CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Lec 05: Asymptotic Analysis

Announcements and Feedback

- Join Piazza! (Link on course website)
- Normal recitations (w/attendance) begin next week
- Academic Integrity Quiz due 2/4 @ 11:59PM (MUST GET 100\%)
- PAO due 2/4 @ 11:59PM (MUST GET 100\%)
- WA1 due 2/4 @ 11:59PM

Analysis Checklist

1. Don't think in terms of wall-time, think in terms of "number of steps"
2. To give a useful solution, we should take "scale" into account

- How does the runtime change as we change the size of the input?

3. Focus on "large" inputs

- Rank functions based on how they behave at large scales

4. Decouple algorithm from infrastructure/implementation

Attempt \#1: Wall-clock time?

- What is fast?
- 10s? 100ms? 10ns?
- ...it depends on the task
- Algorithm vs Implementation
- Compare Grace Hopper's implementation to yours
- What machine are you running on?
- Your old laptop? A lab machine? The newest, shiniest processor?
- What bottlenecks exist? CPU vs IO vs Memory vs Network...

Wall-clock time is not terribly useful...

Attempt \#2: Growth Functions

Not a function in code...but a mathematical function:

$$
T(n)
$$

n : The "size" of the input
ie: number of users,rows, pixels, etc
$T(n)$: The number of "steps" taken for input of size n
ie: 20 steps per user, where $\mathrm{n}=\mid$ Users|, is $20 \times \mathrm{n}$

Some Basic Assumptions:

Problem sizes are non-negative integers

$$
n \in\{0,1,2,3, \ldots\}=\{0\} \cup Z^{+}
$$

We can't reverse time...(obviously)

$$
T(n)>0
$$

Smaller problems aren't harder than bigger problems

$$
n_{1}<n_{2} \Rightarrow T\left(n_{1}\right) \leq T\left(n_{2}\right)
$$

Some Basic Assumptions:

Problem sizes are non-negative integers

$$
n \in\{0,1,2,3, \ldots\}=\{0\} \cup Z^{+}
$$

We can't reverse time...(obviously)

$$
T(n)>0
$$

$$
T:\{0\} \cup \mathbb{Z}^{+} \rightarrow \mathbb{R}^{+}
$$

T is non-decreasing

Smaller problems aren't harder than bigger problems

$$
n_{1}<n_{2} \Rightarrow T\left(n_{1}\right) \leq T\left(n_{2}\right)
$$

First Problem...

We are still implementation dependent...

$$
\begin{aligned}
& T_{1}(n)=19 n \\
& T_{2}(n)=20 n
\end{aligned}
$$

First Problem...

We are still implementation dependent...

$$
\begin{aligned}
& T_{1}(n)=19 n \\
& T_{2}(n)=20 n
\end{aligned}
$$

Does 1 extra step per element really matter...?

Is this just an implementation detail?

First Problem...

We are still implementation dependent...

$$
\begin{aligned}
& T_{1}(n)=19 n \\
& T_{2}(n)=20 n \\
& T_{3}(n)=2 n^{2}
\end{aligned}
$$

T_{1} and T_{2} are much
more "similar" to
each other than they are to T_{3}

First Problem...

We are still implementation dependent...

$$
\begin{aligned}
& T_{1}(n)=19 n \\
& T_{2}(n)=20 n \\
& T_{3}(n)=2 n^{2}
\end{aligned}
$$

T_{1} and T_{2} are much more "similar" to each other than they are to T_{3}

How do we capture this idea formally?

How Do We Capture Behavior at Scale?

Consider the following two functions:

$$
\frac{1}{100} n^{3}+10 n+1000000 \log (n)
$$

$$
n^{3}
$$

How Do We Capture Behavior at Scale?

How Do We Capture Behavior at Scale?

Attempt \#3: Asymptotic Analysis

We want to organize runtimes (growth functions) into different Complexity Classes

Within the same complexity class, runtimes "behave the same"/"have the same shape" (at scale)

Getting More Formal

When do we consider two functions to have the same shape?

Additive Factors

Consider two growth functions:

$$
\begin{aligned}
& T_{1}(n)=3 n \\
& T_{2}(n)=3 n+3
\end{aligned}
$$

Additive Factors

Consider two growth functions:

$$
\begin{aligned}
& T_{1}(n)=3 n \\
& T_{2}(n)=3 n+3
\end{aligned}
$$

These functions still have the same shape...the same complexity

Multiplicative Factors

Consider two growth functions:

$$
\begin{aligned}
& T_{1}(n)=3 n \\
& T_{3}(n)=6 n
\end{aligned}
$$

Multiplicative Factors

Consider two growth functions:

$$
\begin{aligned}
& T_{1}(n)=3 n \\
& T_{3}(n)=6 n
\end{aligned}
$$

These functions still have the same shape...the same complexity

n

A Counter Example

Now consider:
$T_{4}(n)=n^{2}$

A Counter Example

Now consider:
$T_{4}(n)=n^{2}$

A Counter Example

Now consider:
$T_{4}(n)=n^{2}$

Complexity (so far...)

If there are constants \mathbf{c}_{1} and \mathbf{c}_{2} such that:

$$
T_{1}(n)=c_{1}+c_{2} T_{2}(n)
$$

then we say \boldsymbol{T}_{1} and \boldsymbol{T}_{2} are in the same complexity class*

* not a complete definition...but we are getting there

Back To Growth Functions

So what exactly counts as a step?

Back To Growth Functions

So what exactly counts as a step?

- An arithmetic operation
- Accessing a variable
- Printing to the screen
- etc
but...

Counting Steps

How many steps in each of these snippets?

$$
\begin{array}{l|l}
\hline 1 & x=10 ; \\
\hline
\end{array}
$$

$$
\begin{array}{l|l}
1 & x=10 ; \\
2 & y=20 ; \\
\hline
\end{array}
$$

Counting Steps

How many steps in each of these snippets?

| 1 | $\mathrm{X}=10 ;$ |
| ---: | :--- | :--- |
| $\boldsymbol{T}_{1}(\boldsymbol{n})$ | $=1$ |

| 1 X
 2 $=10 ;$
 2 y |
| ---: | :--- | :--- |

Counting Steps

How many steps in each of these snippets?

	$\mathrm{x}=10$;
$T_{1}(n)=1$	
	l $\begin{aligned} & \text { = }=10 ; \\ & y=20 ;\end{aligned}$

$T_{2}(n)=2$

Counting Steps

How many steps in each of these snippets?

	$\mathrm{x}=10$;
$T_{1}(n)=1$	
	l $\begin{aligned} & \text { = }=10 ; \\ & y=20 ;\end{aligned}$

$T_{2}(n)=2$

$$
T_{2}(n)=T_{1}(n)+1
$$

They are in the same complexity class...in 250 we treat them as the same ${ }_{30}$

Counting Steps

A step therefore is any code that always has the same runtime

Notation - Big Theta

$\boldsymbol{\Theta}(f(n))$ is the set of all functions in the same complexity class as \boldsymbol{f}

Notation - Big Theta

$\boldsymbol{\Theta}(f(n))$ is the set of all functions in the same complexity class as \boldsymbol{f}

Example: $\Theta(3 n+4)=\{$
n,
n-6,
$15 n$,
\}

Notation - Big Theta

$\boldsymbol{\Theta}(f(n))$ is the set of all functions in the same complexity class as \boldsymbol{f}

```
Example: }\Theta(3n+4)=
    n,
    n-6,
    15n,
}
\(\boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Theta}(\boldsymbol{f}(\boldsymbol{n}))\) means \(\boldsymbol{g}\) and \(\boldsymbol{f}\) are in the same complexity class
```


Common Shorthand

$$
\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{\Theta}(f(\boldsymbol{n})) \text { is common shorthand for } \boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Theta}(f(\boldsymbol{n}))
$$

Common Shorthand

$$
\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{\Theta}(f(\boldsymbol{n})) \text { is common shorthand for } \boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Theta}(f(\boldsymbol{n}))
$$

$\boldsymbol{g}(\boldsymbol{n})$ is in $\boldsymbol{\Theta}(f(\boldsymbol{n}))$ is common shorthand for $\boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Theta}(\boldsymbol{f}(\mathbf{n}))$

Common Shorthand

$$
\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{\Theta}(f(n)) \text { is common shorthand for } \boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Theta}(f(\boldsymbol{n}))
$$

$\boldsymbol{g}(\boldsymbol{n})$ is in $\boldsymbol{\Theta}(\boldsymbol{f}(\boldsymbol{n}))$ is common shorthand for $\boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Theta}(\boldsymbol{f}(\boldsymbol{n}))$
Algorithm Foo is in $\boldsymbol{\Theta}(\boldsymbol{f}(\boldsymbol{n})$) is common shorthand for $\boldsymbol{T}(\boldsymbol{n}) \in \boldsymbol{\Theta}(\boldsymbol{f}(\boldsymbol{n}))$ where $\boldsymbol{T}(\boldsymbol{n})$ is the growth function describing the runtime of Foo

Common Shorthand

$$
\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{\Theta}(f(n)) \text { is common shorthand for } \boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Theta}(f(\boldsymbol{n}))
$$

$\boldsymbol{g}(\boldsymbol{n})$ is in $\boldsymbol{\Theta}(\boldsymbol{f}(\boldsymbol{n}))$ is common shorthand for $\boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Theta}(\boldsymbol{f}(\boldsymbol{n}))$
Algorithm Foo is in $\boldsymbol{\Theta}(\boldsymbol{f}(\boldsymbol{n})$) is common shorthand for $\boldsymbol{T}(\boldsymbol{n}) \boldsymbol{\Theta} \boldsymbol{\Theta}(\boldsymbol{f}(\boldsymbol{n}))$ where
$\boldsymbol{T}(\boldsymbol{n})$ is the growth function describing the runtime of Foo
Moving forward: $\boldsymbol{f}(\boldsymbol{n}), \boldsymbol{g}(\boldsymbol{n}), \boldsymbol{f}_{\mathbf{1}}(\boldsymbol{n})$, etc will be used to name any mathematical function that's a growth function
$\boldsymbol{T}(n), \boldsymbol{T}_{1}(n)$, etc will be used for growth functions for specific algorithms

$\Theta(1)$: Constant

Complexity Class Names

$\boldsymbol{\Theta}(\log (n)):$ Logarithmic
$\boldsymbol{\Theta}(n)$: Linear
$\boldsymbol{\Theta}(\boldsymbol{n} \log (n)):$ Log-Linear
$\Theta\left(n^{2}\right):$ Quadratic
$\Theta\left(n^{k}\right)$: Polynomial
$\boldsymbol{\Theta}\left(\mathbf{2}^{n}\right)$: Exponential

Combining Classes

What complexity class is $\boldsymbol{g}(\boldsymbol{n})=\boldsymbol{n}+\boldsymbol{n}^{\mathbf{2}}$ in?

Combining Classes

Combining Classes

Combining Classes

$\boldsymbol{n}^{\mathbf{2}}+\boldsymbol{n}$ behaves a lot more like $\boldsymbol{n}^{\mathbf{2}}$ than \boldsymbol{n} as \boldsymbol{n} gets bigger

But it's not a constant factor difference
n
n

Combining Classes

Consider the fact that $\boldsymbol{n}^{\mathbf{2}}$ and $\mathbf{2} \mathbf{n}^{\mathbf{2}}$ are in the same complexity class...
How does $\boldsymbol{n}^{2}+\boldsymbol{n}$ relate to these two functions?

Combining Classes

Consider the fact that $\boldsymbol{n}^{\mathbf{2}}$ and $\mathbf{2} \mathbf{n}^{\mathbf{2}}$ are in the same complexity class...
$1 \leq \boldsymbol{n} \quad$ remember, we only care about problems with non-negative input sizes

Combining Classes

Consider the fact that $\boldsymbol{n}^{\mathbf{2}}$ and $\mathbf{2} \mathbf{n}^{\mathbf{2}}$ are in the same complexity class...

$$
\begin{aligned}
& 1 \leq n \\
& n \leq n^{2} \quad \text { multiply both sides by } n
\end{aligned}
$$

Combining Classes

Consider the fact that $\boldsymbol{n}^{\mathbf{2}}$ and $\mathbf{2} \mathbf{n}^{\mathbf{2}}$ are in the same complexity class...

$$
\begin{aligned}
1 & \leq n \\
n & \leq n^{2} \\
n+n^{2} & \leq 2 n^{2} \quad \text { add } n^{2} \text { to both sides }
\end{aligned}
$$

Combining Classes

Consider the fact that $\boldsymbol{n}^{\mathbf{2}}$ and $\mathbf{2} \mathbf{n}^{\mathbf{2}}$ are in the same complexity class...

$$
\boldsymbol{0} \leq \boldsymbol{n} \quad \text { obviously true }
$$

Combining Classes

Consider the fact that $\boldsymbol{n}^{\mathbf{2}}$ and $\mathbf{2} \mathbf{n}^{\mathbf{2}}$ are in the same complexity class...

$$
\begin{aligned}
0 & \leq n \\
\boldsymbol{n}^{2} & \leq n+\boldsymbol{n}^{2} \quad \text { add } n^{2} \text { to both sides }
\end{aligned}
$$

Combining Classes

Consider the fact that $\boldsymbol{n}^{\mathbf{2}}$ and $\mathbf{2} \mathbf{n}^{\mathbf{2}}$ are in the same complexity class...

$$
n^{2} \leq n+n^{2} \leq 2 n^{2}
$$

So $\boldsymbol{n}^{2}+\boldsymbol{n}$ should probably be in $\boldsymbol{\Theta}\left(\boldsymbol{n}^{2}\right)$ too...

Complexity: A More Complete Definition

\boldsymbol{f} and \boldsymbol{g} are in the same complexity class iff:
\boldsymbol{g} is bounded from above by something f-shaped and
g is bounded from below by something f-shaped

Complexity: A More Complete Definition

\boldsymbol{f} and \boldsymbol{g} are in the same complexity class iff:
\boldsymbol{g} is bounded from above by something f-shaped
\boldsymbol{g} is bounded from below by something f-shaped $\begin{aligned} & f \text { shifted or stretched by } \\ & \text { a constant factor }\end{aligned}$

Complexity: A More Complete Definition

\boldsymbol{f} and \boldsymbol{g} are in the same complexity class iff:
g is bounded from above by something f-shaped
and
g is bounded from below by something f-shaped

What do we mean by bounded from above/below?

Bounding from Above: Big O

$g(n)$ is bounded from above by $f(n)$ if:
There exists a constant $\boldsymbol{n}_{\mathbf{0}}>\mathbf{0}$ and a constant $\mathbf{c}>\mathbf{0}$ such that:

$$
\text { For all } n>n_{0}, g(n) \leq c \cdot f(n)
$$

Bounding from Above: Big O

$g(n)$ is bounded from above by $f(n)$ if:
There exists a constant $\boldsymbol{n}_{\mathbf{0}}>\mathbf{0}$ and a constant $\boldsymbol{c}>\mathbf{0}$ such that:

$$
\text { For all } n>n_{0}, g(n) \leq c \cdot f(n)
$$

In this case, we say that $g(n) \in O(f(n))$

Bounded from Above: Big O

Bounded from Above: Big O

Bounded from Above: Big O

Bounding from Below: Big Omega

$\boldsymbol{g}(\boldsymbol{n})$ is bounded from below by $\boldsymbol{f}(\boldsymbol{n})$ if:
There exists a constant $\boldsymbol{n}_{\mathbf{0}}>\mathbf{0}$ and a constant $\boldsymbol{c}>\mathbf{0}$ such that:

$$
\text { For all } n>n_{0}, g(n) \geq c \cdot f(n)
$$

Bounding from Below: Big Omega

$\boldsymbol{g}(\boldsymbol{n})$ is bounded from below by $f(n)$ if:
There exists a constant $\boldsymbol{n}_{\mathbf{0}}>\mathbf{0}$ and a constant $\boldsymbol{c}>\mathbf{0}$ such that:

$$
\text { For all } n>n_{0}, g(n) \geq c \cdot f(n)
$$

In this case, we say that $\boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Omega}(f(n))$

Bounded from Below: Big \boldsymbol{Q}

Bounded from Below: Big \boldsymbol{Q}

Bounded from Below: Big \boldsymbol{Q}

The shaded area represents $\boldsymbol{\Omega}(\boldsymbol{f}(\boldsymbol{n}))$ the set of all functions bounded from below by something f-shaped
steps
\qquad

Complexity: A More Complete Definition

\boldsymbol{f} and \boldsymbol{g} are in the same complexity class iff:
\boldsymbol{g} is bounded from above by something f-shaped and
g is bounded from below by something f-shaped

Complexity: A More Complete Definition

$\boldsymbol{g}(n) \in \Theta(f(n))$ iff:
g is bounded from above by something f-shaped and
\boldsymbol{g} is bounded from below by something f-shaped

Complexity: A More Complete Definition

$g(n) \in \Theta(f(n))$ iff:
$g(n) \in O(f(n))$
and
g is bounded from below by something f-shaped

Complexity: A More Complete Definition

$g(n) \in \Theta(f(n))$ iff:
$g(n) \in O(f(n))$
and
$g(n) \in \boldsymbol{\Omega}(f(n))$

Complexity Class: Big ©

Complexity Class: Big ©

The yellow is $\boldsymbol{\Omega}(\boldsymbol{f}(\boldsymbol{n}))$
steps
$f(n)$

Complexity Class: Big ©

Complexity Class: Big \bigodot

$\Theta(f(n))$ is the set of functions that will stay between $\mathbf{c}_{\text {high }} \cdot \mathbf{f}(\mathbf{n})$ and $\mathbf{c}_{\text {low }} \cdot \boldsymbol{f}(\mathbf{n})$ (after some constant $\boldsymbol{n}_{\mathbf{0}}$)

steps

Complexity Class Ranking

$\Theta(1)<\Theta(\log (n))<\Theta(n)<\Theta(n \log (n))<\Theta\left(n^{2}\right)<\Theta\left(n^{3}\right)<\Theta\left(2^{n}\right)$

Rules of Thumb

$\Theta(1)<\Theta(\log (n))<\Theta(n)<\Theta(n \log (n))<\Theta\left(n^{2}\right)<\Theta\left(n^{3}\right)<\Theta\left(2^{n}\right)$

Rules of Thumb

$$
\begin{aligned}
& O(1) \subset O(\log (n)) \subset O(n) \subset O(n \log (n)) \subset O\left(n^{2}\right) \subset O\left(n^{3}\right) \subset O\left(2^{n}\right) \\
& \Omega\left(2^{n}\right) \subset \Omega\left(n^{3}\right) \subset \Omega\left(n^{2}\right) \subset \Omega(n \log (n)) \subset \Omega(n) \subset \Omega(\log (n)) \subset \Omega(1)
\end{aligned}
$$

Rules of Thumb

If something is bounded from above by $\log (\boldsymbol{n})$, it's also bounded from above by \boldsymbol{n}

$$
\begin{aligned}
& O(1) \subset O(\log (n)) \subset O(n) \subset O(n \log (n)) \subset O\left(n^{2}\right) \subset 0\left(n^{3}\right) \subset O\left(2^{n}\right) \\
& \Omega\left(2^{n}\right) \subset \Omega\left(n^{3}\right) \subset \Omega\left(n^{2}\right) \subset \Omega(n \log (n)) \subset \Omega(n) \subset \Omega(\log (n)) \subset \Omega(1)
\end{aligned}
$$

Rules of Thumb

$$
\begin{aligned}
& 0(1) \subset 0(\log (n)) \subset 0(n) \subset 0(n \log (n)) \subset 0\left(n^{2}\right) \subset 0\left(n^{3}\right) \subset 0\left(2^{n}\right) \\
& \Omega\left(2^{n}\right) \subset \Omega\left(n^{3}\right) \subset \Omega\left(n^{2}\right) \subset \Omega(n \log (n)) \subset \Omega(n) \subset \Omega(\log (n)) \subset \Omega(1) \\
& \text { If something is bounded from below by } n^{2}, \text { it's also bounded from below by } n
\end{aligned}
$$

Rules of Thumb

$\mathbf{O}(f(n))($ Big- 0): The complexity class of $f(n)$ and every lesser class
$\Theta(f(n))($ Big $-\Theta)$: The complexity class of $f(n)$
$\boldsymbol{\Omega}(f(n))($ Big $-\boldsymbol{\Omega})$: The complexity class of $\boldsymbol{f}(\boldsymbol{n})$ and every greater class

0 ${ }^{\circ}{ }^{\prime}$ Ω

© Aleksandra Patrzalek, 2012

