
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 10: ArrayList and Amortized Runtime

mailto:epmikida@buffalo.edu

Announcements

● PA1 Implementation due Sunday, 2/18 @ 11:59PM
○ Continue with the same repo you've been using

● WA2 will be released after the PA1 deadline, due 2/25 @ 11:59PM

2

The List ADT

3

1

2

3

4

5

6

7

8

9

10

11

public interface List<E>

 extends Sequence<E> { // Everything a sequence has, and...

 /** Extend the sequence with a new element at the end */

 public void add(E value);

 /** Extend the sequence by inserting a new element */

 public void add(int idx, E value);

 /** Remove the element at a given index */

 public void remove(int idx);

}

4

List Runtimes (so far…)

ArrayList
Linked List
(by index)

Linked List
(by reference)

get(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

set(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

size() 𝚯(1) 𝚯(1) 𝚯(1)

add(...) TBD 𝚯(idx) or O(n) 𝚯(1)

remove(...) TBD 𝚯(idx) or O(n) 𝚯(1)

ArrayList Changes

How can we implement add/remove for something like an Array?

Keep extra space and track how many elements you have

5

ArrayList Representation

6

1

2

3

4

5

6

7

8

class ArrayList<T> extends List<T> {

 private int used;

 private Optional<T>[] data;

 public int size() { return used; }

 /* ... */

}

ArrayList Representation

7

1

2

3

4

5

6

7

8

9

public T get(int i) {

 if (i < 0 || i >= used) { throw new IndexOutOfBoundsException(i); }

 return data[i].get()

}

public void set(int i, T value) {

 if (i < 0 || i >= used) { throw new IndexOutOfBoundsException(i); }

 data[i] = Optional.of(value);

}

ArrayList Representation

The methods from the Sequence ADT are all still 𝚯(1)

What about remove?

8

ArrayList - remove(i)

9

1

2

3

4

5

6

7

8

9

10

public void remove(int i) {

 /* Sanity-check inputs */

 if (i < 0 || i >= used) { throw new IndexOutOfBoundsException(i); }

 /* Shift elements left */

 for (int j = i; j < used - 1; j++) {

 data[j] = data[j+1];

 }

 data[used-1] = Optional.empty();

 used--;

}

ArrayList - remove(i)

10

1

2

3

4

5

6

7

8

9

10

public void remove(int i) {

 /* Sanity-check inputs */

 if (i < 0 || i >= used) { throw new IndexOutOfBoundsException(i); }

 /* Shift elements left */

 for (int j = i; j < used - 1; j++) {

 data[j] = data[j+1];

 }

 data[used-1] = Optional.empty();

 used--;

}

Have to shift over right-most
elements to fill the hole created
by the removed element!

Analysis of remove(i)

11

Analysis of remove(i)

12

ArrayList - add(elem)

Basic Idea:

1. If we are out of space, first create a new array of a larger size and copy
the old elements over

2. Then, set the element at index used to elem

13

ArrayList - add(elem)

14

1

2

3

4

5

6

7

8

9

10

11

public void add(T elem) {

 if(used == data.length) { /* Sad case 🙁 */

 int newLength = ???

 Optional<T>[] newData = new Optional<T>[newLength];

 System.arrayCopy(data, 0, newData, 0, data.length);

 data = newData;

 }

 /* Happy case 😃 */

 data[used] = Optional.of(elem)

 used++;

}

ArrayList - add(elem)

15

1

2

3

4

5

6

7

8

9

10

11

public void add(T elem) {

 if(used == data.length) { /* Sad case 🙁 */

 int newLength = ???

 Optional<T>[] newData = new Optional<T>[newLength];

 System.arrayCopy(data, 0, newData, 0, data.length);

 data = newData;

 }

 /* Happy case 😃 */

 data[used] = Optional.of(elem);

 used++;

}

How we choose the new
length will be important!

ArrayList - add(elem)

16

1

2

3

4

5

6

7

8

9

10

11

public void add(T elem) {

 if(used == data.length) { /* Sad case 🙁 */

 int newLength = ???

 Optional<T>[] newData = new Optional<T>[newLength];

 System.arrayCopy(data, 0, newData, 0, data.length);

 data = newData;

 }

 /* Happy case 😃 */

 data[used] = Optional.of(elem);

 used++;

}

This is the expensive part!

Analysis of add(elem)

17

Analysis of add(elem)

How often do our add calls require O(n) time?

18

Analysis of add(elem)

How often do our add calls require O(n) time?

It depends on how we calculate newLength

19

Initial size = 10, newLength = data.length + 1 20

Initial size = 10, newLength = data.length + 1 21

10 cheap insertions

Every subsequent insertion is expensive because
we only add space for one new element

Initial size = 10, newLength = data.length + 2 22

Initial size = 10, newLength = data.length + 2 23

Every other insertion is cheap,
because we add more space when
re-sizing

Initial size = 10, newLength = data.length + 10 24

Initial size = 10, newLength = data.length + 10 25

Only 1 in 10 insertions is costly!

Initial size = 10, newLength = data.length + 10 26

Only 1 in 10 insertions is costly!

But add is still O(n)

A Note on Runtime Complexity

So far, when we've discussed runtime bounds we have done so without
taking any extra information/context into account.

For example, the worst-case runtime of ArrayList.add is O(n)

Our analysis doesn't capture the fact that oftentimes it is faster than O(n)

27

A Note on Runtime Complexity

So far, when we've discussed runtime bounds we have done so without
taking any extra information/context into account.

For example, the worst-case runtime of ArrayList.add is O(n)

Our analysis doesn't capture the fact that oftentimes it is faster than O(n)

We refer to this as the unqualified runtime…it is the runtime without any
extra qualifications, caveats, etc

28

A Note on Runtime Complexity

So far, when we've discussed runtime bounds we have done so without
taking any extra information/context into account.

For example, the worst-case runtime of ArrayList.add is O(n)

Our analysis doesn't capture the fact that oftentimes it is faster than O(n)

We refer to this as the unqualified runtime…it is the runtime without any
extra qualifications, caveats, etc

29

But, sometimes the extra context can be relevant…
how can we include this in our analysis?

Common Pattern: Repeated Calls

Oftentimes we will want to call a function many times in a row
● ie read through a CSV file and add all records to a List

What can we say about the runtime in this case?

30

Adding n Elements to a LinkedList

31

1

2

3

4

List<Integer> list = new LinkedList<Integer>();

for (int i = 0; i < n; i++) {

 list.add(i);

}

Adding n Elements to a LinkedList

32

1

2

3

4

𝚯(1)
for (int i = 0; i < n; i++) {

 𝚯(1)
}

Adding n Elements to a LinkedList

Total Complexity: 𝚯(n)

33

1

2

𝚯(1)
𝚯(n)

Adding n Elements to an ArrayList

34

1

2

3

4

List<Integer> list = new ArrayList<Integer>();

for (int i = 0; i < n; i++) {

 list.add(i);

}

Adding n Elements to an ArrayList

35

1

2

3

4

O(1)

for (int i = 0; i < n; i++) {

 O(n)

}

Adding n Elements to an ArrayList

Upper Bound: O(n2)

But is this a tight upper bound?

36

1

2

O(1)

O(n2)

Adding n Elements to an ArrayList

Upper Bound: O(n2)

But is this a tight upper bound? Let's do a more detailed analysis

37

1

2

O(1)

O(n2)

Adding n Elements to an ArrayList

How many steps does this loop do?

38

1

2

3

4

List<Integer> list = new ArrayList<Integer>();

for (int i = 0; i < n; i++) {

 list.add(i);

}

Initial size = 10, newLength = data.length + 1 39

Initial size = 10, newLength = data.length + 1 40

10 · 𝚯(1)

11 · 𝚯(1) + 12 · 𝚯(1) + 13 · 𝚯(1) + 14 · 𝚯(1) + … + n · 𝚯(1)

Initial size = 10, newLength = data.length + 1 41

10 · 𝚯(1)

11 · 𝚯(1) + 12 · 𝚯(1) + 13 · 𝚯(1) + 14 · 𝚯(1) + … + n · 𝚯(1)

Initial size = 10, newLength = data.length + 2 42

Initial size = 10, newLength = data.length + 2 43

10 · 𝚯(1)

11 · 𝚯(1) + 𝚯(1) + 13 · 𝚯(1) + 𝚯(1) + 15 · 𝚯(1) + … + 𝚯(1) + n · 𝚯(1)

Initial size = 10, newLength = data.length + 2 44

10 · 𝚯(1)

𝚯(1) + 𝚯(1) + … + 𝚯(1) + 11 · 𝚯(1) + 13 · 𝚯(1) + 15 · 𝚯(1) + … + n · 𝚯(1)

~n/2 terms ~n/2 terms

Initial size = 10, newLength = data.length + 2 45

10 · 𝚯(1)

𝚯(1) + 𝚯(1) + … + 𝚯(1) + 11 · 𝚯(1) + 13 · 𝚯(1) + 15 · 𝚯(1) + … + n · 𝚯(1)

~n/2 terms ~n/2 terms

Initial size = 10, newLength = data.length + 10 46

Initial size = 10, newLength = data.length + 10 47

10 · 𝚯(1)

11 · 𝚯(1) + 𝚯(1) + 𝚯(1) + 𝚯(1) + … + 𝚯(1) + 21 · 𝚯(1) + 𝚯(1) + … + 𝚯(1) + n · 𝚯(1)

Initial size = 10, newLength = data.length + 10 48

10 · 𝚯(1)

𝚯(1) + 𝚯(1) + … + 𝚯(1) + 11 · 𝚯(1) + 21 · 𝚯(1) + 31 · 𝚯(1) + … + n · 𝚯(1)

~9/10 · n terms ~1/10 · n terms

Initial size = 10, newLength = data.length + 10 49

10 · 𝚯(1)

𝚯(1) + 𝚯(1) + … + 𝚯(1) + 11 · 𝚯(1) + 21 · 𝚯(1) + 31 · 𝚯(1) + … + n · 𝚯(1)

~9/10 · n terms ~1/10 · n terms

Problem: If we increase the size by a constant amount, doing n adds still
costs a total of n2

How else could we increase the size?

50

A New Type of Bounds

Problem: If we increase the size by a constant amount, doing n adds still
costs a total of n2

How else could we increase the size? Double It!

51

A New Type of Bounds

Initial size = 4, newLength = data.length ⨉ 2 52

Initial size = 4, newLength = data.length ⨉ 2 53

How can we sum up the total number of steps?

Initial size = 4, newLength = data.length ⨉ 2 54

How can we sum up the total number of steps?
Let I represent the initial size

Initial size = 4, newLength = data.length ⨉ 2 55

How can we sum up the total number of steps?
Let I represent the initial size

I + (I - 1) · 𝚯(1)

2I + (2I - 1) · 𝚯(1)

4I + (4I - 1) · 𝚯(1)
8I + (8I - 1) · 𝚯(1)

Initial size = 4, newLength = data.length ⨉ 2 56

How can we sum up the total number of steps?
Let I represent the initial size

20I + (20I - 1) · 𝚯(1)

21I + (21I - 1) · 𝚯(1)

22I + (22I - 1) · 𝚯(1)

23I + (23I - 1) · 𝚯(1)

Doubling the Array Size

So the cost of the ith red box is:

57

Doubling the Array Size

So the cost of the ith red box is:

How many red boxes are there for n inserts?

58

Doubling the Array Size

So the cost of the ith red box is:

How many red boxes are there for n inserts?

59

Doubling the Array Size

So the cost of the ith red box is:

How many red boxes are there for n inserts?

How many steps in total?

60

Doubling the Array Size

So the cost of the ith red box is:

How many red boxes are there for n inserts?

How many steps in total?

61

Doubling the Array Size

62

Doubling the Array Size

63

Doubling the Array Size

64

Another Perspective

Let's assume we have a FULL array with 16 elements…What do the next 16
adds look like?

65

Another Perspective

Let's assume we have a FULL array with 16 elements…What do the next 16
adds look like?

- Create a new array of size 32
- Copy over the 16 elements
- Assign the new element to the next free spot 16 times

Total: Copy 16 elements, assign 16 elements = 2 * 16 operations

66

Another Perspective

Let's assume we have a FULL array with 32 elements…What do the next 32
adds look like?

- Create a new array of size 64
- Copy over the 32 elements
- Assign the new element to the next free spot 32 times

Total: Copy 32 elements, assign 32 elements = 2 * 32 operations

67

Another Perspective

Let's assume we have a FULL array with 64 elements…What do the next 64
adds look like?

- Create a new array of size 128
- Copy over the 64 elements
- Assign the new element to the next free spot 64 times

Total: Copy 64 elements, assign 64 elements = 2 * 64 operations

68

Another Perspective

Let's assume we have a FULL array with n elements…What do the next n
adds look like?

- Create a new array of size 2*n
- Copy over the n elements
- Assign the new element to the next free spot n times

Total: Copy n elements, assign n elements = 2 * n operations = 𝚯(n)

69

Another Perspective

Let's assume we have a FULL array with n elements…What do the next n
adds look like?

- Create a new array of size 2*n
- Copy over the n elements
- Assign the new element to the next free spot n times

Total: Copy n elements, assign n elements = 2 * n operations = 𝚯(n)

70

Each chunk starts with a big copy, but that
big copy also "pays" for the rest of the

insertions in that chunk!

Doubling the Array Size

Wait…so one call to add is O(n)...

But n calls to add are O(n) as well?

MOST calls only require constant time…

The total cost of n calls is guaranteed O(n) steps

71

Amortized Runtime

If n calls to a function take O(f(n))...

We say the Amortized Runtime is O(f(n) / n)

The amortized runtime of add on an ArrayList is: O(n/n) = O(1)
The unqualified runtime of add on an ArrayList is: O(n)

72

73

List Runtimes (so far…)

ArrayList
Linked List
(by index)

Linked List
(by reference)

get(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

set(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

size() 𝚯(1) 𝚯(1) 𝚯(1)

add(...) TBD 𝚯(idx) or O(n) 𝚯(1)

remove(...) TBD 𝚯(idx) or O(n) 𝚯(1)

74

List Runtimes (so far…)

ArrayList
Linked List
(by index)

Linked List
(by reference)

get(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

set(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

size() 𝚯(1) 𝚯(1) 𝚯(1)

add(...) O(n), Amortized 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

remove(...) O(n) 𝚯(idx) or O(n) 𝚯(1)

Follow-Up Questions

What is the amortized runtime of add for a LinkedList?

What is the runtime of add(int idx, E elem) for an ArrayList?

75

Follow-Up Questions

What is the amortized runtime of add for a LinkedList?

Each add is O(1). Total for n calls is O(n). Amortized is O(n/n) = O(1)

What is the runtime of add(int idx, E elem) for an ArrayList?

To add between two elements requires the rest of the elements to be
shifted to the right (opposite of remove), so runtime is always O(n).

76

What Data Structure is Best?

Scenario #1: You need to read in the lines of a CSV file, store them in a
List, and later be able to access individual records based on index.

77

What Data Structure is Best?

Scenario #1: You need to read in the lines of a CSV file, store them in a
List, and later be able to access individual records based on index.

ArrayList

Since the amortized runtime of add for ArrayList and LinkedList,
adding the n lines of the CSV file will take O(n) time for both…

But ArrayLists will then have an advantage because looking up records
by index will be O(1) whereas LinkedLists will be O(n)

78

What Data Structure is Best?

Scenario #2: Users logging onto an online game need to be efficiently
added to a List in the order they log on. From time to time you must be
able to iterate through the list from beginning to end.

79

What Data Structure is Best?

Scenario #2: Users logging onto an online game need to be efficiently
added to a List in the order they log on. From time to time you must be
able to iterate through the list from beginning to end.

LinkedList

The enumeration will cost a total of O(n) for both types of List

But some users will experience longer waits being added to the List if
implemented as an ArrayList due to the need for it to occasionally resize

80

