

public static CuckooTable<String, Double> computeHealthRecordDist(

List<HealthRecord> records,

HealthRecord.Attribute attribute

)

The last function in this programming assignment provides a potential solution to the
de-anonymization problem from the previous function. It takes as input an "anonymized"
sequence of HealthRecords, and a target attribute. It then returns the distribution of values the
attribute takes so that statistically similar synthetic data can be generated and released. This
data can be used by researchers to solve interesting problems, without risking the identities of
the original HealthRecords.

If attribute == HealthRecordBloodType, then the returned CuckooTable should map the
different blood types to the percentage of HealthRecords that have that blood type.

● Percentages should be a value in the range (0,1]
○ ie only blood types that show up in the data should be present

If attribute == HealthRecordAllergies, then the returned CuckooTable should map the
different allergies to the percentage of HealthRecords that have that allergy.

● Percentages should be a value in the range (0,1]
○ ie only allergies that show up in the data should be present

For n HealthRecords, the expected runtime of this function must be O(n).

4. Runtime complexity [5/30 points]

The final 5 points for this assignment will be awarded if the functions run in the correct amount
of time. Note that if your functions do not run correctly, they may not get points for complexity
either, so these points should be the last thing you focus on.

CSE 250 Spring 2024

Additional Notes

Hash Tables
As discussed in lecture, hash tables work by using hash functions to quickly assign an integer
value to a key, and use that integer value to determine where in an array of data the key should
be stored. As long as the hash function runs in O(1) time, and it behaves pseudo-randomly
(meaning the integer that it assigns to the key has roughly equal probability of being any one of
the possible array indices), then the runtimes of operations like get, put, and contains are
expected O(1).

Hash Function and Modulus
In this assignment, the data field in the CuckooTable class is the underlying array that stores
the key-value pairs, and there are two hash functions which determine where in that array a
particular key belongs (more on that later). When a hash function is called on a particular key, it
returns an integer that could be as large as the maximum representable integer based on the
size of the type. Because of this, we need to take that integer and fit it into the bounds of our
data array. We do so by taking the hash value mod the size of our data array.

However, in Java it is important to note that the hashCode function, which provides a decent
default hash function for any type of object, can return negative numbers. To deal with this, you
should use Math.floorMod function instead of the normal modulus operator. It ensures that the
result will always have the same sign as the divisor (which in this case is always positive since it
is the length of the data array).

For testing purposes, it can also be useful to write your own simple hash functions (for example,
mapping a string to the integer value of its first character). While these simple hash functions
are not good for practical situations, they can help you write effective tests since you know
exactly where the keys you use in the tests should end up.

Cuckoo Hashing
No matter how good your hash function is, there is always the possibility that two different keys
will be assigned to the same position in the underlying array. This is called a collision, and there
are many ways in which these collisions can be resolved. In this assignment you will use
Cuckoo Hashing to resolve collisions.

Cuckoo Hashing relies on the use of two hash functions instead of just one. This means that
every key inserted into the table has two possible locations where it can be stored, and when
inserting a new key-value pair either location is a valid place to store it. The decision of which of
the two locations to place the key-value pair in is arbitrary, and there are many variations on
exactly how the placement is done to attempt to improve performance by making the constant

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#floorMod-int-int-

CSE 250 Spring 2024

factors smaller. For this assignment we use the following guidelines on how to place a newly
inserted key-value pair:

● If both possible locations are free, use the location determine by the first hash function
● If only one possible location is free, use that location
● If neither possible location is free, then we must evict one of the key-value pairs in order

to insert the new one. Evict the key-value pair in the location determined by the first hash
function, insert the new key-value pair at that location, and then relocate the old
key-value pair to wherever it's other hash function says it should be located. Repeat as
necessary.

Joins
Relational (SQL) databases like MySQL, Postgresql, SQLite, and others are used everywhere
for data storage and processing. One of the main computational tasks relational databases
handle on a regular basis is called a join. Although the computation you will be asked to
implement in this assignment is not exactly a join, you may find the following both informative
and helpful when implementing your assignment.

Relational Tables
A relational database stores data in Tables (you may have heard these called "Dataframes" or
"Tensors" in other settings). A table is a collection of Records. All records have a common set
of Fields (sometimes called Attributes). For example, the following is a table that we'll call
Customers.

First Name Last Name Birthday Zip Code

0 SIMON DURAN 11/17/1978 14261

1 EMELIA STEWART 9/23/1996 14201

2 NIA GONZALEZ 7/12/1970 14210

3 VIOLET HARMON 3/16/1986 14216

4 EDWIN SUTTON 6/21/1986 14201

5 LILY BAKER 8/31/1988 14213

6 MILO ORTIZ 11/15/1973 14201

7 KARA OLIVER 6/10/1968 14214

8 BRANDON GARDNER 2/20/1957 14223

9 DEWEY WILSON 3/14/1987 14212

CSE 250 Spring 2024

There are 10 records (numbered 0-9) in this table. Each record has four fields: First Name,
Last Name, Birthday, and Zip Code.

Here's another example that we'll call Pizza By Zip.

Zip Code Closest Pizza

0 14201 La Nova Wing Incorporated

1 14216 Jet's Pizza Delivery

2 14223 Pie-O-Mine Greens

3 14213 Sports City Pizza Pub

4 14261 Imperial Pizza

5 14212 Pizza Express

6 14214 Just Pizza

Joins
A relational join (sometimes called an inner join, or just a join) links the records of two tables
together on some field, called the join key. For each record in one table, we're going to find the
corresponding record in the other table and produce a new "combined" record.

For example, let's join together the Customer and Pizza By Zip tables on their mutual Zip
Code attribute (e.g., to find the recommended pizza place for each customer). For each record
in Customer, we're going to find the record in Pizza By Zip with an identical Zip Code. The
result should look like the following (the join operation is customarily denoted by the bowtie ⋈
operator):

CSE 250 Spring 2024

Customer ⋈ Pizza by Zip

First Name Last Name Birthday Zip Code Zip Code Closest Pizza

0 SIMON DURAN 11/17/1978 14261 14261 Imperial Pizza

1 EMELIA STEWART 9/23/1996 14201 14201 La Nova Wing Incorporated

2 VIOLET HARMON 3/16/1986 14216 14216 Jet's Pizza Delivery

3 EDWIN SUTTON 6/21/1986 14201 14201 La Nova Wing Incorporated

4 LILY BAKER 8/31/1988 14213 14213 Sports City Pizza Pub

5 MILO ORTIZ 11/15/1973 14201 14201 La Nova Wing Incorporated

6 KARA OLIVER 6/10/1968 14214 14214 Just Pizza

7 BRANDON GARDNER 2/20/1957 14223 14223 Pie-O-Mine Greens

8 DEWEY WILSON 3/14/1987 14212 14212 Pizza Express

Note a few things about the above:
1. The output of the join operation is also a table.
2. The records in the output table have all of the fields of both input tables (in fact, the Zip

Code attribute is repeated for this reason).
3. A single record in one table may join with multiple records in the other table (e.g., Record

0 of Pizza By Zip joins with Records 1, 4, and 6 of Customers).
4. If a record in one table does not match with any records in the other table, it is omitted

from the output (e.g., Record 2 of Customers does not have a matching Zip Code in
Pizza By Zip).

Nested Loop Join
The Join operation is usually defined by its simplest implementation, called the Nested-Loop
Join. The algorithm, in lightly simplified form, appears as follows:

public List<Pair<Customer, Pizza>> nestedLoopJoin(

List<Customer> customers, List<Pizza> pizza) {

List<Pair<Customer, Pizza>> result = new ArrayList<>();

for (Customer c : customers) {

for (Pizza p : pizza) {

if (c.getZipCode().equals(p.getZipCode())) {

result.add(new Pair(c, p));

}

}

}

return result;

}

CSE 250 Spring 2024

The body of the function is a nested for loop. For every record in the Customer table, it iterates
over every record in the Pizza table to find the Pizza record(s) that match. If it finds a matching
record, it adds it to the result list. After it's done with every Customer record, it returns all of the
matches it's made.

Runtime
The runtime of the nested-loop join algorithm is O(|customers|·|pizza|). From one
perspective, this growth is only linear in each individual table's size. However, if we allow both
tables to grow together (e.g., if we set |customers| = |pizza| = n), then the runtime becomes
quadratic.

Hash Join
The runtime of the nested-loop join algorithm is high. To get a better runtime we can observe
that a large part of the cost is repeatedly running the inner loop. As shown in WA4, we can
sometimes benefit by doing a bit of preparation work up front before we start the algorithm. The
result is what people who use and build relational databases call the "hash join" algorithm.

Note: Although the runtime of accesses to a HashTable are worst-case linear, we will use
expected runtimes in this assignment.

Consider what happens when we load pizza into a HashMap first. Specifically for each record p

in pizza , insert p into the HashMap with a key of p.getZipCode() (this is typically called the
build phase of hash join).

HashMap<String, List<Pizza>> hashTable = new HashMap<>();

for(Pizza p : pizza) {

String key = p.getZipCode();

if(!hashTable.containsKey(key)){

hashTable.put(key, new ArrayList<>());

}

hashTable.get(key).add(p);

}

Note that multiple records of pizza may have the same join key. Since we can't rule this out in
general, typically, the hash join will store a sequence of records for each join key.

As discussed in class, building a HashMap with records at a predetermined load factor, 𝛂, takes
an expected O(n) (i.e., O(|pizza|)) time, even accounting for any necessary resizes.

Next, when we loop over the records in customer, we can recover all of the pizza records by
probing the hash table instead of looping over pizza.

CSE 250 Spring 2024

for(Customer c : customers) {

String key = c.getZipCode();

for(Pizza p : hashTable.getOrDefault(key, new ArrayList<>())){

result.add(new Pair(c, p);

}

}

We're still looping over every element in customer , but now instead of a full iteration of pizza,
we do a hash table lookup, which has an expected runtime of O(1). Since there might be
multiple matches for a given record, p, we also need to iterate over all of these.

Although the worst-case runtime of this step (typically called the probe phase) can be
O(|customer|·|pizza|) (i.e., if every p record has the same key), it is typically much lower. As
a result, it is customary to capture the runtime of the hash join by looking at the number of
records it outputs. For example, if we know that every record in pizza joins with at most one
record of customer, then we can bound the number of records in the join output by |pizza|.

Observe that each iteration of the inner loop (over the records in pizza) appends one record to
the result. Thus, the total runtime for this function is:

Which simplifies to O(|customer|+|result|). Specifically, it's possible for |result| to be as
large as |customer|·|pizza| (if there's exactly one join key value). but in practice, result is
usually linear in the size of one (or both) tables.

Runtime
Combining the runtimes of the build and probe phases, we get an overall expected runtime for
the hash join algorithm of: O(|customer|+|pizza|+|result|)

Regardless of how the tables scale (and under the common assumption that the size of the
output scales linearly with the size of the input), this function always grows linearly.

CSE 250 Spring 2024

Academic Integrity
As a gentle reminder, please re-read the academic integrity policy of the course. I will continue
to remind you throughout the semester and hope to avoid any incidents.

What Constitutes a Violation of Academic Integrity?
These bullets should be obvious things not to do (but commonly occur):

● Turning in your friend’s code/write-up (obvious).
● Turning in solutions you found on Google with all the variable names changed (should

be obvious). This is a copyright violation, in addition to an AI violation.
● Turning in solutions you found on Google with all the variable names changed and 2

lines added (should be obvious). This is also a copyright violation.
● Paying someone to do your work. You may as well not submit the work since you will fail

the exams and the course.
● Posting to forums asking someone to solve the problem.

Note: Aggregating every [stack overflow answer|result from google|other source] because you
"understand it" will likely result in full credit on assignments (if you aren't caught) and then failure
on every exam. Exams don't test if you know how to use Google, but rather test your
understanding (i.e., can you understand the problems to arrive at a solution on your own). Also,
other students are likely doing the same thing and then you will be wondering why 10 people
that you don’t know have your solution.

Other violations that may not be as obvious:
● Working with a tutor who solves the assignment with you. If you have a tutor, please

contact me so that I may discuss with them what help is allowed.
● Sending your code to a friend to help them. If another student uses/submits your code,

you are also liable and will be punished.
● Joining a chatroom for the course where someone posts their code once they finish, with

the honor code that everyone needs to change it in order to use it.
● Reading your friend’s code the night before it is due because you just need one more

line to get everything working. It will most likely influence you directly or subconsciously
to solve the problem identically, and your friend will also end up in trouble.

What Collaboration is Allowed?
Assignments in this course should be solved individually with only assistance from course staff
and allowed resources. You may discuss and help one another with technical issues, such as
how to get your compiler running, etc.

CSE 250 Spring 2024

There is a gray area when it comes to discussing the problems with your peers and I do
encourage you to work with one another to solve problems. That is the best way to learn and
overcome obstacles. At the same time you need to be sure you do not overstep and not
plagiarize. Talking out how you eventually reached the solution from a high level is okay:

"I used a stack to store the data and then looked for the value to return."

but explaining every step in detail/pseudocode is not okay:

"I copied the file tutorial into my code at the start of the function, then created a stack
and pushed all of the data onto the stack, and finished by popping the elements until the
value is found and use a return statement."

The first example is OK but the second is basically a summary of your code and is not
acceptable, and remember that you shouldn’t be showing any code at all for how to do any of it.
Regardless of where you are working, you must always follow this rule: Never come away from
discussions with your peers with any written work, either typed or photographed, and especially
do not share or allow viewing of your written code.

What Resources are Allowed?
With all of this said, please feel free to use any [files|examples|tutorials] that we provide directly
in your code (with proper attribution). Feel free to directly use anything from lectures or
recitations. You will never be penalized for doing so, but should always provide
attribution/citation for where you retrieved code from. Just remember, if you are citing an
algorithm that is not provided by us, then you are probably overstepping.

More explicitly, you may use any of the following resources (with proper citation/attribution):
● Any example files posted on the course webpage (from lecture or recitation).
● Any code that the instructor provides.
● Any code that the TAs provide.
● Any code from the Java API (https://docs.oracle.com/javase/8/docs/api/)

Omitting citation/attribution will result in an AI violation (and lawsuits later in life at your
job). This is true even if you are using resources provided.

Amnesty Policy
We understand that students are under a lot of pressure and people make mistakes. If you have
concerns that you may have violated academic integrity on a particular assignment, and would
like to withdraw the assignment, you may do so by sending us an email BEFORE THE
VIOLATION IS DISCOVERED BY ME. The email should take the following format:

CSE 250 Spring 2024

Dear Dr. Mikida,

I wish to inform you that on assignment X, the work I submitted was not entirely my own. I would
like to withdraw my submission from consideration to preserve academic integrity.

J.Q. Student
Person #12345678
UBIT: jqstuden

When we receive this email, student J would receive a 0 on assignment X, but would not
receive an F for the course, and would not be reported to the office of academic integrity.

