CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 05: Asymptotic Analysis

Announcements and Feedback

- Join Piazza! (Link on course website)
- Normal recitations (w/attendance) begin next week
- Academic Integrity Quiz due 2/4 @ 11:59PM (MUST GET 100%)
- PA0 due 2/4 @ 11:59PM (MUST GET 100%)
- WA1 due 2/4 @ 11:59PM

Analysis Checklist

- Don't think in terms of wall-time, think in terms of "number of steps"
- 2. To give a useful solution, we should take "scale" into account
 - O How does the runtime change as we change the size of the input?
- 3. Focus on "large" inputs
 - Rank functions based on how they behave at large scales
- 4. Decouple algorithm from infrastructure/implementation

Attempt #1: Wall-clock time?

- What is fast?
 - 10s? 100ms? 10ns?
 - ...it depends on the task
- Algorithm vs Implementation
 - Compare Grace Hopper's implementation to yours
- What machine are you running on?
 - Your old laptop? A lab machine? The newest, shiniest processor?
- What bottlenecks exist? CPU vs IO vs Memory vs Network...

Wall-clock time is not terribly useful...

Attempt #2: Growth Functions

Not a function in code...but a mathematical function:

T(n)

n: The "size" of the input

ie: number of users,rows, pixels, etc

T(n): The number of "steps" taken for input of size n

ie: 20 steps per user, where n = |Users|, is 20 x n

Some Basic Assumptions:

Problem sizes are non-negative integers

$$n \in \{0, 1, 2, 3, ...\} = \{0\} \cup \mathbb{Z}^+$$

We can't reverse time...(obviously)

Smaller problems aren't harder than bigger problems

$$n_1 < n_2 \Rightarrow T(n_1) \leq T(n_2)$$

Some Basic Assumptions:

Problem sizes are non-negative integers

$$n \in \{0, 1, 2, 3, ...\} = \{0\} \cup \mathbb{Z}^+$$

We can't reverse time...(obviously)

 $T: \{0\} \cup \mathbb{Z}^+ \rightarrow \mathbb{R}^+$

T is non-decreasing

Smaller problems aren't harder than bigger problems

$$n_1 < n_2 \Rightarrow T(n_1) \leq T(n_2)$$

We are still implementation dependent...

$$T_1(n) = 19n$$

$$T_2(n) = 20n$$

We are still implementation dependent...

$$T_1(n) = 19n$$

$$T_2(n) = 20n$$

Does 1 extra step per element really matter...?

Is this just an implementation detail?

We are still implementation dependent...

$$T_{_1}(n)=19n$$

$$T_2(n) = 20n$$

$$T_3(n) = 2n^2$$

 T_1 and T_2 are much more "similar" to each other than they are to T_3

We are still implementation dependent...

$$T_{1}(n) = 19n$$

$$T_2(n) = 20n$$

$$T_3(n) = 2n^2$$

 T_1 and T_2 are much more "similar" to each other than they are to T_3

How do we capture this idea formally?

How Do We Capture Behavior at Scale?

Consider the following two functions:

$$\frac{1}{100}n^3 + 10n + 1000000\log(n)$$

 n^3

How Do We Capture Behavior at Scale?

How Do We Capture Behavior at Scale?

Attempt #3: Asymptotic Analysis

We want to organize runtimes (growth functions) into different *Complexity Classes*

Within the same complexity class, runtimes "behave the same"/"have the same shape" (at scale)

Getting More Formal

When do we consider two functions to have the same shape?

Additive Factors

$$T_1(n) = 3n$$

$$T_2(n) = 3n + 3$$

Additive Factors

$$T_1(n) = 3n$$

$$T_2(n) = 3n + 3$$

Multiplicative Factors

$$T_1(n) = 3n$$

$$T_3(n) = 6n$$

Multiplicative Factors

$$T_1(n) = 3n$$

$$T_3(n) = 6n$$

A Counter Example

Now consider:

$$T_4(n) = n^2$$

A Counter Example

Now consider:

$$T_{\Delta}(n) = n^2$$

A Counter Example

Now consider:

$$T_4(n) = n^2$$

Complexity (so far...)

If there are constants c_1 and c_2 such that:

$$T_1(n) = c_1 + c_2 T_2(n)$$

then we say T_1 and T_2 are in the same complexity class*

^{*} not a complete definition...but we are getting there

Back To Growth Functions

So what exactly counts as a step?

Back To Growth Functions

So what exactly counts as a step?

- An arithmetic operation
- Accessing a variable
- Printing to the screen
- etc

but...

How many steps in each of these snippets?

```
1 x = 10;
```

```
1 x = 10;
2 y = 20;
```

How many steps in each of these snippets?

```
1 x = 10;
```

$$T_1(n) = 1$$

```
1 x = 10;
2 y = 20;
```

How many steps in each of these snippets?

```
1 x = 10;
```

$$T_1(n) = 1$$

```
1 x = 10;
2 y = 20;
```

$$T_{2}(n) = 2$$

How many steps in each of these snippets?

```
1 x = 10;
```

$$T_1(n) = 1$$

$$T_2(n)=2$$

$$T_2(n) = T_1(n) + 1$$

They are in the same complexity class...in 250 we treat them as the same 30

A **step** therefore is **any code** that always has the same runtime

Notation - Big Theta

 $\Theta(f(n))$ is the **set** of all functions in the same complexity class as f

Notation - Big Theta

 $\Theta(f(n))$ is the **set** of all functions in the same complexity class as f

```
Example: Θ(3n + 4) = {
    n,
    n - 6,
    15n,
    ...
}
```

Notation - Big Theta

 $\Theta(f(n))$ is the **set** of all functions in the same complexity class as f

```
Example: ⊕(3n + 4) = {
    n,
    n - 6,
    15n,
    ...
}
```

 $g(n) \in \Theta(f(n))$ means g and f are in the same complexity class

Common Shorthand

 $g(n) = \Theta(f(n))$ is common shorthand for $g(n) \in \Theta(f(n))$

Common Shorthand

```
g(n) = \Theta(f(n)) is common shorthand for g(n) \in \Theta(f(n))
```

g(n) is in $\Theta(f(n))$ is common shorthand for $g(n) \in \Theta(f(n))$

Common Shorthand

 $g(n) = \Theta(f(n))$ is common shorthand for $g(n) \in \Theta(f(n))$

g(n) is in $\Theta(f(n))$ is common shorthand for $g(n) \in \Theta(f(n))$

Algorithm Foo is in $\Theta(f(n))$ is common shorthand for $T(n) \subseteq \Theta(f(n))$ where T(n) is the growth function describing the runtime of Foo

Common Shorthand

 $g(n) = \Theta(f(n))$ is common shorthand for $g(n) \in \Theta(f(n))$

g(n) is in $\Theta(f(n))$ is common shorthand for $g(n) \in \Theta(f(n))$

Algorithm Foo is in $\Theta(f(n))$ is common shorthand for $T(n) \subseteq \Theta(f(n))$ where T(n) is the growth function describing the runtime of Foo

Moving forward: f(n), g(n), $f_1(n)$, etc will be used to name any mathematical function that's a growth function T(n), $T_1(n)$, etc will be used for growth functions for specific algorithms

Complexity Class Names

 $\Theta(1)$: Constant

 $\Theta(\log(n))$: Logarithmic

 $\Theta(n)$: Linear

 $\Theta(n \log(n))$: Log-Linear

 $\Theta(n^2)$: Quadratic

 $\Theta(n^k)$: Polynomial

 $\Theta(2^n)$: Exponential

What complexity class is $g(n) = n + n^2$ in?

Consider the fact that n^2 and $2n^2$ are in the same complexity class...

How does $n^2 + n$ relate to these two functions?

Consider the fact that n^2 and $2n^2$ are in the same complexity class...

 $1 \leq n$

remember, we only care about problems with non-negative input sizes

Consider the fact that n^2 and $2n^2$ are in the same complexity class...

$$1 \le n$$

 $n \le n^2$ multiply both sides by n

Consider the fact that n^2 and $2n^2$ are in the same complexity class...

$$1 \le n$$

$$n \leq n^2$$

$$n + n^2 \le 2n^2$$

add *n*² to both sides

Consider the fact that n^2 and $2n^2$ are in the same complexity class...

$$0 \le n$$
 obviously true

Consider the fact that n^2 and $2n^2$ are in the same complexity class...

$$0 \le n$$

$$n^2 \le n + n^2$$
 add n^2 to both sides

Consider the fact that n^2 and $2n^2$ are in the same complexity class...

$$n^2 \le n + n^2 \le 2n^2$$

So $n^2 + n$ should probably be in $\Theta(n^2)$ too...

f and **g** are in the same complexity class iff:

g is bounded from above by something f-shaped

and

g is bounded from below by something f-shaped

f and **g** are in the same complexity class iff:

f and **g** are in the same complexity class iff:

g is **bounded from above** by something f-shaped

and

g is **bounded from below** by something f-shaped

What do we mean by bounded from above/below?

Bounding from Above: Big O

g(n) is bounded from above by f(n) if:

There exists a constant $n_0 > 0$ and a constant c > 0 such that:

For all
$$n > n_0$$
, $g(n) \le c \cdot f(n)$

Bounding from Above: Big O

g(n) is bounded from above by f(n) if:

There exists a constant $n_0 > 0$ and a constant c > 0 such that:

For all
$$n > n_0$$
, $g(n) \le c \cdot f(n)$

In this case, we say that $g(n) \in O(f(n))$

Bounded from Above: Big O

Bounded from Above: Big O

Bounded from Above: Big O

Bounding from Below: Big Omega

g(n) is bounded from below by f(n) if:

There exists a constant $n_0 > 0$ and a constant c > 0 such that:

For all
$$n > n_0$$
, $g(n) \ge c \cdot f(n)$

Bounding from Below: Big Omega

g(n) is bounded from below by f(n) if:

There exists a constant $n_0 > 0$ and a constant c > 0 such that:

For all
$$n > n_0$$
, $g(n) \ge c \cdot f(n)$

In this case, we say that $g(n) \in \Omega(f(n))$

Bounded from Below: Big Ω

Bounded from Below: Big Ω

Bounded from Below: Big Ω

f and **g** are in the same complexity class iff:

g is bounded from above by something f-shaped

and

g is bounded from below by something f-shaped

```
g(n) \in \Theta(f(n)) iff:
```

g is bounded from above by something f-shaped

and

g is bounded from below by something f-shaped

```
g(n) \in \Theta(f(n)) iff:

g(n) \in O(f(n))

and

g is bounded from below by something f-shaped
```

```
g(n) \in \Theta(f(n)) iff:

g(n) \in O(f(n))

and

g(n) \in \Omega(f(n))
```

Complexity Class: Big **©**

Complexity Class: Big **\O**

Complexity Class: Big **©**

Complexity Class: Big Θ

Complexity Class Ranking

$$\Theta(1) < \Theta(\log(n)) < \Theta(n) < \Theta(n \log(n)) < \Theta(n^2) < \Theta(n^3) < \Theta(2^n)$$

$$\Theta(1) < \Theta(\log(n)) < \Theta(n) < \Theta(n \log(n)) < \Theta(n^2) < \Theta(n^3) < \Theta(2^n)$$

$$O(1) \subset O(\log(n)) \subset O(n) \subset O(n \log(n)) \subset O(n^2) \subset O(n^3) \subset O(2^n)$$

$$\Omega(2^n) \subset \Omega(n^3) \subset \Omega(n^2) \subset \Omega(n \log(n)) \subset \Omega(n) \subset \Omega(\log(n)) \subset \Omega(1)$$

If something is bounded from above by log(n), it's also bounded from above by n

$$O(1) \subset O(\log(n)) \subset O(n) \subset O(n \log(n)) \subset O(n^2) \subset O(n^3) \subset O(2^n)$$

$$\Omega(2^n) \subset \Omega(n^3) \subset \Omega(n^2) \subset \Omega(n \log(n)) \subset \Omega(n) \subset \Omega(\log(n)) \subset \Omega(1)$$

$$O(1) \subset O(\log(n)) \subset O(n) \subset O(n \log(n)) \subset O(n^2) \subset O(n^3) \subset O(2^n)$$

$$\Omega(2^n) \subset \Omega(n^3) \subset \Omega(n^2) \subset \Omega(n \log(n)) \subset \Omega(n) \subset \Omega(\log(n)) \subset \Omega(1)$$

If something is bounded from below by n^2 , it's also bounded from below by n

O(f(n)) (Big-O): The complexity class of f(n) and every lesser class

 $\Theta(f(n))$ (Big- Θ): The complexity class of f(n)

 $\Omega(f(n))$ (Big- Ω): The complexity class of f(n) and every greater class

