CSE 250

Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 03: Math Refresher

Announcements and Feedback

- Join Piazza! (Link on course website)
- Academic Integrity Quiz due 2/4 @ 11:59PM (MUST GET 100\%)
- PAO due 2/4 @ 11:59PM (MUST GET 100\%)
- WA1 due 2/4 @ 11:59PM

Today's Topics

- Summations
- Logarithms
- Limits

Summations

$$
\sum_{i=j}^{k} f(i)=f(j)+f(j+1)+\ldots+f(k)
$$

Useful Tricks

If \boldsymbol{c} is a constant (with respect to i)

$$
\sum_{i=j}^{k} c=\underbrace{c+c+\ldots+c)}_{(\mathrm{k}-\mathrm{j}+1) \text { times }}
$$

Useful Tricks

If \boldsymbol{c} is a constant (with respect to i)

$$
\begin{aligned}
\sum_{i=j}^{k} c & =(c+c+\ldots+c) \\
& =(k-j+1) \cdot c
\end{aligned}
$$

Useful Tricks

If c is a constant and $f(i)$ is a function of i :

$$
\sum_{i=j}^{k} c f(i)=(c f(j)+c f(j+1)+\ldots+c f(k))
$$

Useful Tricks

If \boldsymbol{c} is a constant and $f(i)$ is a function of i :

$$
\begin{aligned}
\sum_{i=j}^{k} c f(i) & =(c f(j)+c f(j+1)+\ldots+c f(k)) \\
& =c(f(j)+f(j+1)+\ldots+f(k))
\end{aligned}
$$

Useful Tricks

If \boldsymbol{c} is a constant and $f(i)$ is a function of i :

$$
\begin{aligned}
\sum_{i=j}^{k} c f(i) & =(c f(j)+c f(j+1)+\ldots+c f(k)) \\
& =c(f(j)+f(j+1)+\ldots+f(k)) \\
& =c \sum_{i=j}^{k} f(i)
\end{aligned}
$$

Useful Tricks

If $f(i)$ and $g(i)$ are functions of i :

$$
\sum_{i=j}^{k} f(i)+g(i)=(f(j)+g(j))+(f(j+1)+g(j+1))+\ldots+(f(k)+g(k))
$$

Useful Tricks

If $f(i)$ and $g(i)$ are functions of i :

$$
\begin{aligned}
\sum_{i=j}^{k} f(i)+g(i) & =(f(j)+g(j))+(f(j+1)+g(j+1))+\ldots+(f(k)+g(k)) \\
& =(f(j)+f(j+1)+\ldots+f(k))+(g(j)+g(j+1)+\ldots+g(k))
\end{aligned}
$$

Useful Tricks

If $f(i)$ and $g(i)$ are functions of i :

$$
\begin{aligned}
\sum_{i=j}^{k} f(i)+g(i) & =(f(j)+g(j))+(f(j+1)+g(j+1))+\ldots+(f(k)+g(k)) \\
& =(f(j)+f(j+1)+\ldots+f(k))+(g(j)+g(j+1)+\ldots+g(k)) \\
& =\left(\sum_{i=j}^{k} f(i)\right)+\left(\sum_{i=j}^{k} g(i)\right)
\end{aligned}
$$

Useful Tricks

If $j<1<k$:

$$
\sum_{i=j}^{k} f(i)=f(j)+\ldots+f(k)
$$

Useful Tricks

If $j<1<k$:

$$
\begin{aligned}
\sum_{i=j}^{k} f(i) & =f(j)+\ldots+f(k) \\
& =f(j)+\ldots+f(l-1)+f(l)+\ldots+f(k)
\end{aligned}
$$

Useful Tricks

If $j<1<k$:

$$
\begin{aligned}
\sum_{i=j}^{k} f(i) & =f(j)+\ldots+f(k) \\
& =f(j)+\ldots+f(l-1)+f(l)+\ldots+f(k) \\
& =\left(\sum_{i=j}^{l-1} f(i)\right)+\left(\sum_{i=l}^{k} f(i)\right)
\end{aligned}
$$

Useful Tricks

If $j<1<\boldsymbol{k}$:

$$
\left(\sum_{i=j}^{k} f(i)\right)=\left(\sum_{i=j}^{l-1} f(i)\right)+\left(\sum_{i=l}^{k} f(i)\right)
$$

Useful Tricks

If $\boldsymbol{j}<1<\boldsymbol{k}$:

$$
\left(\sum_{i=j}^{k} f(i)\right)=\left(\sum_{i=j}^{l-1} f(i)\right)+\left(\sum_{i=l}^{k} f(i)\right)
$$

Subtract to other side

Useful Tricks

If $j<1<\boldsymbol{k}$:

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} f(i)=\left(\sum_{i=1}^{n} f(i)\right)+\left(\sum_{i=1}^{n} f(i)\right)\right. \\
& \left(\sum_{i=1}^{n} f(i)\right)-\left(\sum_{i=1}^{n} f(i)\right)=\left(\sum_{i=1}^{n} f(i)\right.
\end{aligned}
$$

Series

Some common closed form solutions:

$$
\begin{aligned}
& \sum_{i=1}^{k} i=\frac{k(k+1)}{2} \\
& \sum_{i=0}^{k} 2^{i}=2^{k+1}-1
\end{aligned}
$$

Summary

- The previous rules will always be provided on WAs and exams
- Usually the goal will be to reduce some complicated summation to a simpler form without a summation
- Some of the rules get rid of summations
- Some allow you to manipulate summations/bounds so that you can apply rules that get rid of summations
- Be cognizant of what variables are constant with respect to the summation variable and which one aren't

Logarithms

$$
a \cdot n=\underbrace{a+a+\ldots+a}_{\text {a added together } n \text { times }}
$$

Logarithms

$$
a \cdot n=\underbrace{a+a+\ldots+a}_{\text {a added together } n \text { times }}
$$

$$
a^{n}=\underbrace{a \cdot a \cdot \ldots \cdot a}_{a \text { multiplied together } \boldsymbol{n} \text { times }}
$$

Logarithms

The inverse operation
is division

$$
a \cdot n=\underbrace{a+a+\ldots+a}_{\text {a added together } n \text { times }}
$$

$$
a^{n}=\underbrace{a \cdot a \cdot \ldots \cdot a}_{a \text { multiplied together } n \text { times }}
$$

The inverse operation
is ???

Logarithms

The inverse operation
is division

$$
a \cdot n=\underbrace{a+a+\ldots+a}_{\text {a added together } n \text { times }}
$$

$$
a^{n}=\underbrace{a \cdot a \cdot \ldots \cdot a}_{a \text { multiplied together } n \text { times }}
$$

The inverse operation is $\log _{\mathrm{a}}$

Logarithms

$\log _{a}(b)=$ the number of times you multiply a together to get b

$$
\begin{gathered}
\log _{2}(32)=5 \\
\log _{3}(27)=3 \\
\log _{2}\left(\frac{1}{8}\right)=-3 \\
\log _{2}\left(2^{10}\right)=10
\end{gathered}
$$

Logarithms

Logarithm is the inverse exponent

$$
b^{\log _{b}(n)}=n=\log _{b}\left(b^{n}\right)
$$

Product Rule

Let's say $\boldsymbol{n}=\boldsymbol{a} \cdot \boldsymbol{b}$
How are $\log _{2}(n), \log _{2}(a)$, and $\log _{2}(a)$ related?

Product Rule

Let's say $\boldsymbol{n}=\boldsymbol{a} \cdot \boldsymbol{b}$
How are $\log _{2}(n), \log _{2}(a)$, and $\log _{2}(a)$ related?

$$
a=2 \cdot \ldots \cdot 2 \quad b=2 \cdot \ldots \cdot 2
$$

Product Rule

Let's say $\boldsymbol{n}=\boldsymbol{a} \cdot \boldsymbol{b}$
How are $\log _{2}(n), \log _{2}(a)$, and $\log _{2}(a)$ related?

$$
a=\underbrace{2 \cdot \ldots \cdot 2}_{\log _{2}(a) \text { times }}
$$

$$
b=\underbrace{2 \cdot \ldots \cdot 2}_{\log _{2}(\boldsymbol{b}) \text { times }}
$$

Product Rule

Let's say $\boldsymbol{n}=\boldsymbol{a} \cdot \boldsymbol{b}$
How are $\log _{2}(n), \log _{2}(a)$, and $\log _{2}(a)$ related?

$$
\begin{aligned}
& a=2 \cdot \ldots \cdot 2 \quad b=2 \cdot \ldots \cdot 2 \\
& n=\underbrace{2 \cdot \ldots \cdot 2}_{\log _{2}(\boldsymbol{n}) \text { times }}=\underbrace{2 \cdot \ldots \cdot 2}_{\log _{2}(\boldsymbol{a}) \text { times }} \cdot \underbrace{2 \cdot \ldots \cdot 2}_{\log _{2}(\boldsymbol{b}) \text { times }}
\end{aligned}
$$

Product Rule

Let's say $\boldsymbol{n}=\boldsymbol{a} \cdot \boldsymbol{b}$
How are $\log _{2}(n), \log _{2}(a)$, and $\log _{2}(a)$ related?

$$
\begin{gathered}
a=2 \cdot \ldots \cdot 2 \quad b=2 \cdot \ldots \cdot 2 \\
n=\underbrace{2 \cdot \ldots \cdot 2}_{\log _{2}(\boldsymbol{n}) \text { times }}=\underbrace{2 \cdot \ldots \cdot 2}_{\log _{2}(\mathbf{a}) \text { times }} \cdot \underbrace{2 \cdot \ldots \cdot 2}_{\log _{2}(\boldsymbol{b}) \text { times }} \\
\log _{2}(n)=\log _{2}(a b)=\log _{2}(a)+\log _{2}(b)
\end{gathered}
$$

Exponent Rule

$$
\log _{2}\left(a^{n}\right)=\log _{2}(a \cdot \ldots \cdot a)
$$

Exponent Rule

\boldsymbol{n} times

$$
\log _{2}\left(a^{n}\right)=\log _{2}(\overbrace{a \cdot \ldots \cdot a})
$$

Exponent Rule

\boldsymbol{n} times

$$
\begin{aligned}
\log _{2}\left(a^{n}\right) & =\log _{2}(\overbrace{a \cdot \ldots \cdot a}){ }_{n-1 \text { times }} \\
& =\log _{2}(a)+\log _{2}(\overbrace{a \cdot \ldots \cdot a})
\end{aligned}
$$

Exponent Rule

\boldsymbol{n} times

$$
\begin{aligned}
\log _{2}\left(a^{n}\right) & =\log _{2}(\overbrace{a \cdot \ldots \cdot a}) \overbrace{\text { n-1 times }}^{n} \\
& =\log _{2}(a)+\log _{2}(\overbrace{a \cdot \ldots \cdot a}){ }_{n-2 \text { times }}^{n+\overbrace{2}} \\
& =\log _{2}(a)+\log _{2}(a)+\log _{2}(a \cdot \ldots \cdot a)
\end{aligned}
$$

Exponent Rule

\boldsymbol{n} times

$$
\begin{aligned}
\log _{2}\left(a^{n}\right) & =\log _{2}(\overbrace{a \cdot \ldots \cdot a}){ }_{\mathbf{n - 1} \text { times }} \\
& =\log _{2}(a)+\log _{2}(\overbrace{a \cdot \ldots \cdot a}){ }_{\mathbf{n - 2} \text { times }} \\
& =\log _{2}(a)+\log _{2}(a)+\log _{2}(\overbrace{a \cdot \ldots \cdot a}) \\
& =\underbrace{\log _{2}(a)+\ldots+\log _{2}(a)}_{\boldsymbol{n} \text { times }}
\end{aligned}
$$

Exponent Rule

$$
\begin{aligned}
\log _{2}\left(a^{n}\right) & =\log _{2}(a \cdot \ldots \cdot a) \\
& =\log _{2}(a)+\log _{2}(a \cdot \ldots \cdot a) \\
& =\log _{2}(a)+\log _{2}(a)+\log _{2}(a \cdot \ldots \cdot a) \\
& =\log _{2}(a)+\ldots+\log _{2}(a) \\
& =n \cdot \log _{2}(a)
\end{aligned}
$$

Division Rule

$$
\log _{2}\left(\frac{a}{b}\right)=\log _{2}\left(a \cdot \frac{1}{b}\right)
$$

Division Rule

$$
\begin{aligned}
\log _{2}\left(\frac{a}{b}\right) & =\log _{2}\left(a \cdot \frac{1}{b}\right) \\
& =\log _{2}(a)+\log _{2}\left(\frac{1}{b}\right)
\end{aligned}
$$

Division Rule

$$
\begin{aligned}
\log _{2}\left(\frac{a}{b}\right) & =\log _{2}\left(a \cdot \frac{1}{b}\right) \\
& =\log _{2}(a)+\log _{2}\left(\frac{1}{b}\right) \\
& =\log _{2}(a)+\log _{2}\left(b^{-1}\right)
\end{aligned}
$$

Division Rule

$$
\begin{aligned}
\log _{2}\left(\frac{a}{b}\right) & =\log _{2}\left(a \cdot \frac{1}{b}\right) \\
& =\log _{2}(a)+\log _{2}\left(\frac{1}{b}\right) \\
& =\log _{2}(a)+\log _{2}\left(b^{-1}\right) \\
& =\log _{2}(a)-\log _{2}(b)
\end{aligned}
$$

Change of Base

$$
b^{m}=n
$$

Change of Base

$$
\begin{aligned}
b^{m} & =n \\
\log _{c}\left(b^{m}\right) & =\log _{c}(n)
\end{aligned}
$$

Change of Base

$$
\begin{aligned}
b^{m} & =n \\
\log _{c}\left(b^{m}\right) & =\log _{c}(n) \\
m \cdot \log _{c}(b) & =\log _{c}(n)
\end{aligned}
$$

Change of Base

$$
\begin{aligned}
b^{m} & =n \\
\log _{c}\left(b^{m}\right) & =\log _{c}(n) \\
m \cdot \log _{c}(b) & =\log _{c}(n) \\
m & =\frac{\log _{c}(n)}{\log _{c}(b)}
\end{aligned}
$$

Change of Base

$$
\begin{aligned}
b^{m} & =n \\
\log _{c}\left(b^{m}\right) & =\log _{c}(n) \\
m \cdot \log _{c}(b) & =\log _{c}(n) \\
m & =\frac{\log _{c}(n)}{\log _{c}(b)} \\
\log _{b}(n) & =\frac{\log _{c}(n)}{\log _{c}(b)}
\end{aligned}
$$

Summary

$$
\begin{array}{ll}
\text { Exponent Rule } & \log \left(n^{a}\right)=a \log (n) \\
\text { Product Rule } & \log (a)=\log (a)+\log (b) \\
\text { Division Rule } & \log \left(\frac{a}{b}\right)=\log _{a}(a)-\log (b) \\
\text { Change of Base } & \log _{b}(n)=\log _{c}(n) \\
\log _{c}(b) \\
\text { Inverse } & b^{\log _{b}(n)}=\log _{b}\left(b^{n}\right)=n
\end{array}
$$

* for this class, always assume base 2 unless otherwise stated *

