CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 14: Midterm #1 Review

Midterm Procedure

- Exam is during normal class time. Same time, same place.
- Seating is assigned randomly
 - Wait outside the room until instructed to enter
 - Immediately place all bags/electronics at the front of the room
- At your seat you should have:
 - Writing utensil
 - UB ID card
 - One 8.5x11 cheatsheet (front and back) if desired
 - Summation/Log rules will be provided

Content Overview

	Analysis Tools/Techniques	ADTs	Data Structures
Week 2/3	Asymptotic Analysis, (Unqualified) Runtime Bounds		
Week 3		Sequence	Array, LinkedList
Week 4	Amortized Runtime	List	ArrayList, LinkedList
Week 5	Induction, Expected Runtime	Stack/Queue	ArrayList, LinkedList

Analysis Tools and Techniques

Recap of Runtime Complexity

Big-**O** – Tight Bound

- Growth functions are in the **same** complexity class
- If f(n) ∈ Θ(g(n)) then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n) steps.

Big-O – Upper Bound

- Growth functions in the **same or smaller** complexity class.
- If f(n) ∈ O(g(n)), then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it may be even faster).

$\operatorname{Big}-\Omega$ – Lower Bound

- Growth functions in the **same or bigger** complexity class
- If f(n) ∈ Ω(g(n)), then an algorithm that takes f(n) steps is at least as slow as one that takes g(n) steps (but it may be even slower)

Bounded from Above: Big O

steps

Bounded from Below: Big Ω

The shaded area represents $\Omega(f(n))$ – the set of all functions bounded from below by something **f**-shaped

n

Complexity Class: Big O

n

Complexity Class: Big

9

Complexity Class Ranking

 $\Theta(1) < \Theta(\log(n)) < \Theta(n) < \Theta(n \log(n)) < \Theta(n^2) < \Theta(n^3) < \Theta(2^n)$

Common Runtimes (in order of complexity)

- Constant Time:Θ(1)Logarithmic Time:Θ(log(n))
- Linear Time: $\Theta(n)$
- Quadratic Time: $\Theta(n^2)$
- **Polynomial Time:** $\Theta(n^k)$ for some k > 0
- **Exponential Time:** $\Theta(c^n)$ (for some $c \ge 1$)

Formal Definitions

 $f(n) \in O(g(n))$ iff exists some constants c, n_0 s.t. $f(n) \le c * g(n)$ for all $n > n_0$

(x) = O(x(x)) : if x is to a constant of x

 $f(n) \in \Omega(g(n))$ iff exists some constants c, n_0 s.t.

 $f(n) \ge c * g(n)$ for all $n > n_0$

 $f(n) \in \Theta(g(n))$ iff $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$

Shortcut

What complexity class do each of the following belong to:

```
f(n) = 4n + n^2 \in \Theta(n^2)
```

```
g(n) = 2^n + 4n \in \Theta(2^n)
```

```
h(n) = 100 n \log(n) + 73n \in \Theta(n \log(n))
```

Shortcut: Just consider the complexity of the most dominant term

Multi-class Functions

$$T(n) = \begin{cases} n^2 & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$$

It is not bounded from above by n, therefore it cannot be in $\Theta(n)$

It is not bounded from below by n^2 , therefore it cannot be in $\Theta(n^2)$

What is the tight upper bound of this function? $T(n) \in O(n^2)$

What is the tight lower bound of this function? $T(n) \in \Omega(n)$

What is the complexity class of this function? It does not have one!

Amortized Runtime

If *n* calls to a function take $\Theta(f(n))$... We say the <u>Amortized Runtime</u> is $\Theta(f(n) / n)$

The **amortized runtime** of **add** on an **ArrayList** is: **O**(*n*/*n*) = **O**(1) The **unqualified runtime** of **add** on an **ArrayList** is: **O**(*n*)

Expected Runtime

If our algorithm involves some sort of random process, we can still analyze the runtime as a growth function T(n)...

But we can also analyze the **<u>expected runtime</u>**, **E**[**T**(*n*)]

Example:
$$T_{\text{quicksort}}(n) \in O(n^2)$$
 and $E[T_{\text{quicksort}}(n)] \in O(n \log(n))$

What guarantees do you get?

If *f*(*n*) is a Tight Bound

The algorithm always runs in *cf*(*n*) steps

If f(n) is a Worst-Case Bound

The algorithm always runs in at most *cf*(*n*)

If f(n) is an Amortized Worst-Case Bound

n invocations of the algorithm **always** run in *cnf*(*n*) steps

If *f*(*n*) is an Average Bound

...we don't have any guarantees

 $\leftarrow Unqualified \ runtime$

ADTs and Data Structures

Abstract Data Types (ADTs)

The specification of what a data structure can do

What's in the box? ...we don't know, and in some sense...we don't care

Usage is governed by **what** we can do, not **how** it is done

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines **what** the data structure can do

Many data structures can implement the same ADT

Data Structure

The implementation of one (or more) ADTs

Defines **how** the different tasks are carried out

Different data structures will excel at different tasks

Abstract Data Type vs Data Structure

AD	T Data S	Data Structure	
The interface to	Think about the Linked List we	ation of one (or	
Defines what the	implemented for PA1.) ADTs	
can	The internal structure and the mental	e different tasks	
Many data st	model of our sequence are very	ried out	
implement th	different.	uctures will excel	
at different tacks			

at different tasks

The Sequence ADT

```
1 public interface Sequence<E> {
2   public E get(idx: Int);
3   public void set(idx: Int, E value);
4   public int size();
5   public Iterator<E> iterator();
6 }
```


Arrays and Linked Lists in Memory

The List ADT

```
public interface List<E>
 2
       extends Sequence<E> { // Everything a sequence has, and...
 3
    /** Extend the sequence with a new element at the end */
    public void add(E value);
4
5
6
    /** Extend the sequence by inserting a new element */
 7
    public void add(int idx, E value);
8
    /** Remove the element at a given index */
9
10
    public void remove(int idx);
11
```

Runtime Summary

	ArrayList	Linked List (by index)	Linked List (by reference)
get()	Θ(1)	$\Theta(idx)$ or $O(n)$	Θ(1)
set()	Θ(1)	$\Theta(idx)$ or $O(n)$	Θ (1)
<pre>size()</pre>	Θ(1)	Θ (1)	Θ (1)
add()	$O(n)$, Amortized $\Theta(1)$	$\Theta(idx)$ or $O(n)$	Θ (1)
remove()	O (n)	$\Theta(idx)$ or $O(n)$	Θ (1)

Runtime Summary

	ArrayList		Linked List (by index)	Linked List (by reference)	
get()		Θ(1)	$\Theta(idx)$ or $O(n)$	Θ(1)	
set()	Also consider how we can search by value				
<pre>size()</pre>		PA1, sear	1. searching an unsorted Array vs searching		
add()	O(n) , A	a sorted A	Array, etc		
remove()		O (<i>n</i>)	Θ(idx) or O (<i>n</i>)	Θ(1)	

Stacks

Represents a stack of objects on top of one another

```
1 public class Stack<E> {
```

```
3 public void push(E value); // Add value to the "top" of the stack
```

```
5 public E pop(); // Remove and return the top of the stack
```

```
public E peek(); // Return the top of the stack
```

Queues

Outside of the US, "queueing" is lining up, ie at Starbucks

```
1 public class Queue<E> {
```

```
3 public void add(E value); // Add value to the "back" of the queue
```

public E remove(); // Remove and return the front of the queue

```
public E peek(); // Return the front of the queue
```

Recap

Stacks: Last In First Out (LIFO)

- Push (put item on top of the stack)
- Pop (take item off top of stack)
- Peek (peek at top of stack)

Queues: First in First Out (FIFO)

- Enqueue (put item on the end of the queue) $\Theta(1)$ (or amortized O(1))
- Dequeue (take item off the front of the queue)
- Peek (peek at the item in the front of the queue)

Θ(1) (or amortized O(1))
 Θ(1)
 Θ(1)

 $\Theta(1)$

 $\Theta(1)$