
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 14: Midterm #1 Review

mailto:epmikida@buffalo.edu

Midterm Procedure

● Exam is during normal class time. Same time, same place.
● Seating is assigned randomly

○ Wait outside the room until instructed to enter
○ Immediately place all bags/electronics at the front of the room

● At your seat you should have:
○ Writing utensil
○ UB ID card
○ One 8.5x11 cheatsheet (front and back) if desired
○ Summation/Log rules will be provided

2

Content Overview

3

Analysis
Tools/Techniques ADTs

Data
Structures

Week 2/3 Asymptotic Analysis,
(Unqualified) Runtime Bounds

Week 3 Sequence Array,
LinkedList

Week 4 Amortized Runtime List ArrayList,
LinkedList

Week 5 Induction, Expected Runtime Stack/Queue ArrayList,
LinkedList

Analysis Tools and
Techniques

4

Recap of Runtime Complexity

Big-𝚯 — Tight Bound
● Growth functions are in the same complexity class
● If f(n) ∈ 𝚯(g(n)) then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n)

steps.

Big-O — Upper Bound
● Growth functions in the same or smaller complexity class.
● If f(n) ∈ O(g(n)), then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it

may be even faster).

Big-𝛀 — Lower Bound
● Growth functions in the same or bigger complexity class
● If f(n) ∈ 𝛀(g(n)), then an algorithm that takes f(n) steps is at least as slow as one that takes g(n)

steps (but it may be even slower)

5

Bounded from
Above: Big O

6

f(n)

c · f(n)

The shaded area represents O(f(n)) –
the set of all functions bounded from
above by something f-shaped

Bounded from
Below: Big 𝛀

7

f(n)

The shaded area represents 𝛀(f(n)) –
the set of all functions bounded from
below by something f-shaped

c · f(n)

Complexity
Class: Big 𝚯

8

f(n)

The overlap (green) is 𝚯(f(n))

clow · f(n)

chigh · f(n)

Complexity
Class: Big 𝚯

9

f(n)

𝚯(f(n)) is the set of functions that will
stay between chigh · f(n) and clow · f(n)
(after some constant n0)

clow · f(n)

chigh · f(n)

𝚯(1) < 𝚯(log(n)) < 𝚯(n) < 𝚯(n log(n)) < 𝚯(n2) < 𝚯(n3) < 𝚯(2n)

Complexity
Class Ranking

10

𝚯(n
2)

𝚯(n lo
g(n))

𝚯(n)

𝚯(log(n))

𝚯(1)

Common Runtimes (in order of complexity)

Constant Time: 𝚯(1)

Logarithmic Time: 𝚯(log(n))

Linear Time: 𝚯(n)

Quadratic Time: 𝚯(n2)

Polynomial Time: 𝚯(nk) for some k > 0

Exponential Time: 𝚯(cn) (for some c ≥ 1)

11

Formal Definitions

f(n) ∈ O(g(n)) iff exists some constants c, n0 s.t.

f(n) ≤ c * g(n) for all n > n0

f(n) ∈ 𝛀(g(n)) iff exists some constants c, n0 s.t.

f(n) ≥ c * g(n) for all n > n0

f(n) ∈ 𝚯(g(n)) iff f(n) ∈ O(g(n)) and f(n) ∈ 𝛀(g(n))

12

Shortcut

What complexity class do each of the following belong to:

f(n) = 4n + n2 ∈ 𝚯(n2)

g(n) = 2n + 4n ∈ 𝚯(2n)

h(n) = 100 n log(n) + 73n ∈ 𝚯(n log(n))

Shortcut: Just consider the complexity of the most dominant term

13

Multi-class Functions

What is the tight upper bound of this function? T(n) ∈ O(n2)

What is the tight lower bound of this function? T(n) ∈ 𝛀(n)

What is the complexity class of this function? It does not have one!

14

It is not bounded from above by n,
therefore it cannot be in 𝚯(n)

It is not bounded from below by n2,
therefore it cannot be in 𝚯(n2)

Amortized Runtime

If n calls to a function take 𝚯(f(n))...

We say the Amortized Runtime is 𝚯(f(n) / n)

The amortized runtime of add on an ArrayList is: 𝚯(n/n) = 𝚯(1)
The unqualified runtime of add on an ArrayList is: O(n)

15

Expected Runtime

If our algorithm involves some sort of random process, we can still analyze
the runtime as a growth function T(n)...

But we can also analyze the expected runtime, E[T(n)]

Example: Tquicksort(n) ∈ O(n2) and E[Tquicksort(n)] ∈ O(n log(n))

16

What guarantees do you get?

If f(n) is a Tight Bound
The algorithm always runs in cf(n) steps

If f(n) is a Worst-Case Bound
The algorithm always runs in at most cf(n)

If f(n) is an Amortized Worst-Case Bound
n invocations of the algorithm always run in cnf(n) steps

If f(n) is an Average Bound
…we don't have any guarantees

17

← Unqualified runtime

ADTs and Data Structures

18

Abstract Data Types (ADTs)

The specification of what a data structure can do

ADT

Enumerate everything

Get "nth" element

Set "nth" element

Get length

Usage is governed by what we can do, not how it is done

What's in the box? …we
don't know, and in some
sense…we don't care

19

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines what the data structure
can do

Many data structures can
implement the same ADT

Data Structure

The implementation of one (or
more) ADTs

Defines how the different tasks
are carried out

Different data structures will excel
at different tasks

20

Abstract Data Type vs Data Structure

ADT

The interface to a data structure

Defines what the data structure
can do

Many data structures can
implement the same ADT

Data Structure

The implementation of one (or
more) ADTs

Defines how the different tasks
are carried out

Different data structures will excel
at different tasks

Think about the Linked List we
implemented for PA1.

The internal structure and the mental
model of our sequence are very

different.

21

The Sequence ADT

22

1

2

3

4

5

6

public interface Sequence<E> {

 public E get(idx: Int);

 public void set(idx: Int, E value);

 public int size();

 public Iterator<E> iterator();

}

Arrays and Linked Lists in Memory 23

The List ADT

24

1

2

3

4

5

6

7

8

9

10

11

public interface List<E>

 extends Sequence<E> { // Everything a sequence has, and...

 /** Extend the sequence with a new element at the end */

 public void add(E value);

 /** Extend the sequence by inserting a new element */

 public void add(int idx, E value);

 /** Remove the element at a given index */

 public void remove(int idx);

}

25

Runtime Summary

ArrayList
Linked List
(by index)

Linked List
(by reference)

get(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

set(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

size() 𝚯(1) 𝚯(1) 𝚯(1)

add(...) O(n), Amortized 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

remove(...) O(n) 𝚯(idx) or O(n) 𝚯(1)

26

Runtime Summary

ArrayList
Linked List
(by index)

Linked List
(by reference)

get(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

set(...) 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

size() 𝚯(1) 𝚯(1) 𝚯(1)

add(...) O(n), Amortized 𝚯(1) 𝚯(idx) or O(n) 𝚯(1)

remove(...) O(n) 𝚯(idx) or O(n) 𝚯(1)

Also consider how we can search by value…
ie searching for a value in our SortedList from
PA1, searching an unsorted Array vs searching
a sorted Array, etc…

Stacks

Represents a stack of objects on top of one another

27

1

2

3

4

5

6

7

8

9

public class Stack<E> {

 public void push(E value); // Add value to the "top" of the stack

 public E pop(); // Remove and return the top of the stack

 public E peek(); // Return the top of the stack

}

Queues

Outside of the US, "queueing" is lining up, ie at Starbucks

28

1

2

3

4

5

6

7

8

9

public class Queue<E> {

 public void add(E value); // Add value to the "back" of the queue

 public E remove(); // Remove and return the front of the queue

 public E peek(); // Return the front of the queue

}

Recap

Stacks: Last In First Out (LIFO)
● Push (put item on top of the stack) 𝚯(1) (or amortized O(1))
● Pop (take item off top of stack) 𝚯(1)
● Peek (peek at top of stack) 𝚯(1)

Queues: First in First Out (FIFO)
● Enqueue (put item on the end of the queue) 𝚯(1) (or amortized O(1))
● Dequeue (take item off the front of the queue) 𝚯(1)
● Peek (peek at the item in the front of the queue) 𝚯(1)

29

