CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Lec 22: Priority Queues

mailto:epmikida@buffalo.edu

Announcements

e PAZ2 testing due on Sunday @ 11:59PM
o No late submissions or grace days accepted
o AutolLab now open
o Can get a 6/5 with bonus point

Examples

How might we order the following?

e (B,10), (D,3), (E,40)

"A+","C", "B-"
Taco Tuesday, Fish Friday, Meatless Monday
Buffalo Bills, Denver Broncos, Baltimore Ravens
Halloween, Friday the 13th, The Babadook

Ordering

An ordering (over type A), (A, <):
e A set of things of type A
e A "relation” or comparator, s,
that relates two things in the
set

Examples

5<30=<999
Numerical order

(E,40) = (B,10) = (D,3)
Reverse-numerical order on the 2nd field

C+sB-=sBsB+sA-s<A
Letter grades

AA<AM=BZ=<CA=CD
Compare 1st then 2nd, 3rd...(Lexical order)

Ordering Properties

Team As<sTeamB
Team B won its match against Team A

Ordering Properties

Team As<sTeamB
Team B won its match against Team A

Team B=Team C
Team C won its match against Team B

Ordering Properties

Team As<sTeamB
Team B won its match against Team A

Team B=Team C
Team C won its match against Team B

Team C < Team A
Team A won its match against Team C

Ordering Properties

Team As<sTeamB
Team B won its match against Team A

Team B=Team C
Team C won its match against Team B

Team C < Team A
Team A won its match against Team C

Is this an ordering??

Ordering Properties

Team As<sTeamB
Team B won its match against Team A

TeamBsTeamC A
Team C won its match against Team B

Team C < Team A
Team A won its match against Team C

O
v
ve

Is this an ordering??

Ordering Properties

Team As<sTeamB
Team B won its match against Team A

Team B < Team C A
Team C won its match against Team B No
Team C < Team A Transitivity!

Team A won its match against Team C =

Is this an ordering?? NO!

10

Ordering Properties

An ordering must be...

Reflexive
XS X

Antisymmetric
Ifxsyandysxthenx=y

Transitive
fxsyandyszthenxsz

11

Another Example

Define an ordering over CSE Courses:
Course 1 = Course 2 iff Course 1 is a prereq of Course 2

CSE115=<sCSE 116
CSE 116 = CSE 250
CSE 115 = CSE 191
CSE 191 = CSE 250

12

Ordering Properties

CSE115

CSE116 CSE191

\

CSE 250

13

Ordering Properties

CSE115

CSE'I'I6 — 7 CSE191

\

CSE 250

14

Ordering Properties

CSE 115 ’// CSE 241

?
e
CSE116 —2?— CSE191 ,

CSE 250

15

Ordering Properties

?

CSE 115 // CSE 241

?
e
CSE 116 —?— CSE191 ,
\ // Is this a valid ordering?

CSE 250

16

Ordering Properties

?

CSE 115 // CSE 241

?
o
CSE 116 —?— CSE191 ,
\ // Is this a valid ordering? YES

CSE 250

17

(Partial) Ordering Properties

A partial ordering must be...

Reflexive
XS X

Antisymmetric
Ifxsyandysxthenx=y

Transitive
fxsyandyszthenxsz

18

(Total) Ordering Properties

An total ordering must be...

Reflexive
X<X

Antisymmetric
fxsyandysxthenx=y

Transitive
fx<yandyszthenxsz

Complete
Eitherxsyorysxforanyxy € A

19

Consider two different ways to "rank” movies:

Halloween, It, Hereditary, Get Out, Descent, Friday the 13th

20

Consider two different ways to "rank” movies:

Halloween, It, Hereditary, Get Out, Descent, Friday the 13th
| could organize these movies in a tier list based on my preferences:
A-tier: Halloween, Get Out, Friday the 13th
B-tier: It, Descent

C-tier: Hereditary

21

Consider two different ways to "rank” movies:

Halloween, It, Hereditary, Get Out, Descent, Friday the 13th

| could organize these movies in a tier list based on my preferences:

A-tier: Halloween, Get Out, Friday the 13th

B-tier: It, Descent

C-tier: Hereditary

This is a partial ordering

It is reflexive, antisymmetric and transitive
...but not all pairs are directly order
Consider Halloween and Friday the 13th

22

Consider two different ways to "rank” movies:

Halloween, It, Hereditary, Get Out, Descent, Friday the 13th

| could also rank these movies based on my preferences:

1. Halloween

2. GetOut

3. Friday the 13th
4. Descent

5 It

6. Hereditary

23

Consider two different ways to "rank” movies:

Halloween, It, Hereditary, Get Out, Descent, Friday the 13th

| could also rank these movies based on my preferences:

ok N~

Halloween

Get Out

Friday the 13th
Descent

It

Hereditary

This is a total ordering
It is reflexive, antisymmetric and transitive
...and every pair can be directly compared

24

Some Other Definitions

For an ordering (A, <)

The greatest element is an element x € A s.t. thereisnoyin A, where x s
y

The least element is an element x € A s.t. thereisnoyin A, wherey < x

25

Some Other Definitions

For an ordering (A, <)

The greatest element is an element x € A s.t. thereisnoyin A, where x s
y

The least element is an element x € A s.t. thereisnoyin A, wherey < x

A partial ordering may not have a unique greatest/least element

26

Describing an Ordering

< can be described explicitly, by a set of tuples:

{(a,a),(a,b),(a,c),...,(b,b).....(z,2)}

27

Describing an Ordering

< can be described explicitly, by a set of tuples:

{(a,a),(a,b),(a,c),...,(b,b).....(z,2)}
If (x,y) is in the set,thenx =y

28

Describing an Ordering

< can be described by a mathematical rule:

{xy)Ixy€ez 3aczZ'U{0}:x+a=y}

29

Describing an Ordering

< can be described by a mathematical rule:
{xy)Ix,y€eZ 3acz'U{0}:x+a=y}

x <y iff x,y are integers and there is a hon-negative integer a s.t. x+a=y

30

Multiple Orderings

Multiple Orderings can be defined for the same set

e RottenTomatoes vs Metacritic vs Box Office Gross
e 'Best Movie" first vs "Worst Movie" first

e Rank by number of swear words, killcount, etc

31

Multiple Orderings

Multiple Orderings can be defined for the same set

e RottenTomatoes vs Metacritic vs Box Office Gross
e 'Best Movie" first vs "Worst Movie" first

e Rank by number of swear words, killcount, etc

We use subscripts to separate orderings (s, s, <, ...)

32

Transformations

We can transform orderings:

33

Transformations

We can transform orderings:

Reverse: If x =, y then definey =_x

34

Transformations

We can transform orderings:
Reverse: If x =, y then definey =_x

Lexical: Given S, S, S5

o ifxs ythenxs y

o elseifx=yandxs,ythenxs y
e elseifx=,yandxs,ythenxs y
L

35

Examples of Lexical Ordering

Names: First letter, then second letter, then third...
Movies: Average of reviews, then number of reviews...
Tuples: First field, then second field, then third...

Sports Teams: Games won, points scored, speed of victory...

36

Ordering Over Keys

< can be described as an ordering over a key derived from the element:
X S gq0 ¥ Iff weight(x) = weight(y)

X S e ¥ ITf N@Me(x) s, name(y)

37

Ordering Over Keys

< can be described as an ordering over a key derived from the element:
X S gq0 ¥ Iff weight(x) = weight(y)

X S e ¥ ITf N@Me(x) s, name(y)

We say that weight/name are keys

38

Topological Sort

A Topological Sort of partial order (A, <) is any total order (A,s,) that
‘agrees” with (A, s.):

For any two elements x,y in A:
ifxs ythenxs,y
ifys, xthenys, x
Otherwise, either x =, y ory <, x

39

Topological Sort

The following are all topological sorts over our partial order from earlier:

e CSE 115, CSE 116, CSE 191, CSE 241, CSE 250
e (CSE 241,CSE115,CSE 116, CSE 191, CSE 250
e CSE 115, CSE 191, CSE 116, CSE 250, CSE 241

40

Topological Sort

The following are all topological sorts over our partial order from earlier:

e CSE 115, CSE 116, CSE 191, CSE 241, CSE 250
e (CSE 241,CSE115,CSE 116, CSE 191, CSE 250
e CSE 115, CSE 191, CSE 116, CSE 250, CSE 241

(In this case, the partial ordering is a schedule requirement, and each
topological sort is a possible schedule)

41

And now for an ordering-based ADT...

A New ADT...PriorityQueue

PriorityQueue<T>

void add(T value)
Insert value into the priority queue

T poll()
Remove the highest priority value in the priority queue

T peek()
Peek at the highest priority value in the priority queue

43

A New ADT...PriorityQueue

PriorityQueue<T>
In Java, by default the
void add(T value) smallest element has the
Insert value into the priority queue highest priority
T poll()

Remove the highest priority value in the priority queue

T peek()
Peek at the highest priority value in the priority queue

44

Sorted Lists

Note this is not the first time we've seen an ordering-based data structure

Consider our SortedList from PAT1...

45

How do we store

the following—

How do we store

the following—

add(5)

47

How do we store

the following—

add(5)
add(9)

48

How do we store

the following—

add(5)
add(9)
add(2)

49

How do we store

the following—

add(5)
add(9)
add(2)
add(7)

50

How do we store

the following—

add(5)
add(9)
add(2)
add(7)
peek()
poll()

// Should be 9
// should be 9

51

// Should be 9

How do we store // should be 9
. / hould b
the following— e e

// Should be 9

How do we store // should be 9
. / hould b
the following— e e

// 7
// 5
// 2

How do we store
the following—

add(5)
add(9)
add(2)
add(7)
peek()
poll()

size()

peek()
poll()
poll()

poll()
isEmpty() // should be

// Should be
// should be
// should be
// should be
// 7
// 5
// 2

How do we store
the following—

Insertion Order? 509,72
Sorted Order? 2,5,7,9
Reverse Sorted Order? 9,752

add(5)
add(9)
add(2)
add(7)
peek()
poll()

size()

peek()
poll()
poll()

poll()
isEmpty() // should be

// Should be
// should be
// should be
// should be
// 7
// 5
// 2

Priority Queues

Two mentalities...
Lazy: Keep everything a mess

Proactive: Keep everything organized

56

Priority Queues

Two mentalities...
Lazy: Keep everything a mess ("Selection Sort")

Proactive: Keep everything organized

57

Priority Queues

Two mentalities...
Lazy: Keep everything a mess ("Selection Sort")

Proactive: Keep everything organized ("Insertion Sort")

58

Lazy Priority Queue

Base Data Structure: Linked List

void add(T value)
Append value to the end of the linked list.

T peek()/T poll()
Traverse the list to find the smallest value.

59

Lazy Priority Queue

Base Data Structure: Linked List

void add(T value)
Append value to the end of the linked list. ©(1)

T peek()/T poll()
Traverse the list to find the smallest value. 0(n)

60

Sorting with Our Priority Queue

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); }
while (!pg.isEmpty()) { out.add(pq.poll()); }
return out;

N o v b Wi R

61

Sorting with Our Priority Queue

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); } <« Add everything to a priority queue
while (!pg.isEmpty()) { out.add(pq.poll()); }
return out;

N o v b Wi R

62

Sorting with Our Priority Queue

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); }
while (!pq.isEmpty()) { out.add(pq.poll()); } <« Remove it all (and add to out)
return out;

N o v b Wi R

63

Selection Sort
(w/"Lazy" PriorityQueue)

List

PriorityQueue

Input

(7,4,8,2,5,3,9)

()

64

Selection Sort
(w/"Lazy" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)

65

Selection Sort
(w/"Lazy" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
Step 2 (8,2,5,3,9) (7,4)

66

Selection Sort
(w/"Lazy" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
Step 2 (8,2,5,3,9) (7,4)
Step n () (7,4,8,2,5,3,9)

67

Selection Sort
(w/"Lazy" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
Step 2 (8,2,5,3,9) (7,4)
Step n () (7,4,8,2,5,3,9)
Stepn + 1 2, .] (7,4,8,5,3,9)

68

Selection Sort
(w/"Lazy" PriorityQueue)

Input
Step 1

Step 2

Step n
Stepn+ 1

Stepn+2

List
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)

(8,2,5,3,9)

PriorityQueue

()
(7)
(7.,4)

(7,4,8,2,5,3,9)

(7,4,8,5,3,9)

(7,4,8,5,9)

Selection Sort
(w/"Lazy" PriorityQueue)

Input
Step 1

Step 2

Step n
Stepn+ 1
Stepn+2

Stepn+3

List
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)

(8,2,5,3,9)

PriorityQueue

()
(7)
(7.,4)

(7,4,8,2,5,3,9)

(7,4,8,5,3,9)

(7,4,8,5,9)

(7,8,5,9)

Selection Sort
(w/"Lazy" PriorityQueue)

Input
Step 1

Step 2

Step n
Stepn+ 1
Stepn+2
Stepn+3

Stepn +4

List
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)

(8,2,5,3,9)

[2,3,4,5,_,_,_]

PriorityQueue

()
(7)
(7.,4)

(7,4,8,2,5,3,9)

(7,4,8,5,3,9)

(7,4,8,5,9)
(7,8,5,9)

(7,8,9)

Selection Sort
(w/"Lazy" PriorityQueue)

Input
Step 1

Step 2

Step n
Stepn+ 1
Stepn+2
Stepn+3

Stepn +4

Step 2n

List
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)

(8,2,5,3,9)

[2,3,4,5,_,_,_]

[2,3,4,5,7,8,9]

PriorityQueue

()
(7)
(7.,4)

(7,4,8,2,5,3,9)

(7,4,8,5,3,9)

(7,4,8,5,9)
(7,8,5,9)

(7,8,9)

Selection Sort (w/"Lazy" PriorityQueue)

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); }
while (!pg.isEmpty()) { out.add(pq.poll()); }
return out;

N o v b Wi R

What is the complexity?

73

Selection Sort (w/"Lazy" PriorityQueue)

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); }
while (!pq.isEmpty()) { out.add(pq.poll()); } <« poll() is an O(n) operation
return out;

N o v b Wi R

What is the complexity? O(n?)

74

Proactive Priority Queue

Base Data Structure: Linked List

void add(T value)
Insert value in ascending sorted order.

T peek()/T poll()
Get the first value in the list.

75

Proactive Priority Queue

Base Data Structure: Linked List

void add(T value)
Insert value in ascending sorted order. O(n)

T peek()/T poll()
Get the first value in the list. (1)

76

Insertion Sort

(w/"Proactive" PriorityQueue)

List

PriorityQueue

Input

(7,4,8,2,5,3,9)

()

77

Insertion Sort

(w/"Proactive" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)

78

Insertion Sort

(w/"Proactive" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
Step 2 (8,2,5,3,9) 4,7)

79

Insertion Sort

(w/"Proactive" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
Step 2 (8,2,5,3,9) 4,7)
Step 3 (2,5,3,9) (4,7,8)

80

Insertion Sort

(w/"Proactive" PriorityQueue)

List PriorityQueue

Input
Step 1
Step 2
Step 3

Step 4

Step n

(7,4,8,2,5,3,9) 0
(4,8,2,5,3,9) (7)
(8,2,5,3,9) (4,7)
(2,5,3,9) (4,7,8)
(5,3,9) (2,4,7,8)

Lo 1 (2,3,4,57,8,9)

81

Insertion Sort

(w/"Proactive" PriorityQueue)

Input
Step 1
Step 2
Step 3

Step 4

Step n

Stepn+2

List PriorityQueue
(7,4,8,2,5,3,9) ()
(4,8,2,5,3,9) (7)
(8,2,5,3,9) (4,7)

(2,5,3,9) (4,7,8)

(5,3,9) (2,4,7,8)

Lo 1 (2,3,4,57,8,9)

2, ., . . . _] (3,4,5,7,8,9)

Insertion Sort

(w/"Proactive" PriorityQueue)

Input
Step 1
Step 2
Step 3

Step 4

Step n
Stepn+2

Stepn+3

List
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)
(8,2,5,3,9)
(2,5,3,9)

(5,3,9)

Lo]
2,]

PriorityQueue

()
(7)
(4,7)
(4,7,8)

(2,4,7,8)

(2,3,4,5,7,8,9)

(3,4,5,7,8,9)

(4,5,7,8,9)

Insertion Sort

(w/"Proactive" PriorityQueue)

Input
Step 1
Step 2
Step 3

Step 4

Step n

Stepn+2

Stepn+3

Step 2n

List
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)
(8,2,5,3,9)

(2,5,3,9)

[2,3,4,5,7,8,9]

PriorityQueue

()
(7)
(4,7)
(4,7,8)

(2,4,7,8)

(2,3,4,5,7,8,9)

(3,4,5,7,8,9)

(4,5,7,8,9)

Insertion Sort (w/"Proactive" PriorityQueue)

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); }
while (!pg.isEmpty()) { out.add(pq.poll()); }
return out;

N o v b Wi R

What is the complexity?

85

Insertion Sort (w/"Proactive" PriorityQueue)

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); } <« add() is an O(n) operation
while (!pg.isEmpty()) { out.add(pq.poll()); }
return out;

N o v b Wi R

What is the complexity? O(n?)

86

Priority Queues

Operation Lazy Proactive
enqueue O(1) O(n)
dequeue O(n) O(1)

head O(n) O(1)

87

Priority Queues

Operation Lazy Proactive
enqueue O(1) O(n)
dequeue O(n) O(1)

head O(n) O(1)

Can we do better?

88

Priority Queues

Lazy - Fast Enqueue, Slow Dequeue

Proactive - Slow Enqueue, Fast Dequeue

89

Priority Queues

Lazy - Fast Enqueue, Slow Dequeue
Proactive - Slow Enqueue, Fast Dequeue

??? - Fast(-ish) Enqueue, Fast(-ish) Dequeue

90

Priority Queues

Idea: Keep the priority queue "kinda" sorted.
Hopefully "kinda" sorted is cheaper to maintain than a full sort,

but still gives us some of the benefits.

91

