
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 20: Graph Traversals

mailto:epmikida@buffalo.edu

Announcements

● PA2 released
○ Testing phase due Sunday 3/17
○ Implementation due Sunday 3/31
○ AutoLab open soon

2

So…what do we do with our graphs?

3

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

4

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

5

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

6

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

7

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

8

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

9

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

10

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Subgraph of G

11

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Spanning Subgraph of G12

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

13

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

14

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

15

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

16

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

2 connected
components 17

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

18

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

19

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

20

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G

21

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

A Spanning Tree of G

Graph G

22

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G

A Spanning Tree of G Another Spanning Tree of G

23

Now back to the question…Connectivity

24

How could we represent our maze as a graph?

Back to Mazes

O 1 2 3 4

1 ∞ ∞ ∞ 5

2 ∞ X ∞ 6

4 5 6 9 8

3 ∞ 7 ∞ 7

25

Back to Mazes

O 1 2 3 4

1 ∞ ∞ ∞ 5

2 ∞ X ∞ 6

4 5 6 9 8

3 ∞ 7 ∞ 7

O

X

How could we represent our maze as a graph?

26

Recall

Searching the maze with a stack
We try every path, one at a time, following it as far as we can
…then backtrack and try another

27

Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can
…then backtrack and try another

28

Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can
…then backtrack and try another

Searching with a queue?
TBD…

29

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

30

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components

31

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices

32

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected

33

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles

34

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles

● Complete in time O(|V| + |E|)

35

Depth-First Search

DFS
Input: Graph G = (V,E)
Output: Label every edge as:
● Spanning Edge: Part of the spanning tree
● Back Edge: Part of a cycle

DFSOne
Input: Graph G = (V,E), start vertex v ∈ V
Output: Label every edge in v's connected component

36

Depth-First Search

DFS
Input: Graph G = (V,E)
Output: Label every edge as:
● Spanning Edge: Part of the spanning tree
● Back Edge: Part of a cycle

DFSOne
Input: Graph G = (V,E), start vertex v ∈ V
Output: Label every edge in v's connected component

37

Depth-First Search

38

Depth-First Search

✓

39

Depth-First Search

✓

40

Depth-First Search

✓

✓

41

Depth-First Search

✓

✓

42

Depth-First Search

✓

✓

✓

43

Depth-First Search

✓

✓

✓

44

Depth-First Search

✓ ✓

✓

✓

45

Depth-First Search

✓ ✓

✓

✓

46

Depth-First Search

✓ ✓

✓

✓

✓

47

DFS

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFS(Graph graph) {

 for (Vertex v : graph.vertices) {

 v.setLabel(UNEXPLORED);

 }

 for (Edge e : graph.edges) {

 e.setLabel(UNEXPLORED);

 }

 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 DFSOne(graph, v);

 }

 }

} 48

DFS

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFS(Graph graph) {

 for (Vertex v : graph.vertices) {

 v.setLabel(UNEXPLORED);

 }

 for (Edge e : graph.edges) {

 e.setLabel(UNEXPLORED);

 }

 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 DFSOne(graph, v);

 }

 }

} 49

Initialize all vertices and edges to
UNEXPLORED

DFS

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFS(Graph graph) {

 for (Vertex v : graph.vertices) {

 v.setLabel(UNEXPLORED);

 }

 for (Edge e : graph.edges) {

 e.setLabel(UNEXPLORED);

 }

 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 DFSOne(graph, v);

 }

 }

} 50

Call DFSOne to label the connected
component of every unexplored
vertex

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 51

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 52

← Mark the vertex as VISITED (so we'll never try to visit it again)

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 53

Check every outgoing edge (every possible
way we could leave the current vertex)

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 54

Follow the unexplored edges

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 55

If it leads to an unexplored vertex, then it is a
spanning edge. Recursively explore that vertex.

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 56

Otherwise, we just found a cycle

Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)

A

B

C

D
E

57

Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)

A

B

C

D
E

58

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A)

A

B

C

D
E

59

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)

A

B

C

D
E

60

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)

A

B

C

D
E

61

Detailed Example

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)
DFSOne(G,B) (→ A, C)

A

B

C

D
E

62

Detailed Example

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)
DFSOne(G,B) (→ A, C)

A

B

C

D
E

63

Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

64

Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

65

Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

66

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,D) (→ A, C)

A

B

C

D
E

67

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,D) (→ A, C)

A

B

C

D
E

68

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

69

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

70

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,E) (→ A, C)

A

B

C

D
E

71

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,E) (→ A, C)

A

B

C

D
E

72

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

73

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)
DFSOne(G,B) (→ A, C)

A

B

C

D
E

74

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D, E)

A

B

C

D
E

75

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)

A

B

C

D
E

76

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)

A

B

C

D
E

77

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver (kind of)
● Mark each grid square with VISITED as we explore it
● Mark each path with SPANNING or BACK
● Only visit each vertex once (this differs from our maze search)

○ DFS will not necessarily find the shortest paths

78

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver (kind of)
● Mark each grid square with VISITED as we explore it
● Mark each path with SPANNING or BACK
● Only visit each vertex once (this differs from our maze search)

○ DFS will not necessarily find the shortest paths

79

Depth-First Search Complexity

What's the complexity?

80

DFS

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFS(Graph graph) {

 for (Vertex v : graph.vertices) {

 v.setLabel(UNEXPLORED);

 }

 for (Edge e : graph.edges) {

 e.setLabel(UNEXPLORED);

 }

 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 DFSOne(graph, v);

 }

 }

} 81

DFS

1

2

3

4

5

6

7

8

9

10

11

public void DFS(Graph graph) {

 𝚯(|V|)
 for (Edge e : graph.edges) {

 e.setLabel(UNEXPLORED);

 }

 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 DFSOne(graph, v);

 }

 }

}

82

DFS

1

2

3

4

5

6

7

8

9

public void DFS(Graph graph) {

 𝚯(|V|)
 𝚯(|E|)
 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 DFSOne(graph, v);

 }

 }

}

83

DFS

1

2

3

4

5

6

7

8

9

public void DFS(Graph graph) {

 𝚯(|V|)
 𝚯(|E|)
 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 𝚯(???)
 }

 }

}

84

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 v.setLabel(VISITED);

 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 e.setLabel(SPANNING);

 DFSOne(graph, w);

 } else {

 e.setLabel(BACK);

 }

 }

}} 85

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 𝚯(1)
 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 𝚯(1)
 if (w.label == UNEXPLORED) {

 𝚯(1)
 𝚯(???)
 } else {

 𝚯(1)
 }

 }

}} 86

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

87

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

88

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

89

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

90

DFSOne

1

2

3

4

5

6

7

8

9

10

11

12

13

public void DFSOne(Graph graph, Vertex v) {

 𝚯(1)
 for (Edge e : v.outEdges) {

 if (e.label == UNEXPLORED) {

 𝚯(1)
 if (w.label == UNEXPLORED) {

 𝚯(1)
 𝚯(???)
 } else {

 𝚯(1)
 }

 }

}} 91

DFSOne

1

2

3

4

5

6

public void DFSOne(Graph graph, Vertex v) {

 𝚯(1)
 for (Edge e : v.outEdges) {

 𝚯(1)
 }

}

92

DFSOne

1

2

3

4

5

6

public void DFSOne(Graph graph, Vertex v) {

 𝚯(1)
 for (Edge e : v.outEdges) {

 𝚯(1)
 }

}

93

As long as we use an adjacency list this will be able
to iterate through the adjacenct edges in 𝚯
(deg(v)) time

DFSOne

1

2

3

4

public void DFSOne(Graph graph, Vertex v) {

 𝚯(1)
 𝚯(deg(v))
}

94

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

95

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls? O(deg(v))

96

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

97

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

98

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

99

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

100

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

101

Depth-First Search Complexity

In summary…

102

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED

103

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)

104

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED

105

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)

106

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop

107

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|) iterations

108

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|) iterations
4. All calls to DFSOne

109

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. Sum of all calls to DFSOne O(|E|) total

110

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. Sum of all calls to DFSOne O(|E|) total

 O(|V| + |E|)

111

DFS without Recursion

Our DFSOne implementation uses recursion for the search…

The recursive calls form a Stack…

Can we make a non-recursive implementation using a Stack explicitly?

112

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void DFSOneNoRecursion(Graph graph, Vertex v) {

 Stack<Vertex> todo = new Stack<>();

 v.setLabel(VISITED);

 todo.push(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.pop();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.push(w);

 } else {

 e.setLabel(BACK);

 }

}}}} 113

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void DFSOneNoRecursion(Graph graph, Vertex v) {

 Stack<Vertex> todo = new Stack<>();

 v.setLabel(VISITED);

 todo.push(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.pop();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.push(w);

 } else {

 e.setLabel(BACK);

 }

}}}} 114

Use a stack to keep track of what vertices we
want to visit (basically a running TODO list)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void DFSOneNoRecursion(Graph graph, Vertex v) {

 Stack<Vertex> todo = new Stack<>();

 v.setLabel(VISITED);

 todo.push(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.pop();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.push(w);

 } else {

 e.setLabel(BACK);

 }

}}}} 115

Pop a vertex from the Stack and
check all of it's outgoing edges

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void DFSOneNoRecursion(Graph graph, Vertex v) {

 Stack<Vertex> todo = new Stack<>();

 v.setLabel(VISITED);

 todo.push(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.pop();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.push(w);

 } else {

 e.setLabel(BACK);

 }

}}}} 116

When we find a new vertex, mark
it as VISITED, and add it to our
TODO list.

Remember, our TODO list is a
stack (LIFO) so whatever we
push last will be the next thing
we pop (and explore)

Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

TODO Stack

A

B

C

D
E

117

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

TODO Stack
A

A

B

C

D
E

118

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

TODO Stack

A

B

C

D
E

119

Current Vertex: A

Detailed Example

✓ ✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

TODO Stack
B
D
E

A

B

C

D
E

120

Current Vertex: A

Detailed Example

✓ ✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

TODO Stack
B
D

A

B

C

D
E

121

Current Vertex: E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

TODO Stack
B
D
C

A

B

C

D
E

122

Current Vertex: E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

TODO Stack
B
D

A

B

C

D
E

123

Current Vertex: C

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

TODO Stack
B
D

A

B

C

D
E

124

Current Vertex: C

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

TODO Stack
B

A

B

C

D
E

125

Current Vertex: D

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

TODO Stack

A

B

C

D
E

126

Current Vertex: B

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void DFSOneNoRecursion(Graph graph, Vertex v) {

 Stack<Vertex> todo = new Stack<>();

 v.setLabel(VISITED);

 todo.push(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.pop();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 curr.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.push(w);

 } else {

 e.setLabel(BACK);

 }

}}}} 127

Now back to our burning question…

What happens if we use a Queue to do our
search instead of a Stack?

Breadth-First Search

128

Breadth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles

● Complete in time O(|V| + |E|), with memory overhead O(|V|)

129

Breadth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E) in increasing order of distance from the start

● Construct a spanning tree for every connected component
○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles
○ Side Effect: Identify shortest paths to the starting vertex

● Complete in time O(|V| + |E|), with memory overhead O(|V|)

130

BFS

1

2

3

4

5

6

7

8

9

10

11

12

13

public void BFS(Graph graph) {

 for (Vertex v : graph.vertices) {

 v.setLabel(UNEXPLORED);

 }

 for (Edge e : graph.edges) {

 e.setLabel(UNEXPLORED);

 }

 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 BFSOne(graph, v);

 }

 }

}

Same as DFS driver function…just
make sure that we explore EVERY
vertex, even if the graph is
disconnected

131

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 132

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 133

Use a queue to keep track of what vertices we
want to visit (basically a running TODO list)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 134

Dequeue a vertex from the
Queue and check all of it's
outgoing edges

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 135

When we find a new vertex, mark
it as VISITED, and add it to our
TODO list.

Remember, our TODO list is a
Queue (FIFO) so whatever we
enqueud first will be the next
thing we dequeue (and explore)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 w.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 136

When doing BFS we label edges
that return to visited vertices as
CROSS edges

Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue

A

B

C

D
E

137

Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G)

A

B

C

D
E

138

Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G)
BFSOne(G,A)

A

B

C

D
E

139

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G) A
BFSOne(G,A)

A

B

C

D
E

140

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G) A
BFSOne(G,A)

A

B

C

D
E

141

Detailed Example

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G) A
BFSOne(G,A) B

A

B

C

D
E

142

Detailed Example

✓ ✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G) A
BFSOne(G,A) B

D

A

B

C

D
E

143

Detailed Example

✓ ✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G) A
BFSOne(G,A) B

D
E

A

B

C

D
E

144

Detailed Example

✓ ✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G) A
BFSOne(G,A) B

D
E

A

B

C

D
E

145

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G) A
BFSOne(G,A) B

D
E
C

A

B

C

D
E

146

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G) A
BFSOne(G,A) B

D
E
C

A

B

C

D
E

147

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G) A
BFSOne(G,A) B

D
E
C

A

B

C

D
E

148

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G) A
BFSOne(G,A) B

D
E
C

A

B

C

D
E

149

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G) A
BFSOne(G,A) B

D
E
C

A

B

C

D
E

150

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G) A
BFSOne(G,A) B

D
E
C

A

B

C

D
E

151

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

CROSS

Call Stack Work Queue
BFS(G) A
BFSOne(G,A) B

D
E
C

A

B

C

D
E

152

BFS Complexity

1

2

3

4

5

6

7

8

9

10

11

12

13

public void BFS(Graph graph) {

 for (Vertex v : graph.vertices) {

 v.setLabel(UNEXPLORED);

 }

 for (Edge e : graph.edges) {

 e.setLabel(UNEXPLORED);

 }

 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 BFSOne(graph, v);

 }

 }

} 153

BFS Complexity

1

2

3

4

5

6

7

8

9

public void BFS(Graph graph) {

 𝚯(|V|)
 𝚯(|E|)
 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 BFSOne(graph, v);

 }

 }

}

154

BFS Complexity

1

2

3

4

5

6

7

8

9

public void BFS(Graph graph) {

 𝚯(|V|)
 𝚯(|E|)
 for (Vertex v : graph.vertices) {

 if (v.label == UNEXPLORED) {

 𝚯(???)
 }

 }

}

155

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

public void BFSOne(Graph graph, Vertex v) {

 Queue<Vertex> todo = new Queue<>();

 v.setLabel(VISITED);

 todo.enqueue(v);

 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 curr.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}} 156

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public void BFSOne(Graph graph, Vertex v) {

 𝚯(1)
 while (!todo.isEmpty()) {

 Vertex curr = todo.dequeue();

 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 curr.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}}

157

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public void BFSOne(Graph graph, Vertex v) {

 𝚯(1)
 while (!todo.isEmpty()) {

 𝚯(1)
 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 Vertex w = e.to;

 if (w.label == UNEXPLORED) {

 curr.setLabel(VISITED);

 e.setLabel(SPANNING);

 todo.enqueue(w);

 } else {

 e.setLabel(CROSS);

 }

}}}}

158

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public void BFSOne(Graph graph, Vertex v) {

 𝚯(1)
 while (!todo.isEmpty()) {

 𝚯(1)
 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 𝚯(1)
 if (w.label == UNEXPLORED) {

 𝚯(1)
 todo.enqueue(w);

 } else {

 𝚯(1)
 }

}}}}

159

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public void BFSOne(Graph graph, Vertex v) {

 𝚯(1)
 while (!todo.isEmpty()) {

 𝚯(1)
 for (Edge e : curr.outEdges) {

 if (e.label == UNEXPLORED) {

 𝚯(1)
 if (w.label == UNEXPLORED) {

 𝚯(1)
 𝚯(1)
 } else {

 𝚯(1)
 }

}}}}

160

1

2

3

4

5

6

7

8

9

public void BFSOne(Graph graph, Vertex v) {

 𝚯(1)
 while (!todo.isEmpty()) {

 𝚯(1)
 for (Edge e : curr.outEdges) {

 𝚯(1)
 }

 }

}

161

1

2

3

4

5

6

7

8

9

public void BFSOne(Graph graph, Vertex v) {

 𝚯(1)
 while (!todo.isEmpty()) {

 𝚯(1)
 𝚯(deg(v))
 }

}

162

1

2

3

4

5

6

7

8

9

public void BFSOne(Graph graph, Vertex v) {

 𝚯(1)
 while (!todo.isEmpty()) {

 𝚯(1)
 𝚯(deg(v))
 }

}

163

How many iterations will this while loop run?

1

2

3

4

5

6

7

8

9

public void BFSOne(Graph graph, Vertex v) {

 𝚯(1)
 while (!todo.isEmpty()) {

 𝚯(1)
 𝚯(deg(v))
 }

}

164

How many iterations will this while loop run?
Each vertex will be enqueued exactly ONCE

1

2

3

4

5

6

7

8

9

public void BFSOne(Graph graph, Vertex v) {

 𝚯(1)
 while (!todo.isEmpty()) {

 𝚯(1)
 𝚯(deg(v))
 }

}

165

How many iterations will this while loop run?
Each vertex will be enqueued exactly ONCE
The cost to process each vertex is deg(v)

Breadth-First Search Complexity

What is the sum over all iterations in BFSOne?

166

Breadth-First Search Complexity

What is the sum over all iterations in BFSOne?

167

Breadth-First Search Complexity

What is the sum over all iterations in BFSOne?

168

Breadth-First Search Complexity

What is the sum over all iterations in BFSOne?

169

Breadth-First Search Complexity

What is the sum over all iterations in BFSOne?

170

Breadth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED

171

Breadth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)

172

Breadth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED

173

Breadth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)

174

Breadth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. Add each vertex to the work queue

175

Breadth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. Add each vertex to the work queue O(|V|)

176

Breadth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. Add each vertex to the work queue O(|V|)
4. Process each vertex

177

Breadth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. Add each vertex to the work queue O(|V|)
4. Process each vertex O(|E|) total

178

Breadth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. Add each vertex to the work queue O(|V|)
4. Process each vertex O(|E|) total

 O(|V| + |E|)

179

BFS

DFS vs BFS

DFS

✓ ✓

✓

✓

✓

A

B

C

D
E

✓ ✓

✓

✓

✓

A: 0

B: 1

C:2

D:1
E:1

180

BFS

DFS vs BFS

DFS

✓ ✓

✓

✓

✓

A

B

C

D
E

BACK Edge(v,w): w is an ancestor of v in
the discovery tree

✓ ✓

✓

✓

✓

A: 0

B: 1

C:2

D:1
E:1

181

DFS BFS

DFS vs BFS

✓ ✓

✓

✓

✓

A: 0

B: 1

C:2

D:1
E:1

✓ ✓

✓

✓

✓

A

B

C

D
E

BACK Edge(v,w): w is an ancestor of v in
the discovery tree

CROSS Edge(v,w): w is at the same or next level
as v

182

DFS Traversal vs BFS Traversal

Application DFS BFS

Spanning Trees ✓ ✓

Connected Components ✓ ✓

Paths/Connectivity ✓ ✓

Cycles ✓ ✓

Shortest Paths* ✓

Articulation Points ✓
183* we'll come back to this…

