CSE 250 Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 20: Graph Traversals

Announcements

- PA2 released
 - Testing phase due Sunday 3/17
 - Implementation due Sunday 3/31
 - AutoLab open soon

So...what do we do with our graphs?

Given graph **G**:

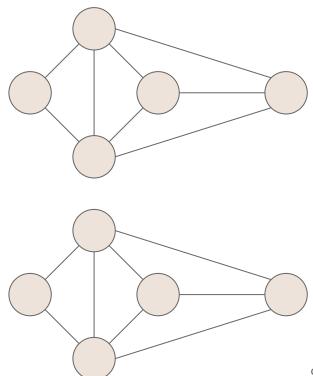
Is vertex u adjacent to vertex v?

- Is vertex u adjacent to vertex v?
- Is vertex **u** connected to vertex **v** via some path?

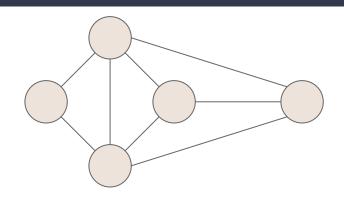
- Is vertex u adjacent to vertex v?
- Is vertex **u** connected to vertex **v** via some path?
- Which vertices are connected to vertex v?

- Is vertex u adjacent to vertex v?
- Is vertex u connected to vertex v via some path?
- Which vertices are connected to vertex v?
- What is the shortest path from vertex u to vertex v?

A **<u>subgraph</u>**, **S**, of a graph **G** is a graph where: **S**'s vertices are a subset of **G**'s vertices **S**'s edges are a subset of **G**'s edges

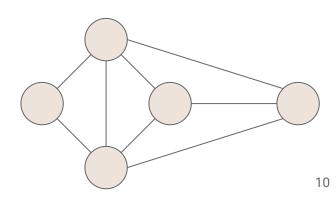


A <u>subgraph</u>, S, of a graph G is a graph where: S's vertices are a subset of G's vertices S's edges are a subset of G's edges

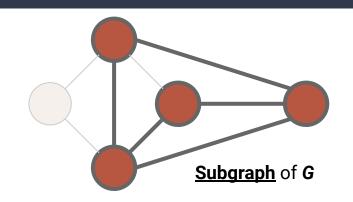


A <u>spanning subgraph</u> of **G**...

Is a subgraph of **G**Contains all of **G**'s vertices

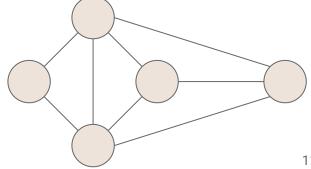


A **<u>subgraph</u>**, **S**, of a graph **G** is a graph where: **S**'s vertices are a subset of **G**'s vertices **S**'s edges are a subset of **G**'s edges



A **spanning subgraph** of **G**...

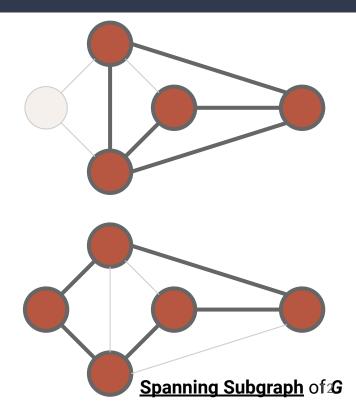
Is a subgraph of **G** Contains all of G's vertices



A <u>subgraph</u>, S, of a graph G is a graph where: S's vertices are a subset of G's vertices S's edges are a subset of G's edges

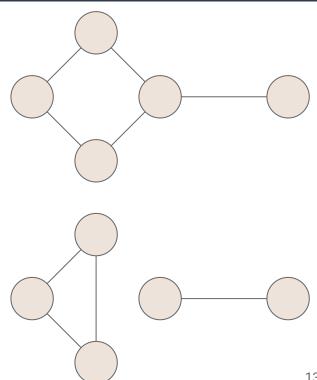
A **spanning subgraph** of **G**...

Is a subgraph of **G**Contains all of **G**'s vertices



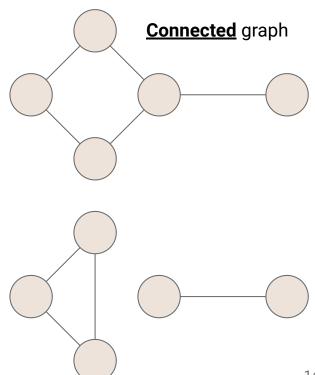
A graph is **connected**...

If there is a path between every pair of vertices



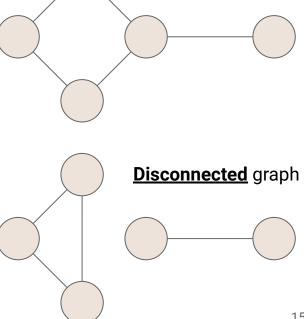
A graph is **connected**...

If there is a path between every pair of vertices



A graph is **connected**...

If there is a path between every pair of vertices



Connected graph

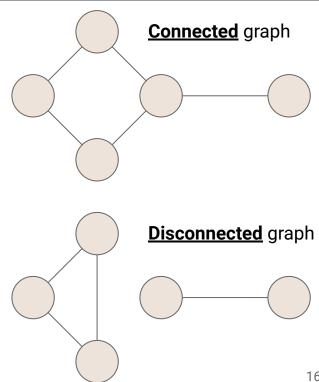
A graph is **connected**...

If there is a path between every pair of vertices

A **connected component** of **G**...

Is a maximal connected subgraph of **G**

- "maximal" means you can't add a new vertex without breaking the property
- Any subset of **G**'s edges that connect the subgraph are fine



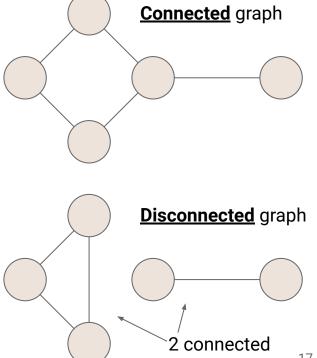
A graph is **connected**...

If there is a path between every pair of vertices

A **connected component** of **G**...

Is a maximal connected subgraph of **G**

- "maximal" means you can't add a new vertex without breaking the property
- Any subset of G's edges that connect the subgraph are fine



components

A **free tree** is an undirected graph **T** such that...

There is exactly one simple path between any two nodes

- T is connected
- T has no cycles

A **free tree** is an undirected graph **T** such that...

There is exactly one simple path between any two nodes

- **T** is connected
- T has no cycles

A **rooted tree** is a directed graph **T** such that...

One vertex of **T** is the **root**

There is exactly one simple path from the root to every other vertex in the graph

A **free tree** is an undirected graph **T** such that...

There is exactly one simple path between any two nodes

- T is connected
- T has no cycles

A **rooted tree** is a directed graph **T** such that...

One vertex of **T** is the **root**

There is exactly one simple path from the root to every other vertex in the graph

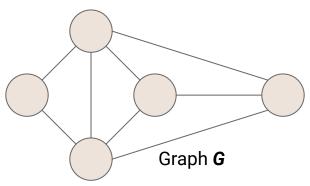
A (free/rooted) **forest** is a graph **F** such that...

Every connected component is a tree

A **spanning tree** of a connected graph...

...Is a spanning subgraph that is a tree

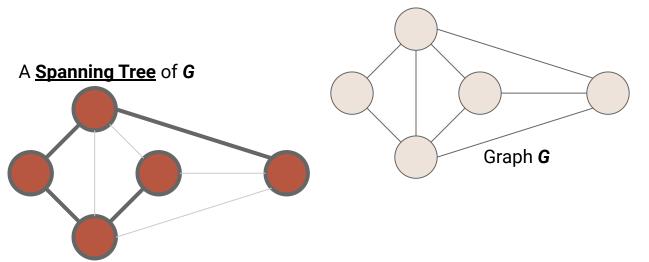
...It is not unique unless the graph is a tree



A **spanning tree** of a connected graph...

...Is a spanning subgraph that is a tree

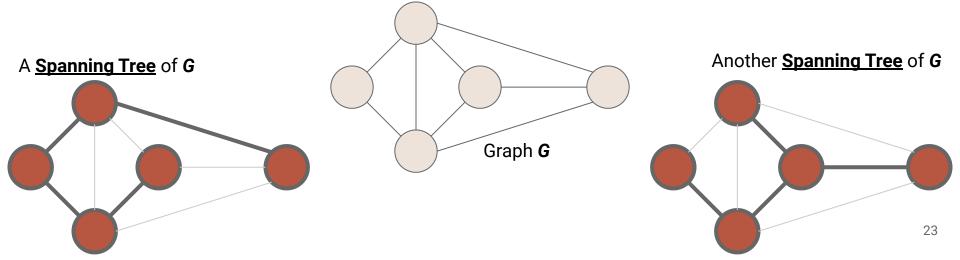
...It is not unique unless the graph is a tree



A **spanning tree** of a connected graph...

...Is a spanning subgraph that is a tree

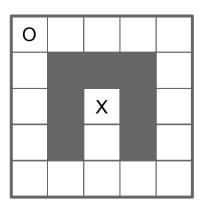
...It is not unique unless the graph is a tree



Now back to the question...Connectivity

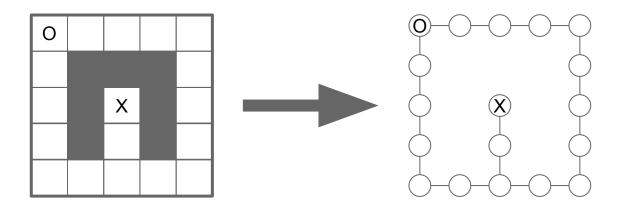
Back to Mazes

How could we represent our maze as a graph?



Back to Mazes

How could we represent our maze as a graph?



Recall

Searching the maze with a stack

We try every path, one at a time, following it as far as we can ...then backtrack and try another

Recall

Searching the maze with a stack (Depth-First Search)

We try every path, one at a time, following it as far as we can ...then backtrack and try another

Recall

Searching the maze with a stack (Depth-First Search)

We try every path, one at a time, following it as far as we can ...then backtrack and try another

Searching with a queue?

TBD...

- Visit every vertex in graph G = (V,E)
- Construct a spanning tree for every connected component

- Visit every vertex in graph G = (V,E)
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components

- Visit every vertex in graph G = (V,E)
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
 - Side Effect: Compute a path between all connected vertices

- Visit every vertex in graph G = (V,E)
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
 - Side Effect: Compute a path between all connected vertices
 - Side Effect: Determine if the graph is connected

- Visit every vertex in graph G = (V,E)
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
 - Side Effect: Compute a path between all connected vertices
 - Side Effect: Determine if the graph is connected
 - Side Effect: Identify cycles

- Visit every vertex in graph G = (V,E)
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
 - Side Effect: Compute a path between all connected vertices
 - Side Effect: Determine if the graph is connected
 - Side Effect: Identify cycles
- Complete in time *O(|V| + |E|)*

DFS

Input: Graph G = (V,E)

Output: Label every edge as:

- Spanning Edge: Part of the spanning tree
- Back Edge: Part of a cycle

DFS

Input: Graph G = (V,E)

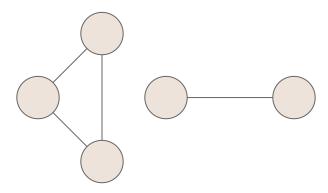
Output: Label every edge as:

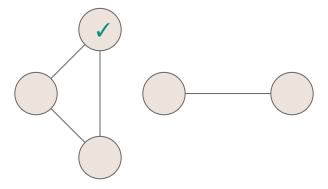
- Spanning Edge: Part of the spanning tree
- Back Edge: Part of a cycle

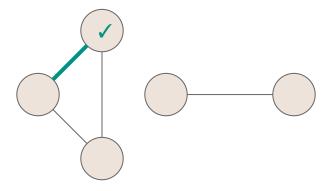
DFSOne

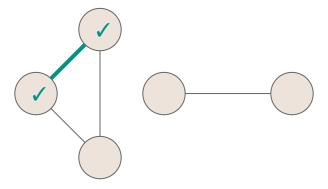
Input: Graph G = (V,E), start vertex $v \in V$

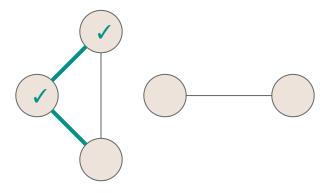
Output: Label every edge in v's connected component

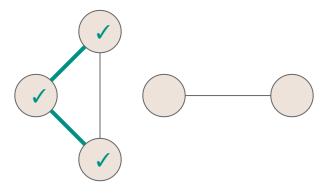


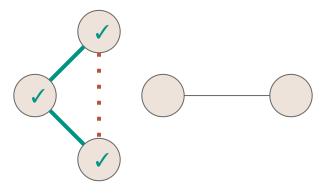




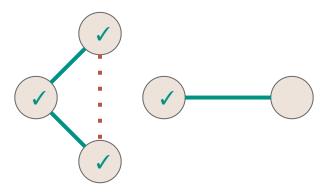


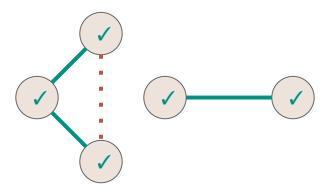












DFS

```
public void DFS(Graph graph) {
     for (Vertex v : graph.vertices) {
       v.setLabel(UNEXPLORED);
4
     for (Edge e : graph.edges) {
       e.setLabel(UNEXPLORED);
6
 7
8
     for (Vertex v : graph.vertices) {
       if (v.label == UNEXPLORED) {
10
         DFSOne(graph, v);
11
12
13
                                                                              48
```

DFS

```
public void DFS(Graph graph) {
    for (Vertex v : graph.vertices) {
       v.setLabel(UNEXPLORED);
                                          Initialize all vertices and edges to
4
                                         UNEXPLORED
    for (Edge e : graph.edges) {
       e.setLabel(UNEXPLORED);
 6
 7
8
     for (Vertex v : graph.vertices) {
       if (v.label == UNEXPLORED) {
10
         DFSOne(graph, v);
11
12
13
```

DFS

```
public void DFS(Graph graph) {
    for (Vertex v : graph.vertices) {
      v.setLabel(UNEXPLORED);
4
    for (Edge e : graph.edges) {
       e.setLabel(UNEXPLORED);
8
    for (Vertex v : graph.vertices) {
                                         Call DFSOne to label the connected
       if (v.label == UNEXPLORED) {
                                         component of every unexplored
10
         DFSOne(graph, v);
                                         vertex
11
12
13
                                                                            50
```

```
public void DFSOne(Graph graph, Vertex v) {
     v.setLabel(VISITED);
     for (Edge e : v.outEdges) {
       if (e.label == UNEXPLORED) {
         Vertex w = e.to;
         if (w.label == UNEXPLORED) {
 6
           e.setLabel(SPANNING);
8
           DFSOne(graph, w);
         } else {
           e.setLabel(BACK);
10
11
12
13 | } }
                                                                               51
```

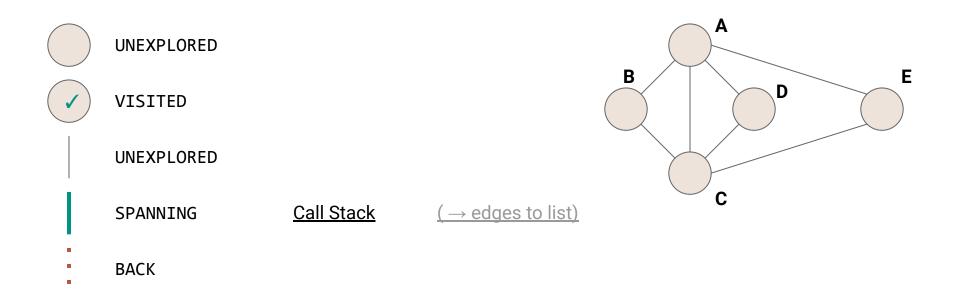
```
public void DFSOne(Graph graph, Vertex v) {
     v.setLabel(VISITED); ← Mark the vertex as VISITED (so we'll never try to visit it again)
     for (Edge e : v.outEdges) {
       if (e.label == UNEXPLORED) {
         Vertex w = e.to;
         if (w.label == UNEXPLORED) {
 6
           e.setLabel(SPANNING);
8
           DFSOne(graph, w);
         } else {
10
           e.setLabel(BACK);
11
12
                                                                                  52
```

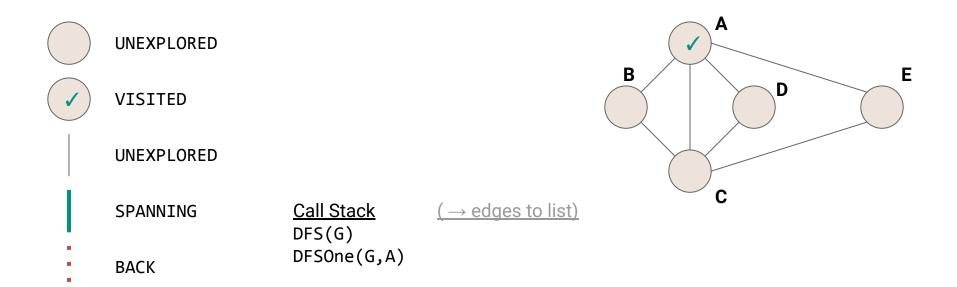
```
public void DFSOne(Graph graph, Vertex v) {
     v.setLabel(VISITED);
     for (Edge e : v.outEdges) {
       if (e.label == UNEXPLORED) {
                                           Check every outgoing edge (every possible
                                           way we could leave the current vertex)
         Vertex w = e.to;
         if (w.label == UNEXPLORED) {
 6
           e.setLabel(SPANNING);
           DFSOne(graph, w);
         } else {
           e.setLabel(BACK);
10
11
12
```

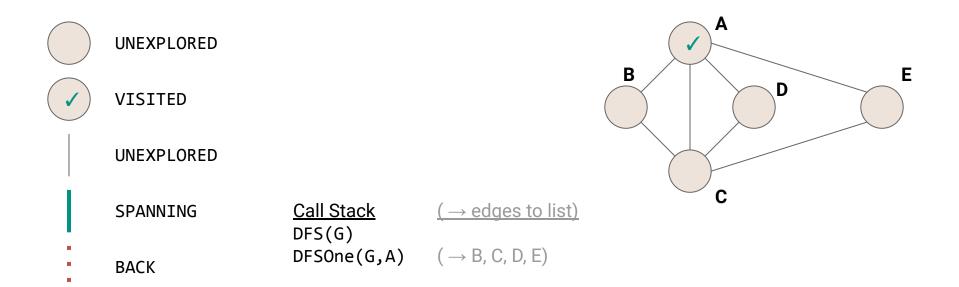
```
public void DFSOne(Graph graph, Vertex v) {
     v.setLabel(VISITED);
     for (Edge e : v.outEdges) {
       if (e.label == UNEXPLORED) {
         Vertex w = e.to;
                                          Follow the unexplored edges
         if (w.label == UNEXPLORED) {
6
           e.setLabel(SPANNING);
8
           DFSOne(graph, w);
         } else {
           e.setLabel(BACK);
10
11
12
13
```

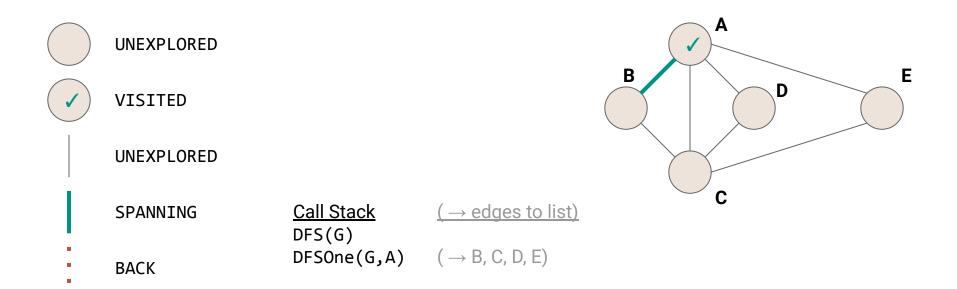
```
public void DFSOne(Graph graph, Vertex v) {
     v.setLabel(VISITED);
     for (Edge e : v.outEdges) {
       if (e.label == UNEXPLORED) {
         Vertex w = e.to;
 6
         if (w.label == UNEXPLORED) {
           e.setLabel(SPANNING);
                                       If it leads to an unexplored vertex, then it is a
8
           DFSOne(graph, w);
                                       spanning edge. Recursively explore that vertex.
          } else {
10
            e.setLabel(BACK);
11
12
13
```

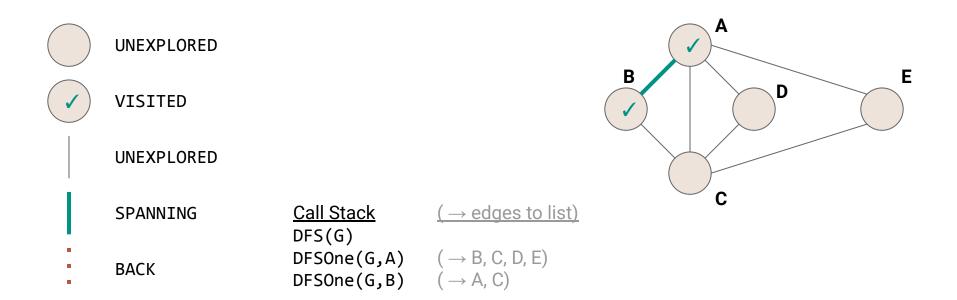
```
public void DFSOne(Graph graph, Vertex v) {
     v.setLabel(VISITED);
     for (Edge e : v.outEdges) {
       if (e.label == UNEXPLORED) {
         Vertex w = e.to;
         if (w.label == UNEXPLORED) {
 6
           e.setLabel(SPANNING);
8
           DFSOne(graph, w);
         } else {
           e.setLabel(BACK);
10
                               Otherwise, we just found a cycle
11
12
13
                                                                               56
```

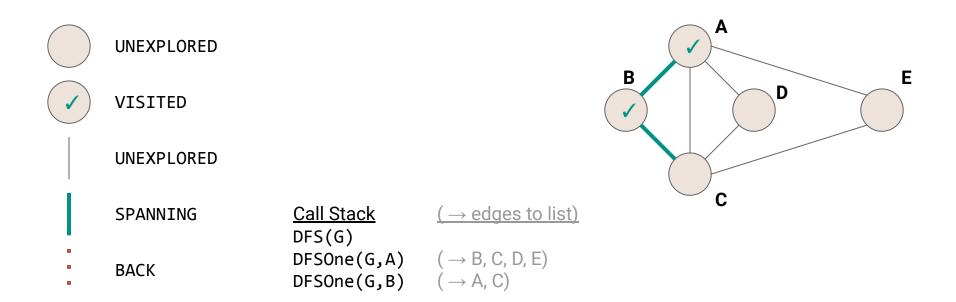


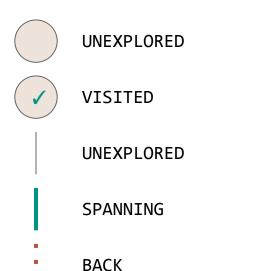


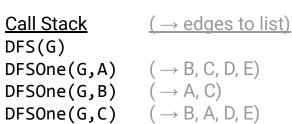


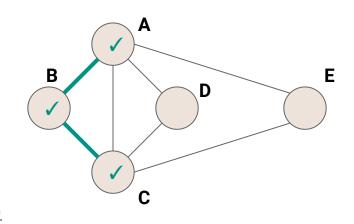


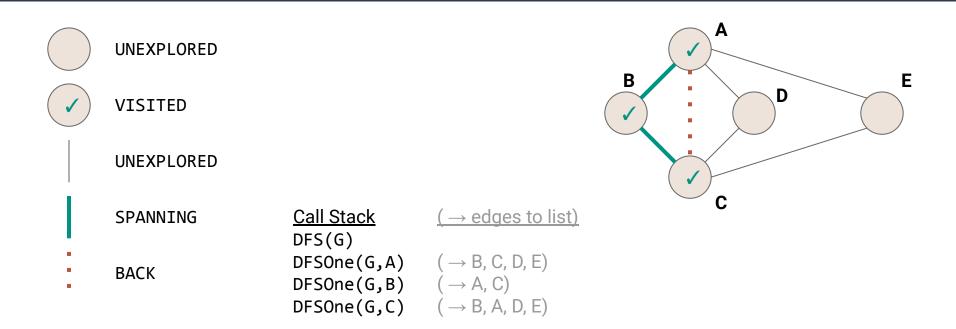


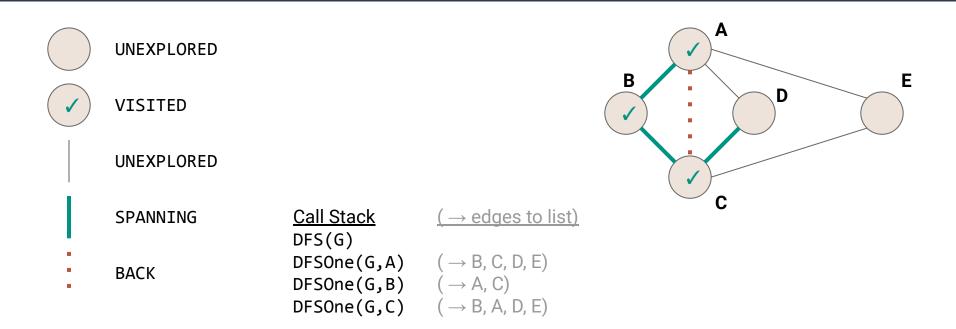


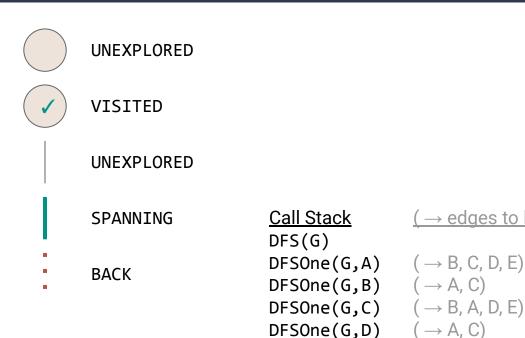


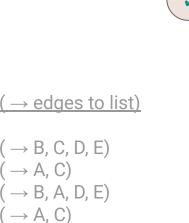


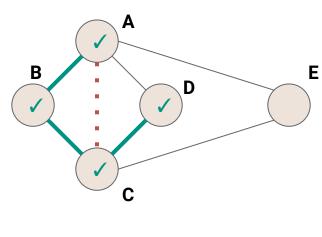










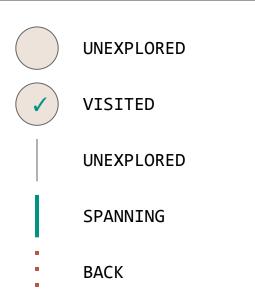


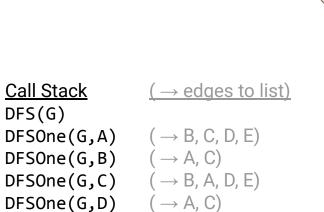
Call Stack

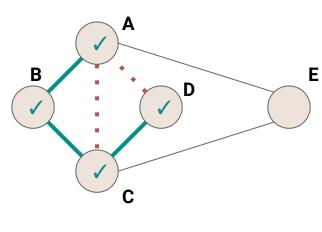
 $\mathsf{DFSOne}(\mathsf{G},\mathsf{B}) \qquad (\,\to\,\mathsf{A},\,\mathsf{C})$

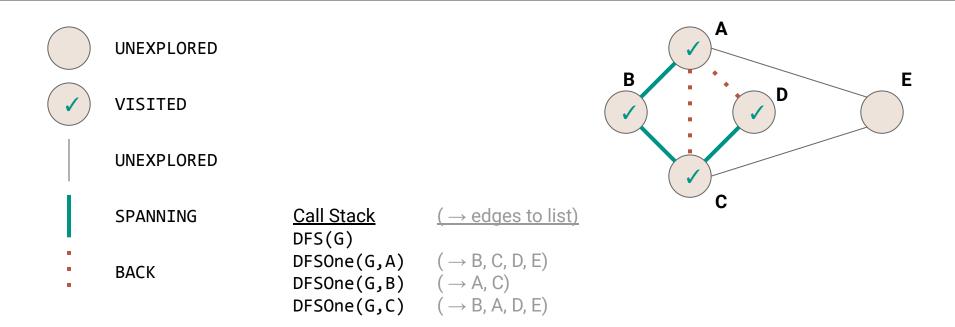
DFSOne(G,D) $(\rightarrow A, C)$

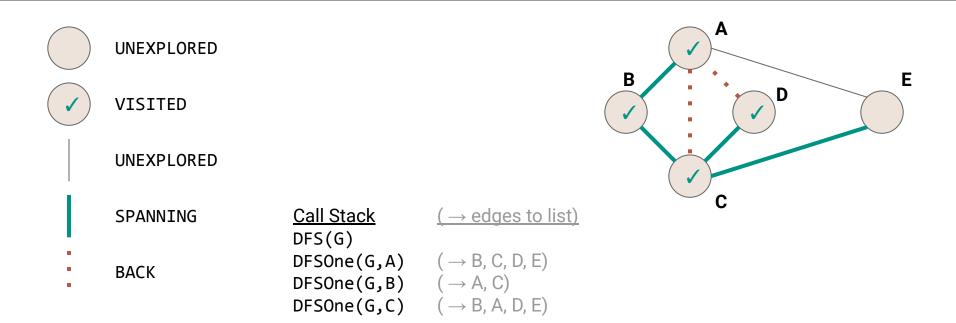
DFS(G)

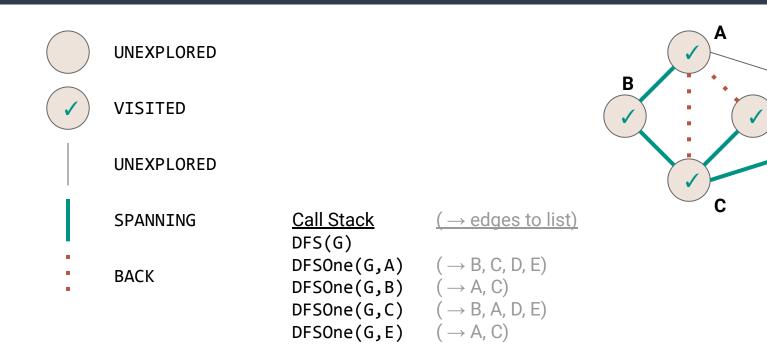






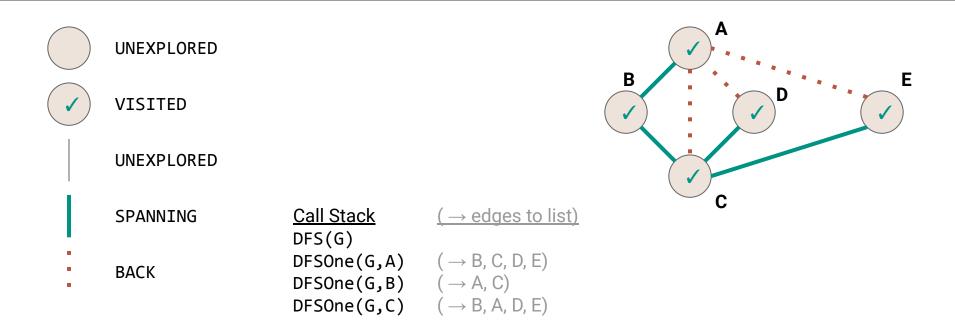


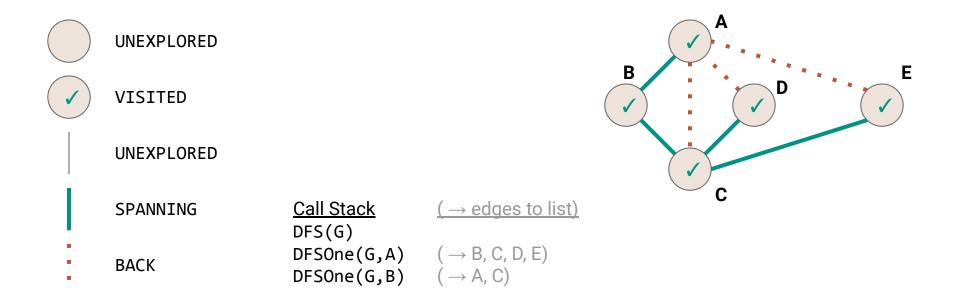


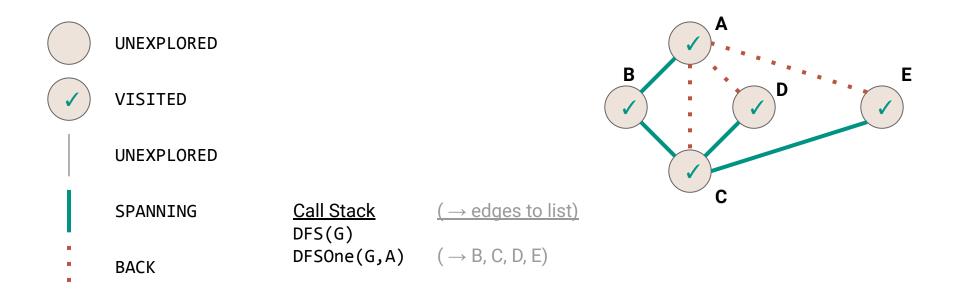


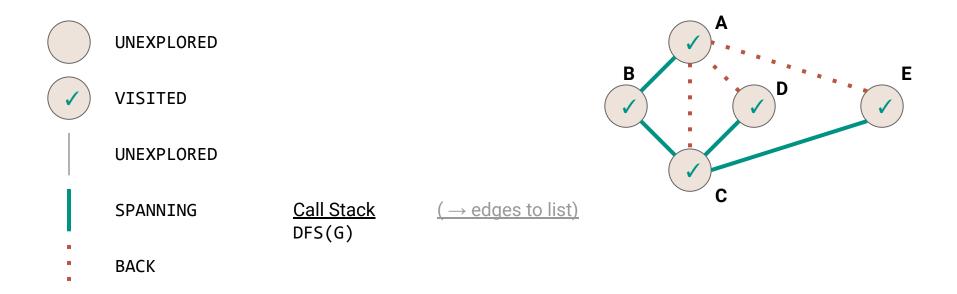
Ε

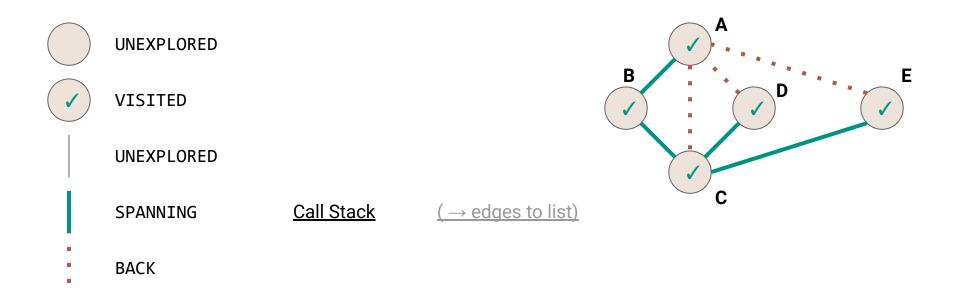












DFS vs Mazes

The DFS algorithm is like our stack-based maze solver (kind of)

- Mark each grid square with VISITED as we explore it
- Mark each path with SPANNING or BACK
- Only visit each vertex once (this differs from our maze search)

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver (kind of)

- Mark each grid square with VISITED as we explore it
- Mark each path with SPANNING or BACK
- Only visit each vertex once (this differs from our maze search)
 - DFS will not necessarily find the shortest paths

What's the complexity?

```
public void DFS(Graph graph) {
     for (Vertex v : graph.vertices) {
       v.setLabel(UNEXPLORED);
4
     for (Edge e : graph.edges) {
       e.setLabel(UNEXPLORED);
6
7
8
     for (Vertex v : graph.vertices) {
       if (v.label == UNEXPLORED) {
10
         DFSOne(graph, v);
11
12
13
                                                                              81
```

```
1 | public void DFS (Graph graph) {
     \Theta(|V|)
     for (Edge e : graph.edges) {
       e.setLabel(UNEXPLORED);
4
 5
     for (Vertex v : graph.vertices) {
6
       if (v.label == UNEXPLORED) {
8
         DFSOne(graph, v);
10
11
```

```
1 public void DFS(Graph graph) {
    \Theta(|V|)
    \Theta(|E|)
4
    for (Vertex v : graph.vertices) {
      if (v.label == UNEXPLORED) {
        DFSOne(graph, v);
6
8
9
```

```
1 public void DFS(Graph graph) {
    \Theta(|V|)
    \Theta(|E|)
4
    for (Vertex v : graph.vertices) {
      if (v.label == UNEXPLORED) {
         \Theta(;;;)
6
8
9
```

```
public void DFSOne(Graph graph, Vertex v) {
     v.setLabel(VISITED);
     for (Edge e : v.outEdges) {
       if (e.label == UNEXPLORED) {
         Vertex w = e.to;
         if (w.label == UNEXPLORED) {
 6
           e.setLabel(SPANNING);
8
           DFSOne(graph, w);
         } else {
           e.setLabel(BACK);
10
11
12
13 | } }
                                                                               85
```

```
1 public void DFSOne(Graph graph, Vertex v) {
      \Theta(1)
      for (Edge e : v.outEdges) {
        if (e.label == UNEXPLORED) {
          \Theta(1)
 6
           if (w.label == UNEXPLORED) {
             \Theta(1)
 8
             \Theta(\S\S\S)
          } else {
             \Theta(1)
10
11
12
13|}}
                                                                                          86
```

How many times do we call **DFSOne** on each vertex?

How many times do we call **DFSOne** on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

How many times do we call **DFSOne** on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

How many times do we call **DFSOne** on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

```
1 public void DFSOne(Graph graph, Vertex v) {
      \Theta(1)
      for (Edge e : v.outEdges) {
        if (e.label == UNEXPLORED) {
          \Theta(1)
 6
           if (w.label == UNEXPLORED) {
             \Theta(1)
 8
             \Theta(\S\S\S)
          } else {
             \Theta(1)
10
11
12
13|}}
                                                                                          91
```

```
public void DFSOne(Graph graph, Vertex v) {
    Θ(1)
    Θ(deg(v))
}
```

How many times do we call **DFSOne** on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

How many times do we call **DFSOne** on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls? O(deg(v))

$$\sum_{v \in V} O(deg(v))$$

$$\sum_{v \in V} O(deg(v))$$

$$=O(\sum_{v\in V}deg(v))$$

$$\begin{split} &\sum_{v \in V} O(deg(v)) \\ &= O(\sum_{v \in V} deg(v)) \\ &= O(2|E|) \end{split}$$

$$\begin{split} &\sum_{v \in V} O(deg(v)) \\ &= O(\sum_{v \in V} deg(v)) \\ &= O(2|E|) \\ &= O(|E|) \end{split}$$

In summary...

In summary...

Mark the vertices UNVISITED

In summary...

1. Mark the vertices **UNVISITED** O(|V|)

In summary...

1. Mark the vertices **UNVISITED** O(|V|)

2. Mark the edges **UNVISITED**

In summary...

1. Mark the vertices **UNVISITED** O(|V|)

2. Mark the edges **UNVISITED** O(|E|)

In summary...

Mark the vertices UNVISITED O(|V|)

2. Mark the edges **UNVISITED** O(|E|)

3. DFS vertex loop

In summary...

1.	Mark the vertices UNVISITED	O(V)
		~ (-)

- 2. Mark the edges **UNVISITED** O(|E|)
- 3. DFS vertex loop O(|V|) iterations

Depth-First Search Complexity

In summary...

- Mark the vertices UNVISITED
- Mark the edges UNVISITED
- 3. DFS vertex loop
- 4. All calls to **DFSOne**

- O(|V|)
- O(|E|)
- O(|V|) iterations

Depth-First Search Complexity

In summary...

1. Wark the vertices UNVISITED U()		Mark the	vertices UNVISITED	0(\	
---	--	----------	---------------------------	------	--

- 2. Mark the edges **UNVISITED** O(|E|)
- 3. Sum of all calls to **DFSOne** O(|E|) total

Depth-First Search Complexity

In summary...

- Mark the vertices UNVISITED
- 2. Mark the edges **UNVISITED**
- 3. Sum of all calls to **DFSOne**

$$O(|E|)$$
 total

$$O(|V| + |E|)$$

DFS without Recursion

Our DFSOne implementation uses recursion for the search...

The recursive calls form a Stack...

Can we make a non-recursive implementation using a Stack explicitly?

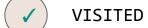
```
1 public void DFSOneNoRecursion(Graph graph, Vertex v) {
     Stack<Vertex> todo = new Stack<>();
     v.setLabel(VISITED);
     todo.push(v);
4
     while (!todo.isEmpty()) {
6
       Vertex curr = todo.pop();
       for (Edge e : curr.outEdges) {
8
         if (e.label == UNEXPLORED) {
9
           Vertex w = e.to;
           if (w.label == UNEXPLORED) {
10
11
             w.setLabel(VISITED);
             e.setLabel(SPANNING);
12
13
             todo.push(w);
14
           } else {
15
             e.setLabel(BACK);
16
17 | } } }
                                                                              113
```

```
1 public void DFSOneNoRecursion(Graph graph, Vertex v) {
     Stack<Vertex> todo = new Stack<>();
                                               Use a stack to keep track of what vertices we
     v.setLabel(VISITED);
                                               want to visit (basically a running TODO list)
     todo.push(v);
 4
     while (!todo.isEmpty()) {
 6
       Vertex curr = todo.pop();
       for (Edge e : curr.outEdges) {
 8
         if (e.label == UNEXPLORED) {
 9
            Vertex w = e.to;
10
            if (w.label == UNEXPLORED) {
11
              w.setLabel(VISITED);
              e.setLabel(SPANNING);
12
13
              todo.push(w);
14
            } else {
15
              e.setLabel(BACK);
16
17|}}}
                                                                                  114
```

```
1 public void DFSOneNoRecursion(Graph graph, Vertex v) {
     Stack<Vertex> todo = new Stack<>();
     v.setLabel(VISITED);
     todo.push(v);
     while (!todo.isEmpty()) {
6
      Vertex curr = todo.pop();
       for (Edge e : curr.outEdges) {
8
         if (e.label == UNEXPLORED) {
           Vertex w = e.to;
           if (w.label == UNEXPLORED) {
10
11
             w.setLabel(VISITED);
             e.setLabel(SPANNING);
12
             todo.push(w);
13
14
           } else {
15
             e.setLabel(BACK);
16
```

Pop a vertex from the Stack and check all of it's outgoing edges

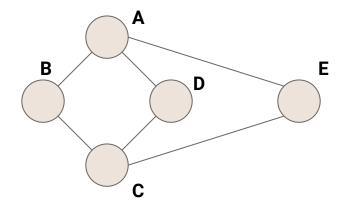
```
1 public void DFSOneNoRecursion(Graph graph, Vertex v) {
     Stack<Vertex> todo = new Stack<>();
     v.setLabel(VISITED);
     todo.push(v);
     while (!todo.isEmpty()) {
6
       Vertex curr = todo.pop();
       for (Edge e : curr.outEdges) {
                                          When we find a new vertex, mark
         if (e.label == UNEXPLORED) {
8
                                          it as VISITED, and add it to our
9
           Vertex w = e.to;
                                          TODO list.
           if (w.label == UNEXPLORED) {
10
            w.setLabel(VISITED);
11
                                          Remember, our TODO list is a
             e.setLabel(SPANNING);
12
                                          stack (LIFO) so whatever we
             todo.push(w);
13
                                          push last will be the next thing
14
           } else {
             e.setLabel(BACK);
15
                                          we pop (and explore)
16
                                                                            116
```

UNEXPLORED

SPANNING

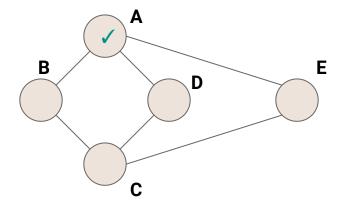
TODO Stack

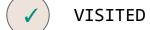


UNEXPLORED

SPANNING

TODO Stack



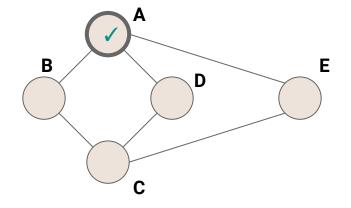


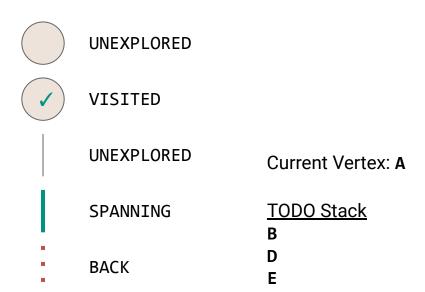
UNEXPLORED

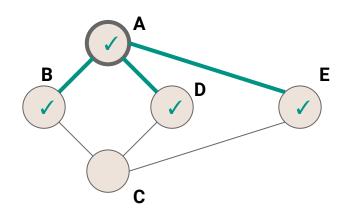
Current Vertex: A

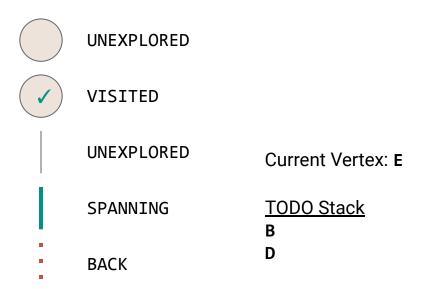
SPANNING

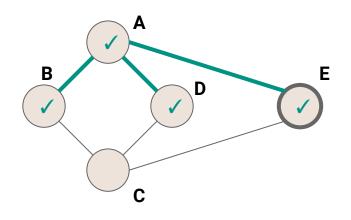
TODO Stack

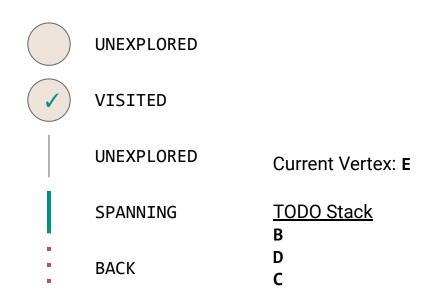


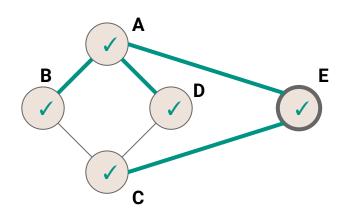


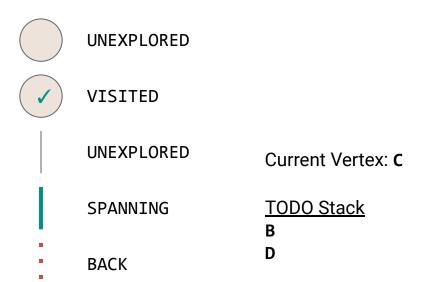


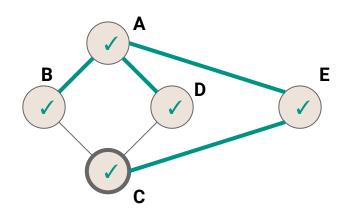


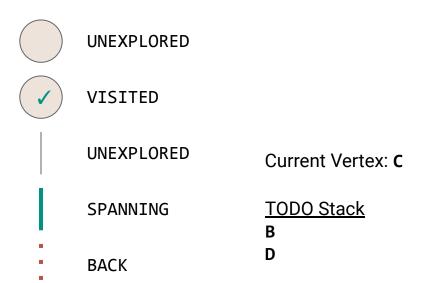


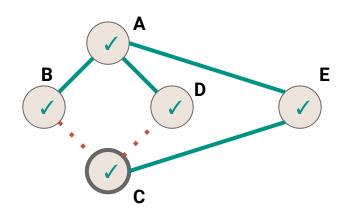


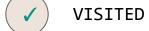










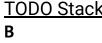


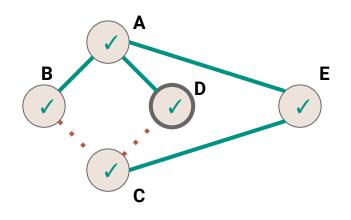
UNEXPLORED

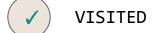
Current Vertex: D

SPANNING

TODO Stack





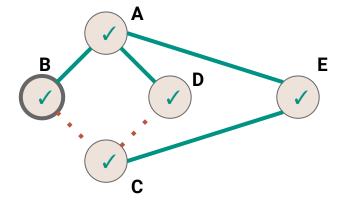


UNEXPLORED

Current Vertex: B

SPANNING

TODO Stack



```
1 public void DFSOneNoRecursion(Graph graph, Vertex v) {
    Stack<Vertex> todo = new Stack<>();
    v.setLabel(VISITED);
    todo.push(v);
    while (!todo.isEmpty()) {
6
      Vertex curr = todo.pop();
      for (Edge e : curr.outEdges) {
8
         if (e.label == UNEXPLORED) {
9
           Vertex w = e.to;
           if (w.label == U Now back to our burning question...
10
11
             curr.setLabel()
             e.setLabel(SPAI What happens if we use a Queue to do our
12
             todo.push(w); search instead of a Stack?
13
14
           } else {
15
             e.setLabel(BACK);
16
                                                                           127
```

Breadth-First Search

Breadth-First Search

Primary Goals

- Visit every vertex in graph G = (V,E)
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
 - Side Effect: Compute a path between all connected vertices
 - Side Effect: Determine if the graph is connected
 - Side Effect: Identify cycles
- Complete in time O(|V| + |E|), with memory overhead O(|V|)

Breadth-First Search

Primary Goals

- Visit every vertex in graph G = (V,E) in increasing order of distance from the start
- Construct a spanning tree for every connected component
 - Side Effect: Compute connected components
 - Side Effect: Compute a path between all connected vertices
 - Side Effect: Determine if the graph is connected
 - Side Effect: Identify cycles
 - Side Effect: Identify shortest paths to the starting vertex
- Complete in time O(|V| + |E|), with memory overhead O(|V|)

BFS

```
public void BFS(Graph graph) {
     for (Vertex v : graph.vertices) {
       v.setLabel(UNEXPLORED);
4
                                                  Same as DFS driver function...just
     for (Edge e : graph.edges) {
                                                  make sure that we explore EVERY
 6
       e.setLabel(UNEXPLORED);
                                                  vertex, even if the graph is
 7
                                                  disconnected
8
     for (Vertex v : graph.vertices) {
       if (v.label == UNEXPLORED) {
10
          BFSOne(graph, v);
11
12
13
```

```
1 public void BFSOne(Graph graph, Vertex v) {
     Queue<Vertex> todo = new Queue<>();
     v.setLabel(VISITED);
4
     todo.enqueue(v);
     while (!todo.isEmpty()) {
6
       Vertex curr = todo.dequeue();
       for (Edge e : curr.outEdges) {
8
         if (e.label == UNEXPLORED) {
9
           Vertex w = e.to;
           if (w.label == UNEXPLORED) {
10
11
             w.setLabel(VISITED);
             e.setLabel(SPANNING);
12
13
             todo.enqueue(w);
           } else {
14
15
             e.setLabel(CROSS);
16
17 | } } }
                                                                              132
```

```
1 public void BFSOne(Graph graph, Vertex v) {
    Queue<Vertex> todo = new Queue<>();
     v.setLabel(VISITED);
    todo.enqueue(v);
4
     while (!todo.isEmpty()) {
6
       Vertex curr = todo.dequeue();
       for (Edge e : curr.outEdges) {
8
         if (e.label == UNEXPLORED) {
9
           Vertex w = e.to;
10
           if (w.label == UNEXPLORED) {
11
             w.setLabel(VISITED);
             e.setLabel(SPANNING);
12
13
             todo.enqueue(w);
14
           } else {
15
             e.setLabel(CROSS);
16
```

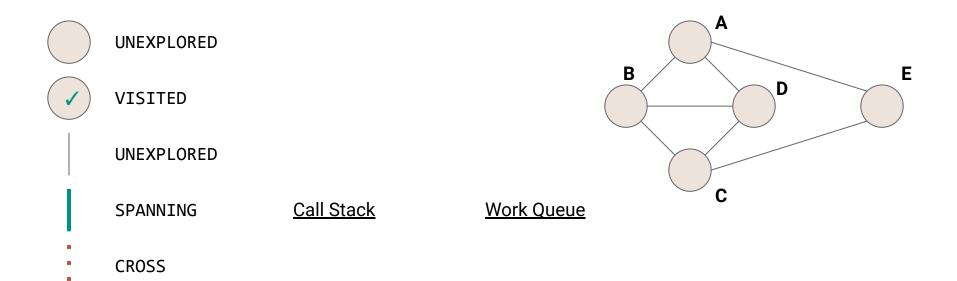
Use a queue to keep track of what vertices we want to visit (basically a running TODO list)

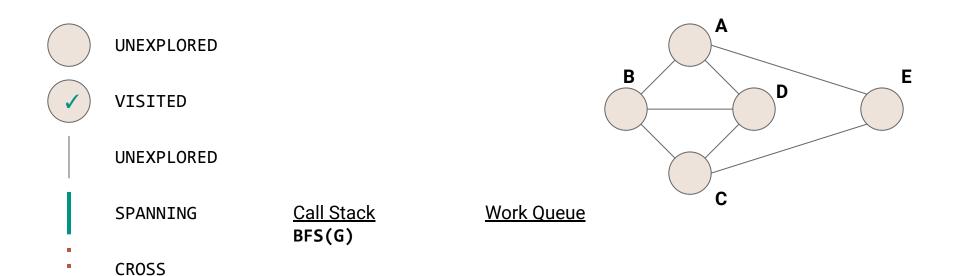
```
1 public void BFSOne(Graph graph, Vertex v) {
     Queue<Vertex> todo = new Queue<>();
     v.setLabel(VISITED);
     todo.enqueue(v);
     while (!todo.isEmpty()) {
6
      Vertex curr = todo.dequeue();
       for (Edge e : curr.outEdges) {
8
         if (e.label == UNEXPLORED) {
9
           Vertex w = e.to;
           if (w.label == UNEXPLORED) {
10
11
             w.setLabel(VISITED);
12
             e.setLabel(SPANNING);
             todo.enqueue(w);
13
14
           } else {
             e.setLabel(CROSS);
15
16
```

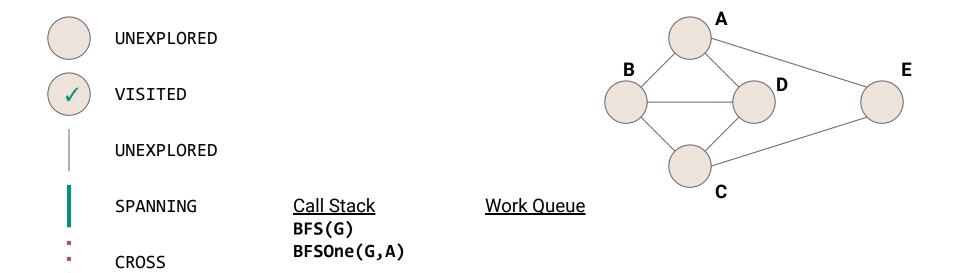
Dequeue a vertex from the Queue and check all of it's outgoing edges

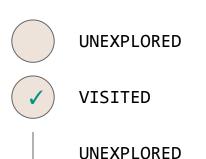
```
1 public void BFSOne(Graph graph, Vertex v) {
     Queue<Vertex> todo = new Queue<>();
     v.setLabel(VISITED);
     todo.enqueue(v);
     while (!todo.isEmpty()) {
6
       Vertex curr = todo.dequeue();
       for (Edge e : curr.outEdges) {
                                          When we find a new vertex, mark
         if (e.label == UNEXPLORED) {
8
                                          it as VISITED, and add it to our
9
           Vertex w = e.to;
                                          TODO list.
           if (w.label == UNEXPLORED) {
10
            w.setLabel(VISITED);
11
                                          Remember, our TODO list is a
             e.setLabel(SPANNING);
12
                                          Queue (FIFO) so whatever we
             todo.enqueue(w);
13
14
           } else {
                                          enqueud first will be the next
             e.setLabel(CROSS);
15
                                          thing we dequeue (and explore)
16
                                                                            135
```

```
1 public void BFSOne(Graph graph, Vertex v) {
     Queue<Vertex> todo = new Queue<>();
     v.setLabel(VISITED);
     todo.enqueue(v);
4
     while (!todo.isEmpty()) {
6
       Vertex curr = todo.dequeue();
       for (Edge e : curr.outEdges) {
8
         if (e.label == UNEXPLORED) {
9
           Vertex w = e.to;
           if (w.label == UNEXPLORED) {
10
11
             w.setLabel(VISITED);
             e.setLabel(SPANNING);
12
             todo.enqueue(w);
13
                                          When doing BFS we label edges
14
           } else {
                                          that return to visited vertices as
             e.setLabel(CROSS);
15
                                          CROSS edges
16
                                                                             136
```









SPANNING

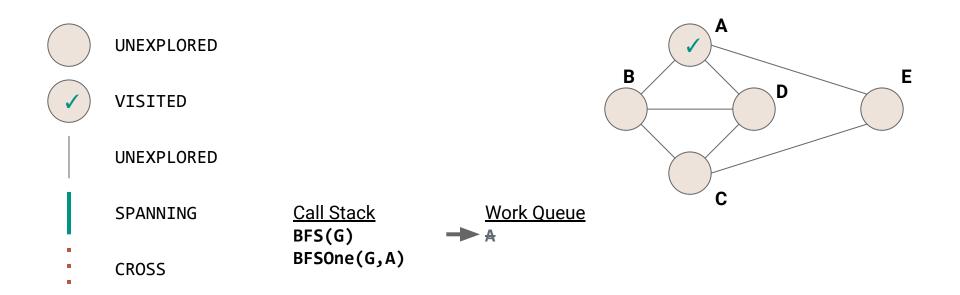
CROSS

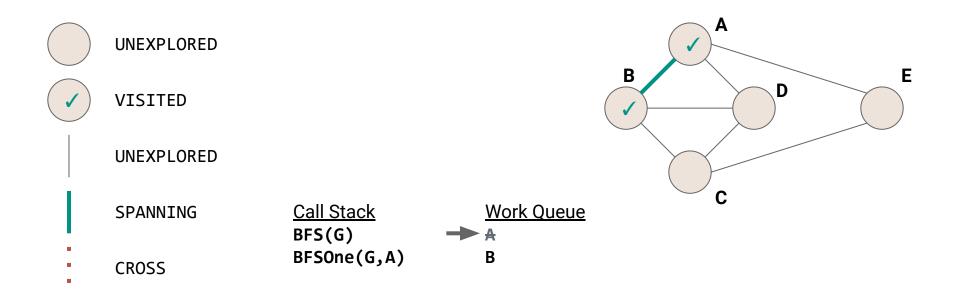
Call Stack
BFS(G)
BFSOne(G,A)

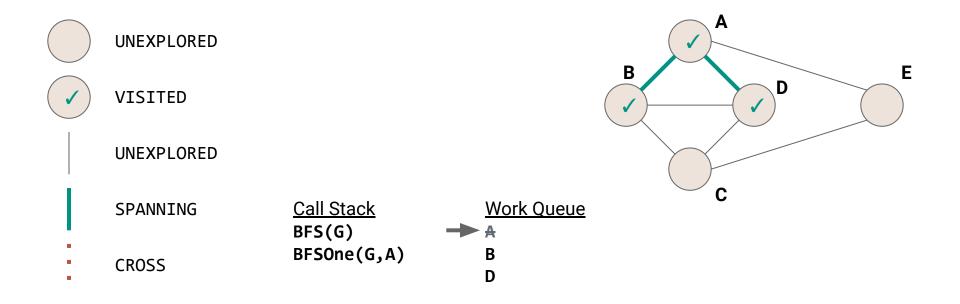
B

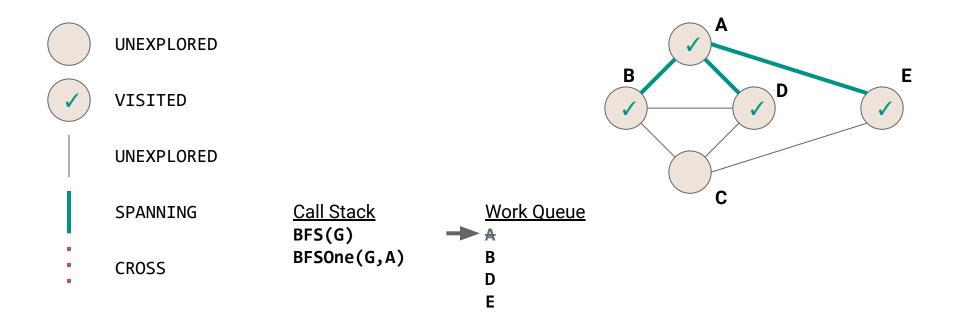
C

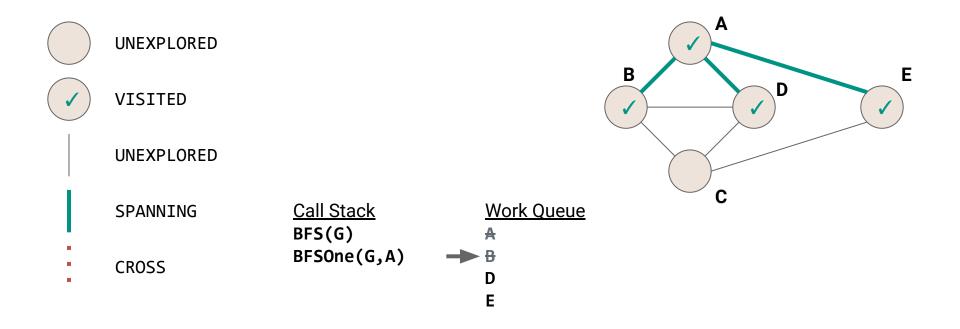
Work Queue

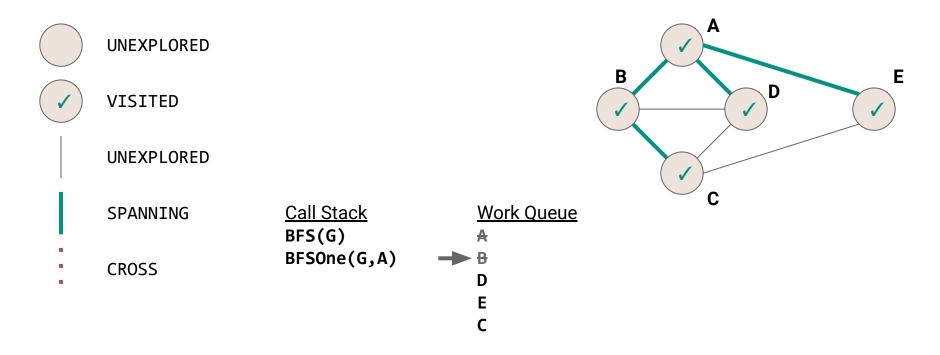


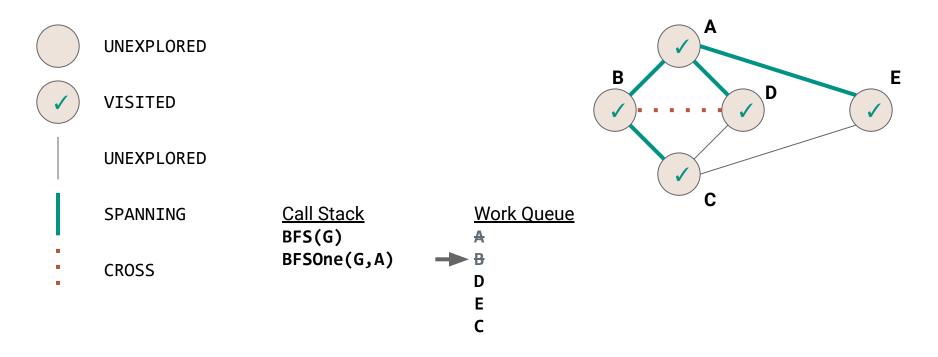


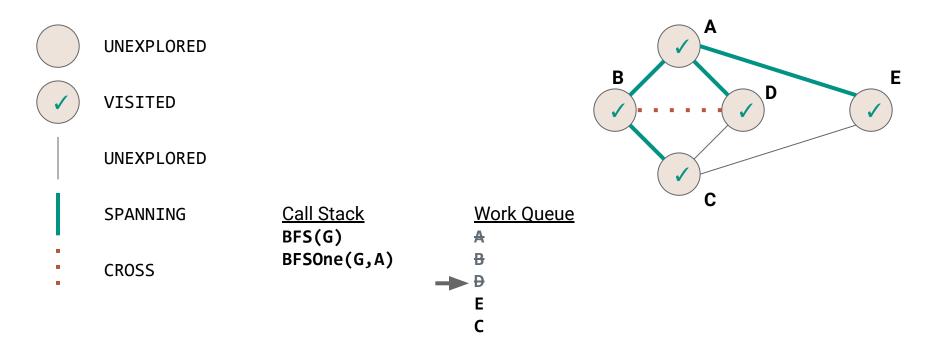


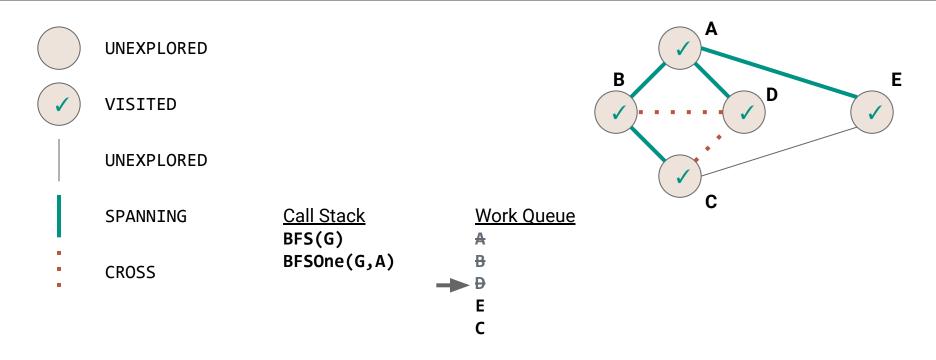


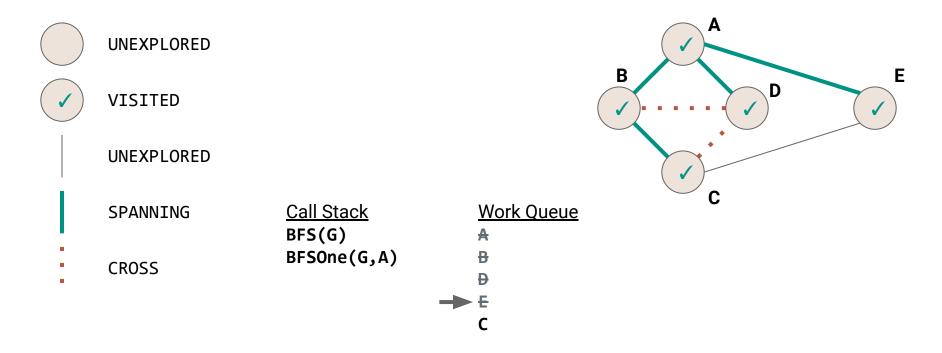


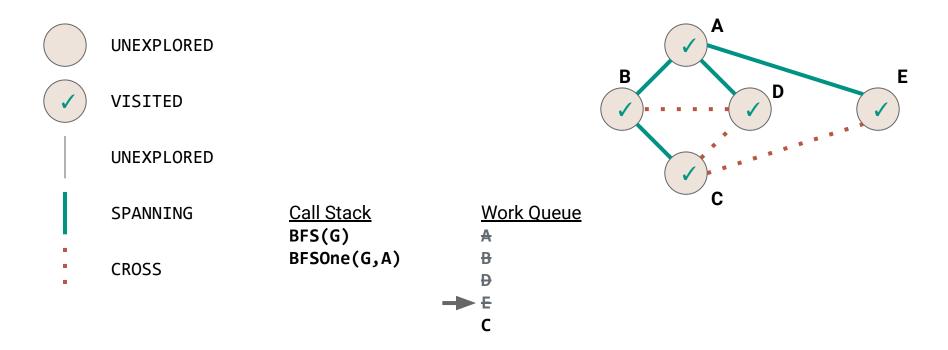


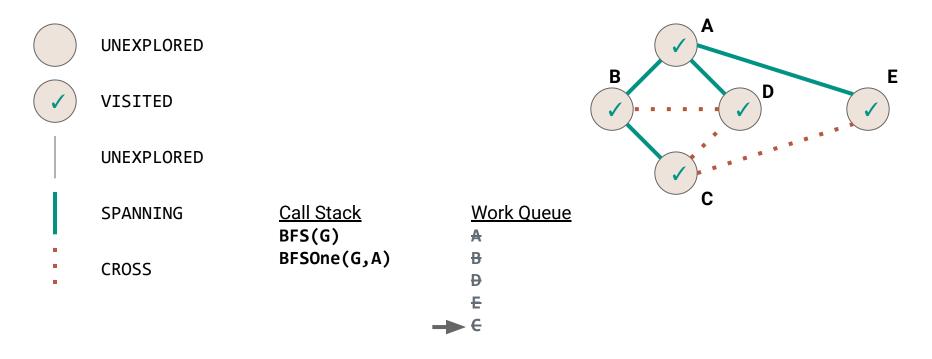












BFS Complexity

```
public void BFS(Graph graph) {
     for (Vertex v : graph.vertices) {
       v.setLabel(UNEXPLORED);
4
     for (Edge e : graph.edges) {
6
       e.setLabel(UNEXPLORED);
7
8
     for (Vertex v : graph.vertices) {
       if (v.label == UNEXPLORED) {
10
         BFSOne(graph, v);
11
12
13
                                                                              153
```

BFS Complexity

```
public void BFS(Graph graph) {
    \Theta(|V|)
    \Theta(|E|)
    for (Vertex v : graph.vertices) {
4
      if (v.label == UNEXPLORED) {
        BFSOne(graph, v);
6
8
```

BFS Complexity

```
public void BFS(Graph graph) {
    \Theta(|V|)
    \Theta(|E|)
    for (Vertex v : graph.vertices) {
4
      if (v.label == UNEXPLORED) {
         \Theta(???)
6
8
```

```
1 public void BFSOne(Graph graph, Vertex v) {
     Queue<Vertex> todo = new Queue<>();
     v.setLabel(VISITED);
4
     todo.enqueue(v);
     while (!todo.isEmpty()) {
6
       Vertex curr = todo.dequeue();
       for (Edge e : curr.outEdges) {
8
         if (e.label == UNEXPLORED) {
9
           Vertex w = e.to;
           if (w.label == UNEXPLORED) {
10
11
             curr.setLabel(VISITED);
             e.setLabel(SPANNING);
12
13
             todo.enqueue(w);
           } else {
14
15
             e.setLabel(CROSS);
16
17 | } } }
                                                                              156
```

```
1 public void BFSOne(Graph graph, Vertex v) {
     \Theta(1)
 3
     while (!todo.isEmpty()) {
4
       Vertex curr = todo.dequeue();
       for (Edge e : curr.outEdges) {
 6
         if (e.label == UNEXPLORED) {
           Vertex w = e.to;
8
           if (w.label == UNEXPLORED) {
9
             curr.setLabel(VISITED);
             e.setLabel(SPANNING);
10
11
             todo.enqueue(w);
12
           } else {
13
             e.setLabel(CROSS);
14
15|}}}
```

```
1 public void BFSOne(Graph graph, Vertex v) {
     \Theta(1)
 3
     while (!todo.isEmpty()) {
 4
       \Theta(1)
       for (Edge e : curr.outEdges) {
 6
         if (e.label == UNEXPLORED) {
           Vertex w = e.to;
 8
           if (w.label == UNEXPLORED) {
 9
             curr.setLabel(VISITED);
             e.setLabel(SPANNING);
10
11
             todo.enqueue(w);
12
           } else {
             e.setLabel(CROSS);
13
14
15|}}}
```

```
1|public void BFSOne(Graph graph, Vertex v) {
     \Theta(1)
 3
     while (!todo.isEmpty()) {
       \Theta(1)
 4
 5
        for (Edge e : curr.outEdges) {
 6
          if (e.label == UNEXPLORED) {
            \Theta(1)
 8
            if (w.label == UNEXPLORED) {
 9
              \Theta(1)
              todo.enqueue(w);
10
11
            } else {
12
              \Theta(1)
13
14|}}}
15
```

```
1|public void BFSOne(Graph graph, Vertex v) {
     \Theta(1)
     while (!todo.isEmpty()) {
        \Theta(1)
 4
 5
        for (Edge e : curr.outEdges) {
          if (e.label == UNEXPLORED) {
 6
            \Theta(1)
 8
            if (w.label == UNEXPLORED) {
 9
               \Theta(1)
               \Theta(1)
10
11
            } else {
12
               \Theta(1)
13
14|}}}
15
```

$$\sum_{v \in V} O(deg(v))$$

$$\sum_{v \in V} O(deg(v))$$

$$=O(\sum_{v\in V}deg(v))$$

$$\begin{split} &\sum_{v \in V} O(deg(v)) \\ &= O(\sum_{v \in V} deg(v)) \\ &= O(2|E|) \end{split}$$

$$\begin{split} &\sum_{v \in V} O(deg(v)) \\ &= O(\sum_{v \in V} deg(v)) \\ &= O(2|E|) \\ &= O(|E|) \end{split}$$

In summary...

Mark the vertices UNVISITED

In summary...

1. Mark the vertices **UNVISITED** O(|V|)

In summary...

1. Mark the vertices **UNVISITED** O(|V|)

2. Mark the edges **UNVISITED**

In summary...

1. Mark the vertices **UNVISITED** O(|V|)

2. Mark the edges **UNVISITED** O(|E|)

In summary...

1. Mark the vertices **UNVISITED** O(|V|)

2. Mark the edges **UNVISITED** O(|E|)

3. Add each vertex to the work queue

1.	Mark the	vertices UNVISITED	O(V)
	IVICALITY CITO	TOT COOC OILLED TIED	

- 2. Mark the edges **UNVISITED** O(|E|)
- 3. Add each vertex to the work queue O(|V|)

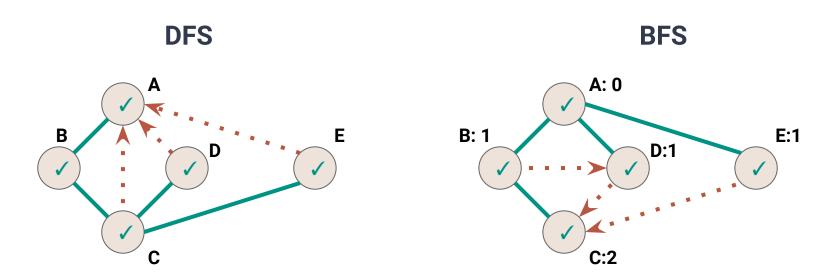
1. Mark the vertices UNVISITED O(I)

- 2. Mark the edges **UNVISITED** O(|E|)
- 3. Add each vertex to the work queue O(|V|)
- 4. Process each vertex

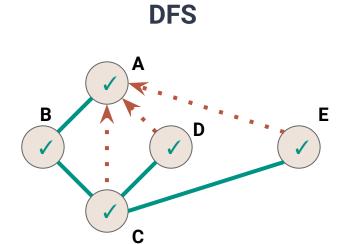
1.	Mark the vertices UNVISITED	O(V)
2.	Mark the edges UNVISITED	O(E)
3.	Add each vertex to the work queue	O(V)
4.	Process each vertex	O(E) total

		O(V + E)
4.	Process each vertex	<i>O</i> (<i>E</i>) total
3.	Add each vertex to the work queue	e O(V)
2.	Mark the edges UNVISITED	O(E)
1.	Mark the vertices UNVISITED	<i>O</i> (<i>V</i>)

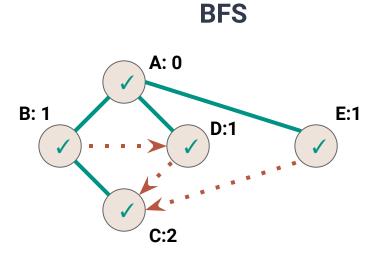
DFS vs BFS



DFS vs BFS

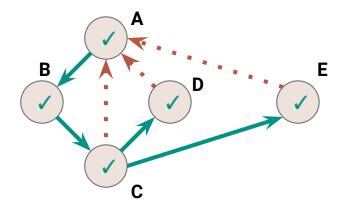


BACK Edge(v,w): w is an ancestor of **v** in the discovery tree



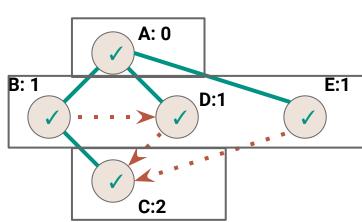
DFS vs BFS

DFS



BACK Edge(v,w): w is an ancestor of v in the discovery tree

BFS



CROSS Edge(v,w): w is at the same or next level as **v**

DFS Traversal vs BFS Traversal

Application	DFS	BFS
Spanning Trees	1	1
Connected Components	1	✓
Paths/Connectivity	1	✓
Cycles	1	/
Shortest Paths*		1
Articulation Points	1	

^{*} we'll come back to this...