
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 01: Course Overview

mailto:epmikida@buffalo.edu


Course Staff

Eric Mikida
Email: epmikida@buffalo.edu
Office: Capen 208 (inside of 212 Capen) 

2Office hours don't start until next week and will be posted to course website

Course TAs
Amelia Graca
Dikshit Khandelwal
Kartike Chaurasia
Riad Mukhtarov
Alexander Terry
Brendan O'Connell

Chris Dearing
Derek Gage
Doniyor Ismatilloev
Ethan Phan
Evan Jiang
Jonathan Guzman

Jordan Wang
Kiki Tran
Marian Huynh
Marvin Pierre-Pierre
Milos Petrovic
Morgan Li

Eric Xie
Ronan Kasmier
Shreyas Narayanan 
Sridhar
Wonwoo Jeong
Joy Lee

mailto:epmikida@buffalo.edu


Take the elevators next to 1Capen to 2, then turn right.
3



Logistics

● Course Website
○ https://cse.buffalo.edu/courses/cse250
○ All course materials, links, schedule, extra resources

● Course Forum (Piazza)
○ https://piazza.com/buffalo/spring2024/cse250 
○ All discussion for the course is hosted here – check regularly

● AutoLab
○ https://autolab.cse.buffalo.edu/courses/cse250-s24
○ Assignment submission, grades

4

https://cse.buffalo.edu/courses/cse250
https://piazza.com/buffalo/spring2024/cse250
https://autolab.cse.buffalo.edu/courses/cse250-s24/


Logistics

● Course Website
○ https://cse.buffalo.edu/courses/cse250
○ All course materials, links, schedule, extra resources

● Course Forum (Piazza)
○ https://piazza.com/buffalo/spring2024/cse250 
○ All discussion for the course is hosted here – check regularly

● AutoLab
○ https://autolab.cse.buffalo.edu/courses/cse250-s24
○ Assignment submission, grades

5
Please keep class discussions on Piazza (private/anonymous posts exist)

Always include [CSE 250] in the subject line when emailing

https://cse.buffalo.edu/courses/cse250
https://piazza.com/buffalo/spring2024/cse250
https://autolab.cse.buffalo.edu/courses/cse250-s24/


Development Environment

● Supported Operating Systems
○ MacOS
○ Ubuntu Linux
○ Windows + WSL/Ubuntu

● Supported Dev Environments
○ IntelliJ (Community Edition is Free)
○ PA0 walks you through the setup process

Other setups are ok, but the more your setup differs the lower the
chance we’ll be able to help you

6



Course Syllabus

7



Grading

Grade Breakdown:

● Assignments: 40%
● Participation: 10%
● Midterms: 15% x 2 = 30%
● Final Exam: 20%

Score (x) Letter Grade Quality 
Points

90% ≤ x ≤ 100% A 4

85% ≤ x < 90% A- 3.67
80% ≤ x < 85% B+ 3.33
75% ≤ x < 80% B 3
70% ≤ x < 75% B- 2.67
65% ≤ x < 70% C+ 2.33
60% ≤ x < 65% C 2
55% ≤ x < 60% C- 1.67
50% ≤ x < 55% D 1
0% ≤ x < 50% F 0 8



Written Assignments

~Bi-Weekly Written Assignemnts
● Expect to spend about a week per assignment
● Submit up to 24hrs after deadline with a 50% penalty

You are responsible for submission formatting
● Submit only PDFs
● Submissions that do not load will receive a 0

We recommend writing solutions by hand
● Better retention of what you have written
● Easier to write out math by hand than on a computer

9



Programming Assignments

Grading for most programming assignments will be as follows:

● Test cases (5/30 points)
○ Due before implementation

● Implementation Correctness (20/30 points)
● Implementation Efficiency (5/30 points)

Grades will always be based on the LAST submission you make

10



Programming Assignments

You have 2-3 weeks per assignment
● Plan to start early and work throughout
● 25% penalty per day late, up to 48 hours

3 ‘grace days’ for the semester
● Applied automatically, even if your score does not increase

11



Exams

Two In-Class Midterms (Fri 3/1 and Fri 4/12, in class)
● More details as exams approach

One Final Exam (5/13/24 @ 3:30PM, Knox 110)
● Comprehensive, covering any topics from throughout the semester
● Check for conflicts ASAP
● If HUB changes the date/location…trust the HUB

If you need accommodations, contact Accessibility Resources ASAP

12

https://www.buffalo.edu/studentlife/who-we-are/departments/accessibility.html


Class Participation

Lecture
● No recorded attendance
● Easy access to ask questions live (use it)

Recitation
● Recitations start Mon, Jan 29th
● Attendance is mandatory (starting after add/drop)
● Next week recitations will focus on setting up your dev environment

13



Collaboration, AI, Extra Resources

Do…
● Work together to brainstorm ideas
● Explain concepts to each other
● Include a list of your collaborators on all submitted work

Do Not…
● Write solutions when working together
● Describe the details of solutions to problems or code
● Leave your code in a place where it is accessible to another student

When in doubt, ask a member of the course staff!

14



Resource Policy

Do…
● Use materials provided by course staff (Piazza, Class, OH)
● Use materials from the course lectures / recitations
● Cite all materials you reference for written work
● Cite sources for all code you reference / copy

15



Resource Policy

Do NOT…
● Reference random videos on YouTube that “helped you solve the problem”
● Hire “private tutors”

○ Save the money from Chegg
○ If you’re not doing the work yourself, you’re not learning
○ If you have an actual tutor, contact course staff

● Reference exact solutions found online

If you are caught using unauthorized resources, you get an F

16



Other Ways to Get an F

● Work in a group by assigning each person to a problem
● Copying your friend’s homework because you forgot

○ Each homework is not worth a lot on its own
● Sharing your homework with your friend

○ I have no way to know who did the work and who shared
● Submitting work without citations

○ Citing outside work will help you avoid AI repercussions 
○ (we grade you on the work you did, but you won’t get an AI violation)

17



Other Ways to Get an F

You are liable/punishable if someone else
submits your work as their own.

18



Ways to Avoid an F

Don’t Cheat…but we understand mistakes are made.

We will grant amnesty for any AI violation IF you tell us about it BEFORE we 
discover it

19



Asking Questions

First…check if the answer exists (syllabus, Piazza, course website)

Then…

Ask in lecture, recitation, Piazza, or office hours

Come prepared, form the question carefully, many times you will answer 
your own question in the process!

Thinking through your question is a great first step.

20



Now…What even is 
“Data Structures!?

21



What is a Data Structure?

Container
Data

22



What is a Data Structure?

SameD
ata

more defensible

Different
Container

23



What is a Data Structure?

Different
Container

more efficient access to 
skritches()SameD

ata

24



What is a Data Structure?

● Store a list of things in some order (“List”)
○ Array
○ LinkedList
○ ArrayList

● Store things organized by an attribute (“Map”, “Dictionary”)
○ Hash Table
○ Binary Search Tree
○ Red-Black Tree

25



Why should you care?

● Tactical: Optimize your Code (“reducing the constants”)
○ Understand the memory hierarchy
○ Understand the CPU / OS

● Strategic: Optimize your Design (“reducing the complexity”)
○ Understand how your algorithm scales
○ Understand repetition in your code

CSE 250
26



Tactical Programming

Go from point A to point B
1. Move up 100 feet
2. Turn right, move forward 200 feet
3. Move north 10 feet then turn left
4. Move forward 20 feet
5. Move south 50 feet
6. Move west 150 feet, then turn left
7. Move forward 60 feet

We can optimize each individual 
step

● For example, taking a bike will 
speed up step 2 compared to 
walking

27



Strategic Programming

Look at the big picture

Design (not just implement) an 
algorithm

Focus on "complexity"

28



Strategic Programming

Look at the big picture

Design (not just implement) an 
algorithm

Focus on "complexity"

A B

29



Strategic Programming

Look at the big picture

Design (not just implement) an 
algorithm

Focus on "complexity"

A B

Why not just move east 30 feet…
30



What is “Complexity”?

(screenshot: cppreference.com) 31



What is “Complexity”?

(screenshot: https://www.scala-lang.org/api) 32



What is “Complexity”?

Every (good) standard library’s provides guarantees on the 
complexity of its data structures’ operations

Understanding complexity bounds can be the difference between 
code that runs in 6 hours vs code that runs in 8 seconds.

33



Analyzing Solutions

Abstract Data Type

Get Nth Get First Prepend

34



Analyzing Solutions

Option 1
● Very fast Prepend, Get First
● Very slow Get Nth

Option 2
● Very fast Get Nth, Get First
● Very slow Prepend

Option 3
● Very fast Get Nth, Get First
● Occasionally slow Prepend

Which is better?

35



Analyzing Solutions

Which is better?

IT DEPENDS!

36

Option 1 (Linked List)
● Very fast Prepend, Get First
● Very slow Get Nth

Option 2 (Array)
● Very fast Get Nth, Get First
● Very slow Prepend

Option 3 (ArrayList…in reverse)
● Very fast Get Nth, Get First
● Occasionally slow Prepend



Some Common Ideas

More work now

vs 

More work later

37

Storing Data

vs 

Computing Data



Course 
Roadmap

Analysis 
Tools/Techniques

ADTs Data 
Structures

Asymptotic Analysis, 
(Unqualified) Runtime 
Bounds

Sequence Array, 
LinkedList

Amortized Runtime List ArrayList, 
LinkedList

Recursive analysis, divide 
and conquer, 
Average/Expected Runtime

Midterm #1

38



Analysis 
Tools/Techniques

ADTs Data 
Structures

Stack, Queue ArrayList,
LinkedList

Review recursive analysis Graphs, 
PriorityQueue

EdgeList, 
AdjacencyList, 
AdjacencyMatrix

Trees BST, AVL Tree, 
Red-Black Tree, 
Heaps

Midterm #2

Review expected runtime HashTables Chaining, 
OpenAdressing, 
Cuckoo Hashing

Miscellaneous

Course 
Roadmap

39



First Assignments

40



Academic Integrity Quiz

● Posted on AutoLab
● Should take < 10 minutes, unlimited attempts
● Due Sun Feb 4 @ 11:59PM
● YOU MUST GET 100% TO PASS THE COURSE

41



PA0

● Posted to course website (submission on AutoLab)
● Walks through setup of IntelliJ and GitHub
● Also covered in next weeks recitations
● Due Sun Feb 4 @ 11:59PM
● YOU MUST GET 100% TO PASS THE COURSE

42



Join Piazza

● Accept invites sent via email to join the course Piazza

43



Questions?

44


