CSE 250

Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 06: Proving Bounds

Announcements and Feedback

- PA1 released
- Testing phase due Sunday 2/11 @ 11:59PM
- Recitation this week will go over tips for testing
- AutoLab should be up later tonight
- Try building/running your tests before submitting!
- Implementation phase due Sunday 2/18 @ 11:59PM

"Shape" of a Function

When do we consider two functions to have the same shape?

Additive
 Factors

Consider two growth functions:

$$
\begin{aligned}
& T_{1}(n)=3 n \\
& T_{2}(n)=3 n+3
\end{aligned}
$$

Adding (or subtracting) a constant preserves the shape

Multiplicative Factors

Consider two growth functions:

$$
\begin{aligned}
& T_{1}(n)=3 n \\
& T_{3}(n)=6 n
\end{aligned}
$$

Multiplying (or dividing) by a constant preserves the shape

n

A Counter Example

Now consider:
$T_{4}(n)=n^{2}$

Complexity Class

\boldsymbol{f} and \boldsymbol{g} are in the same complexity class, denoted $\boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Theta}(f(n))$, iff:
g is bounded from above by something f-shaped
and
g is bounded from below by something f-shaped

Bounded from Above: Big O

$\boldsymbol{g}(\boldsymbol{n})$ is bounded from above by $f(n)$ if:
There exists a constant $\boldsymbol{n}_{\mathbf{0}}>\mathbf{0}$ and a constant $\boldsymbol{c}>\mathbf{0}$ such that:

$$
\text { For all } n>n_{0}, g(n) \leq c \cdot f(n)
$$

In this case, we say that $g(n) \in O(f(n))$
$O(f(n))$ is the set of all functions bounded from above by $f(n)$

Bounded from Above: Big O

Bounded from Above: Big O

Bounded from Above: Big O

Bounded from Above: Big O

$$
g(n)=\frac{n^{2}}{2}+4 n+7
$$

Prove that $\boldsymbol{g}(\mathbf{n}) \in \mathbf{O}\left(\mathbf{n}^{2}\right)$

$$
\frac{n^{2}}{2}+4 n+7 \leq c \cdot n^{2}
$$

Inequality Tricks

1. $f(n) \geq g(n)$ is true if $f(n) / a \geq g(n) / a$ (for any $a>0$)
2. $f(n) \geq g(n)$ is true if $f(n) * a \geq g(n) * a$ (for any $a>0$)
3. $\boldsymbol{x}+\boldsymbol{a} \geq \boldsymbol{y}+\boldsymbol{b}$ is true if $\boldsymbol{x} \geq \boldsymbol{y}$ and $\boldsymbol{a} \geq \boldsymbol{b}$ (for any $\boldsymbol{a}, \boldsymbol{b}$)
4. $\boldsymbol{x} \geq \boldsymbol{y}$ is true if $\boldsymbol{x} \geq \boldsymbol{a}$ and $a \geq y$ (for any a)
5. $1 \leq \log (n) \leq n \leq n^{2} \leq n^{k}($ for $k \geq 2) \leq 2^{n}$

Bounded from Above: Big O

First show:

$$
\frac{n^{2}}{2} \leq c_{1} \cdot n^{2}
$$

$$
4 n \leq c_{2} \cdot n^{2}
$$

$$
7 \leq c_{3} \cdot n^{2}
$$

Bounded from Above: Big O

$$
\frac{n^{2}}{2} \leq c_{1} \cdot n^{2}
$$

Bounded from Above: Big O

$$
\frac{n^{2}}{2} \leq c_{1} \cdot n^{2}
$$

This is true for all $\boldsymbol{n} \geq \mathbf{0}$ if we set $\boldsymbol{c}_{\boldsymbol{1}}$ to $\mathbf{1 / 2}$

Bounded from Above: Big O

$$
4 n \leq c_{2} \cdot n^{2}
$$

Bounded from Above: Big O

$$
4 n \leq c_{2} \cdot n^{2}
$$

This is true for all $\boldsymbol{n} \geq 0$ if we set \boldsymbol{c}_{2} to $\mathbf{4}$

Bounded from Above: Big O

$$
7 \leq c_{3} \cdot n^{2}
$$

Bounded from Above: Big O

$$
7 \leq c_{3} \cdot n^{2}
$$

This is true for all $\boldsymbol{n} \geq 1$ if we set \boldsymbol{c}_{3} to $\mathbf{7}$

Bounded from Above: Big O

First show:

$$
\frac{n^{2}}{2} \leq c_{1} \cdot n^{2} \quad 4 n \leq c_{2} \cdot n^{2} \quad 7 \leq c_{3} \cdot n^{2}
$$

Bounded from Above: Big O

First show:

$$
\frac{n^{2}}{2} \leq \frac{1}{2} \cdot n^{2}
$$

$$
4 n \leq 4 \cdot n^{2}
$$

$7 \leq 7 \cdot n^{2}$

Bounded from Above: Big O

First show:

$$
\begin{gathered}
\frac{n^{2}}{2} \leq \frac{1}{2} \cdot n^{2} \quad 4 n \leq 4 \cdot n^{2} \quad 7 \leq 7 \cdot n^{2} \\
\\
\frac{n^{2}}{2}+4 n+7 \leq \frac{1}{2} \cdot n^{2}+4 \cdot n^{2}+7 \cdot n^{2}
\end{gathered}
$$

Bounded from Above: Big O

First show:

$$
\frac{n^{2}}{2} \leq \frac{1}{2} \cdot n^{2} \quad 4 n \leq 4 \cdot n^{2} \leq 7 \cdot n^{2}
$$

Bounded from Above: Big O

First show:

$$
\begin{aligned}
& \frac{n^{2}}{2} \leq \frac{1}{2} \cdot n^{2} \quad 4 n \leq 4 \cdot n^{2} \quad 7 \leq 7 \cdot n^{2} \\
& \frac{n^{2}}{2}+4 n+7 \leq \frac{1}{2} \cdot n^{2}+4 \cdot n^{2}+7 \cdot n^{2}
\end{aligned}
$$

Bounded from Above: Big O

First show:

$$
\begin{aligned}
& \frac{n^{2}}{2} \leq \frac{1}{2} \cdot n^{2} \quad 4 n \leq 4 \cdot n^{2} \quad 7 \leq 7 \cdot n^{2} \\
& \frac{n^{2}}{2}+4 n+7 \leq \frac{1}{2} \cdot n^{2}+4 \cdot n^{2}+7 \cdot n^{2}=\left(\frac{1}{2}+4+7\right) \cdot n^{2}
\end{aligned}
$$

Bounded from Above: Big O

$$
\frac{n^{2}}{2}+4 n+7 \leq c \cdot n^{2}
$$

Therefore if we let $\boldsymbol{c}=\mathbf{1 1 . 5}$, then for all $\boldsymbol{n} \geq 1$ the above holds true Therfore $g(n) \in O\left(n^{2}\right)$

Bounded from Above: Big O

Bounded from Above: Big O

Bounded from Above: Big O

Bounded from Below: Big $\boldsymbol{\Omega}$

$\boldsymbol{g}(\boldsymbol{n})$ is bounded from below by $\boldsymbol{f}(\boldsymbol{n})$ if:
There exists a constant $\boldsymbol{n}_{\mathbf{0}}>\mathbf{0}$ and a constant $\boldsymbol{c}>\mathbf{0}$ such that:

$$
\text { For all } n>n_{0}, g(n) \geq c \cdot f(n)
$$

In this case, we say that $\boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Omega}(f(n))$
$\boldsymbol{\Omega}(f(n))$ is the set of all functions bounded from below by $f(n)$

Bounded from Below: Big $\boldsymbol{\Omega}$

$$
g(n)=\frac{n^{2}}{2}+4 n+7
$$

Prove that $\boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Omega}\left(\boldsymbol{n}^{\mathbf{2}}\right)$

$$
\frac{n^{2}}{2}+4 n+7 \geq c \cdot n^{2}
$$

Bounded from Below: Big \boldsymbol{Q}

$$
\frac{n^{2}}{2}+4 n+7 \geq c \cdot n^{2}
$$

$$
\frac{n^{2}}{2} \geq c_{1} \cdot n^{2}
$$

We'll start with a similar approach...

Bounded from Below: Big $\mathbf{\Omega}$

$$
\frac{n^{2}}{2} \geq c_{1} \cdot n^{2}
$$

Bounded from Below: Big $\boldsymbol{\Omega}$

$$
\frac{n^{2}}{2} \geq c_{1} \cdot n^{2}
$$

This is true for all $\boldsymbol{n} \geq \mathbf{0}$ if we set $\boldsymbol{c}_{\mathbf{1}}$ to $\mathbf{1 / 2}$

Bounded from Below: Big $\mathbf{\Omega}$

$$
\frac{n^{2}}{2}+4 n+7 \geq c \cdot n^{2}
$$

Now that we've shown this...what else do we need to show for the overall equation to be true?

$$
\frac{n^{2}}{2} \geq c_{1} \cdot n^{2}
$$

Bounded from Below: Big $\boldsymbol{\Omega}$

$$
\begin{aligned}
& \frac{n^{2}}{2}+4 n+7 \geq c \cdot n^{2} \\
& \text { Now that we've shown this...what else } \\
& \text { do we need to show for the overall } \\
& \text { equation to be true? } \\
& \text { Just need to show that } 4 \mathrm{n} \text { and } 7 \text { are } \geq 0
\end{aligned}
$$

By adding non-negative things to the first term we can only make it bigger!

Bounded from Below: Big \boldsymbol{Q}

Bounded from Below: Big 9

Bounded from Below: Big 9

Complexity Class: Big ©

\boldsymbol{f} and \boldsymbol{g} are in the same complexity class, denoted $\boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Theta}(\boldsymbol{f}(\boldsymbol{n}))$, iff:
g is bounded from above by something f-shaped and
g is bounded from below by something f-shaped

Complexity Class: Big ©

\boldsymbol{f} and \boldsymbol{g} are in the same complexity class, denoted $\boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Theta}(\boldsymbol{f}(\boldsymbol{n})$), iff:

$$
\begin{aligned}
& g(n) \in O(f(n)) \\
& \text { and } \\
& g(n) \in \Omega(f(n))
\end{aligned}
$$

Bounded from Below: Big ©

$$
g(n)=\frac{n^{2}}{2}+4 n+7
$$

Prove that $\boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Theta}\left(\boldsymbol{n}^{\mathbf{2}}\right)$

Bounded from Below: Big ©

$$
g(n)=\frac{n^{2}}{2}+4 n+7
$$

Prove that $\boldsymbol{g}(\boldsymbol{n}) \in \boldsymbol{\Theta}\left(\boldsymbol{n}^{\mathbf{2}}\right)$

We just proved that $\boldsymbol{g}(n) \in \mathbf{O}\left(n^{2}\right)$ and $g(n) \in \boldsymbol{\Omega}\left(n^{2}\right)$
Therefore we have proved that $\mathbf{g}(\mathbf{n}) \in \boldsymbol{\Theta}\left(\boldsymbol{n}^{2}\right)$

Complexity Class: Big ©

The blue is $\mathbf{O}\left(\boldsymbol{n}^{2}\right)$

Complexity Class: Big ©

The yellow is $\boldsymbol{\Omega}\left(\boldsymbol{n}^{2}\right)$
n
$\frac{n}{4}$
4

Complexity Class: Big ©

Complexity Class: Big ©

Complexity Class: Big ©

Once we move past $\boldsymbol{n}_{0^{\prime}} \boldsymbol{g}(\boldsymbol{n})$ will never leave the green region.

It is therefore in the quadratic complexity class.

Remember: the constants are specific constants that we solved for

Complexity Class Ranking

$\Theta(1)<\Theta(\log (n))<\Theta(n)<\Theta(n \log (n))<\Theta\left(n^{2}\right)<\Theta\left(n^{3}\right)<\Theta\left(2^{n}\right)$

Big O Subsets

$O(1) \subset O(\log (n)) \subset O(n) \subset O(n \log (n)) \subset O\left(n^{2}\right) \subset O\left(n^{3}\right) \subset O\left(2^{n}\right)$

Shortcut

What complexity class do each of the following belong to:

$$
\begin{aligned}
& f(n)=4 n+n^{2} \\
& g(n)=2^{n}+4 n \\
& h(n)=100 n \log (n)+73 n
\end{aligned}
$$

Shortcut

What complexity class do each of the following belong to:

$$
\begin{aligned}
& f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right) \\
& g(n)=2^{n}+4 n \in \Theta\left(2^{n}\right) \\
& h(n)=100 n \log (n)+73 n \in \Theta(n \log (n))
\end{aligned}
$$

Shortcut

What complexity class do each of the following belong to:

$$
\begin{aligned}
& f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right) \\
& g(n)=2^{n}+4 n \in \Theta\left(2^{n}\right) \\
& h(n)=100 n \log (n)+73 n \in \Theta(n \log (n))
\end{aligned}
$$

Shortcut: Just consider the complexity of the most dominant term

Why Focus on Dominating Terms?

$f(n)$	10	20	50	100	1000
$\log (\log (n))$	0.43 ns	0.52 ns	0.62 ns	0.68 ns	0.82 ns
$\log (n)$	0.83 ns	1.01 ns	1.41 ns	1.66 ns	2.49 ns
n	2.5 ns	5 ns	12.5 ns	25 ns	$0.25 \mu \mathrm{~s}$
$n \log (n)$	8.3 ns	22 ns	71 ns	$0.17 \mu \mathrm{~s}$	$2.49 \mu \mathrm{~s}$
n^{2}	25 ns	$0.1 \mu \mathrm{~s}$	$0.63 \mu \mathrm{~s}$	$2.5 \mu \mathrm{~s}$	0.25 ms
n^{5}	$25 \mu \mathrm{~s}$	0.8 ms	78 ms	2.5 s	2.9 days
$n!$	$0.25 \mu \mathrm{~s}$	0.26 ms	3.26 days	10^{13} years	10^{284} years
	0.91 ms	19 years	10^{47} years	10^{141} years	\%

Tight Bounds

$$
f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right) \text {, therefore } f(n)=4 n+n^{2} \in O\left(n^{2}\right) \checkmark
$$

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in O\left(n^{2}\right) \checkmark$ Is $f(n)$ in $O\left(n^{3}\right)$?

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in O\left(n^{2}\right) \checkmark$ Is $f(n)$ in $O\left(n^{3}\right)$?

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in O\left(n^{2}\right) \checkmark$ Is $f(n)$ in $O\left(n^{3}\right)$?

Is $f(n)$ in $O\left(2^{n}\right)$?

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in O\left(n^{2}\right) \checkmark$ Is $f(n)$ in $O\left(n^{3}\right)$?

Is $f(n)$ in $O\left(2^{n}\right) ? ~ \checkmark$

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in O\left(n^{2}\right) \checkmark$ Is $f(n)$ in $O\left(n^{3}\right)$?

Is $f(n)$ in $O\left(2^{n}\right) ? ~ \checkmark$
Is $f(n)$ in $O(n)$?

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in O\left(n^{2}\right) \checkmark$ Is $f(n)$ in $O\left(n^{3}\right)$?

Is $f(n)$ in $O\left(2^{n}\right) ? ~ \checkmark$ Is $f(n)$ in $O(n) ? \times$

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in O\left(n^{2}\right) \checkmark$
Is $f(n)$ in $O\left(n^{3}\right)$?
Is $f(n)$ in $O\left(2^{n}\right)$? Is $f(n)$ in $O(n) ? \times$
$\boldsymbol{n}^{\mathbf{2}}, \boldsymbol{n}^{\mathbf{3}}$, and $\mathbf{2}^{\boldsymbol{n}}$ all bound $\boldsymbol{f}(\boldsymbol{n})$ from above \boldsymbol{n}^{2} is a tight upper bound of $\boldsymbol{f}(\boldsymbol{n})$
(there is no smaller upper bound for $\boldsymbol{f}(\boldsymbol{n})$)

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in \Omega\left(n^{2}\right) \checkmark$

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in \Omega\left(n^{2}\right) \checkmark$ Is $f(n)$ in $\boldsymbol{\Omega}\left(n^{3}\right)$?

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in \Omega\left(n^{2}\right) \checkmark$ Is $f(n)$ in $\boldsymbol{\Omega}\left(n^{3}\right)$? \times

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in \Omega\left(n^{2}\right) \checkmark$
Is $f(n)$ in $\boldsymbol{\Omega}\left(n^{3}\right)$? \times
Is $f(n)$ in $\boldsymbol{\Omega}(\log (n))$?

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in \Omega\left(n^{2}\right) \checkmark$ Is $f(n)$ in $\boldsymbol{\Omega}\left(n^{3}\right)$? \times

Is $f(n)$ in $\boldsymbol{\Omega}(\log (n)) ? ~ \downarrow$

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in \Omega\left(n^{2}\right) \checkmark$
Is $f(n)$ in $\boldsymbol{\Omega}\left(n^{3}\right)$? \times
Is $f(n)$ in $\boldsymbol{\Omega}(\log (n)) ? ~ \downarrow$
Is $f(n)$ in $\boldsymbol{\Omega}(n)$?

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in \Omega\left(n^{2}\right) \checkmark$
Is $f(n)$ in $\boldsymbol{\Omega}\left(n^{3}\right)$? \times
Is $f(n)$ in $\boldsymbol{\Omega}(\log (n)) ? ~ \downarrow$
Is $f(n)$ in $\boldsymbol{\Omega}(n) ? \downarrow$

Tight Bounds

$f(n)=4 n+n^{2} \in \Theta\left(n^{2}\right)$, therefore $f(n)=4 n+n^{2} \in \Omega\left(n^{2}\right) \checkmark$
Is $f(n)$ in $\boldsymbol{\Omega}\left(n^{3}\right)$? \times
Is $f(n)$ in $\boldsymbol{\Omega}(\log (n))$? Is $f(n)$ in $\boldsymbol{\Omega}(n) ? \downarrow$
\boldsymbol{n}^{2}, n, and $\log (\boldsymbol{n})$ all bound $\boldsymbol{f}(\boldsymbol{n})$ from below n^{2} is a tight lower bound of $f(n)$
(there is no larger lower bound for $f(n)$)

Tight Bounds

If $g(n) \in \boldsymbol{\Theta}(f(n))$, then:

- $g(n) \in O(f(n))$ is a tight upper bound
- $\boldsymbol{g}(n) \in \boldsymbol{\Omega}(f(n))$ is a tight lower bound

Tight Bounds

If $g(n) \in \boldsymbol{\Theta}(f(n))$, then:

- $g(n) \in O(f(n))$ is a tight upper bound
- $\boldsymbol{g}(n) \in \boldsymbol{\Omega}(f(n))$ is a tight lower bound

But what if the tight upper bound and tight lower bound are not the same?

Multi-class Functions

$$
T(n)= \begin{cases}n^{2} & \text { if } n \text { is even } \\ n & \text { if } n \text { is odd }\end{cases}
$$

What is the tight upper bound of this function?

Multi-class Functions

$$
T(n)= \begin{cases}n^{2} & \text { if } n \text { is even } \\ n & \text { if } n \text { is odd }\end{cases}
$$

What is the tight upper bound of this function? $T(n) \in O\left(n^{2}\right)$

Multi-class Functions

$$
T(n)= \begin{cases}n^{2} & \text { if } n \text { is even } \\ n & \text { if } n \text { is odd }\end{cases}
$$

What is the tight upper bound of this function? $T(n) \in O\left(n^{2}\right)$
What is the tight lower bound of this function?

Multi-class Functions

$$
T(n)= \begin{cases}n^{2} & \text { if } n \text { is even } \\ n & \text { if } n \text { is odd }\end{cases}
$$

What is the tight upper bound of this function? $T(n) \in O\left(n^{2}\right)$
What is the tight lower bound of this function? $\boldsymbol{T}(n) \in \boldsymbol{\Omega}(n)$

Multi-class Functions

$$
T(n)= \begin{cases}n^{2} & \text { if } n \text { is even } \\ n & \text { if } n \text { is odd }\end{cases}
$$

What is the tight upper bound of this function? $T(n) \in O\left(n^{2}\right)$
What is the tight lower bound of this function? $\boldsymbol{T}(n) \in \boldsymbol{\Omega}(n)$
What is the complexity class of this function?

Multi-class Functions

$$
T(n)= \begin{cases}n^{2} & \text { if } n \text { is even } \\ n & \text { if } n \text { is odd }\end{cases}
$$

What is the tight upper bound of this function? $T(n) \in O\left(n^{2}\right)$
What is the tight lower bound of this function? $\boldsymbol{T}(n) \in \boldsymbol{\Omega}(n)$
What is the complexity class of this function? It does not have one!

Multi-class Functions

$$
T(n)= \begin{cases}n^{2} & \text { if } n \text { is even } \\ n & \text { if } n \text { is odd }\end{cases}
$$

It is not bounded from below by \boldsymbol{n}^{2}, therefore it cannot be in $\Theta\left(n^{2}\right)$

What is the tight upper bound of this function? $T(n) \in O\left(n^{2}\right)$
What is the tight lower bound of this function? $\boldsymbol{T}(\mathbf{n}) \boldsymbol{\in} \boldsymbol{\Omega}(\mathbf{n})$
What is the complexity class of this function? It does not have one!

