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Announcements

e PAZ2 testing due on Sunday @ 11:59PM
o No late submissions or grace days accepted
o AutolLab now open
o Can get a 6/5 with bonus point



Examples

How might we order the following?

e (B,10), (D,3), (E,40)

"A+","C", "B-"
Taco Tuesday, Fish Friday, Meatless Monday
Buffalo Bills, Denver Broncos, Baltimore Ravens
Halloween, Friday the 13th, The Babadook




Ordering

An ordering (over type A), (A, <):
e A set of things of type A
e A "relation” or comparator, s,
that relates two things in the
set

Examples

5<30=<999
Numerical order

(E,40) = (B,10) = (D,3)
Reverse-numerical order on the 2nd field

C+sB-=sBsB+sA-s<A
Letter grades

AA<AM=BZ=<CA=CD
Compare 1st then 2nd, 3rd...(Lexical order)



Ordering Properties

Team As<sTeamB
Team B won its match against Team A



Ordering Properties

Team As<sTeamB
Team B won its match against Team A

Team B=Team C
Team C won its match against Team B



Ordering Properties

Team As<sTeamB
Team B won its match against Team A

Team B=Team C
Team C won its match against Team B

Team C < Team A
Team A won its match against Team C



Ordering Properties

Team As<sTeamB
Team B won its match against Team A

Team B=Team C
Team C won its match against Team B

Team C < Team A
Team A won its match against Team C

Is this an ordering??



Ordering Properties

Team As<sTeamB
Team B won its match against Team A

TeamBsTeamC A
Team C won its match against Team B

Team C < Team A
Team A won its match against Team C

O
v
ve

Is this an ordering??



Ordering Properties

Team As<sTeamB
Team B won its match against Team A

Team B < Team C A
Team C won its match against Team B No
Team C < Team A Transitivity!

Team A won its match against Team C =

Is this an ordering?? NO!
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Ordering Properties

An ordering must be...

Reflexive
XS X

Antisymmetric
Ifxsyandysxthenx=y

Transitive
fxsyandyszthenxsz

11



Another Example

Define an ordering over CSE Courses:
Course 1 = Course 2 iff Course 1 is a prereq of Course 2

CSE115=<sCSE 116
CSE 116 = CSE 250
CSE 115 = CSE 191
CSE 191 = CSE 250
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Ordering Properties

CSE115

CSE116 CSE191

\

CSE 250
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Ordering Properties

CSE115

CSE'I'I6 — 7 CSE191

\

CSE 250
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Ordering Properties

CSE 115 ’// CSE 241

?
e
CSE116 —2?— CSE191 ,

CSE 250
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Ordering Properties

?

CSE 115 // CSE 241

?
e
CSE 116 —?— CSE191 ,
\ // Is this a valid ordering?

CSE 250
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Ordering Properties

?

CSE 115 // CSE 241

?
o
CSE 116 —?— CSE191 ,
\ // Is this a valid ordering? YES

CSE 250
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(Partial) Ordering Properties

A partial ordering must be...

Reflexive
XS X

Antisymmetric
Ifxsyandysxthenx=y

Transitive
fxsyandyszthenxsz
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(Total) Ordering Properties

An total ordering must be...

Reflexive
X<X

Antisymmetric
fxsyandysxthenx=y

Transitive
fx<yandyszthenxsz

Complete
Eitherxsyorysxforanyxy € A
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Consider two different ways to "rank” movies:

Halloween, It, Hereditary, Get Out, Descent, Friday the 13th
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Consider two different ways to "rank” movies:

Halloween, It, Hereditary, Get Out, Descent, Friday the 13th
| could organize these movies in a tier list based on my preferences:
A-tier: Halloween, Get Out, Friday the 13th
B-tier: It, Descent

C-tier: Hereditary
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Consider two different ways to "rank” movies:

Halloween, It, Hereditary, Get Out, Descent, Friday the 13th

| could organize these movies in a tier list based on my preferences:

A-tier: Halloween, Get Out, Friday the 13th

B-tier: It, Descent

C-tier: Hereditary

This is a partial ordering

It is reflexive, antisymmetric and transitive
...but not all pairs are directly order
Consider Halloween and Friday the 13th

22



Consider two different ways to "rank” movies:

Halloween, It, Hereditary, Get Out, Descent, Friday the 13th

| could also rank these movies based on my preferences:

1. Halloween

2. GetOut

3. Friday the 13th
4. Descent

5 It

6. Hereditary
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Consider two different ways to "rank” movies:

Halloween, It, Hereditary, Get Out, Descent, Friday the 13th

| could also rank these movies based on my preferences:

ok N~

Halloween

Get Out

Friday the 13th
Descent

It

Hereditary

This is a total ordering
It is reflexive, antisymmetric and transitive
...and every pair can be directly compared
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Some Other Definitions

For an ordering (A, <)

The greatest element is an element x € A s.t. thereisnoyin A, where x s
y

The least element is an element x € A s.t. thereisnoyin A, wherey < x
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Some Other Definitions

For an ordering (A, <)

The greatest element is an element x € A s.t. thereisnoyin A, where x s
y

The least element is an element x € A s.t. thereisnoyin A, wherey < x

A partial ordering may not have a unique greatest/least element
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Describing an Ordering

< can be described explicitly, by a set of tuples:

{(a,a),(a,b),(a,c),...,(b,b).....(z,2)}
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Describing an Ordering

< can be described explicitly, by a set of tuples:

{(a,a),(a,b),(a,c),...,(b,b).....(z,2)}
If (x,y) is in the set,thenx =y
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Describing an Ordering

< can be described by a mathematical rule:

{xy)Ixy€ez 3aczZ'U{0}:x+a=y}
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Describing an Ordering

< can be described by a mathematical rule:
{xy)Ix,y€eZ 3acz'U{0}:x+a=y}

x <y iff x,y are integers and there is a hon-negative integer a s.t. x+a=y
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Multiple Orderings

Multiple Orderings can be defined for the same set

e RottenTomatoes vs Metacritic vs Box Office Gross
e 'Best Movie" first vs "Worst Movie" first

e Rank by number of swear words, killcount, etc
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Multiple Orderings

Multiple Orderings can be defined for the same set

e RottenTomatoes vs Metacritic vs Box Office Gross
e 'Best Movie" first vs "Worst Movie" first

e Rank by number of swear words, killcount, etc

We use subscripts to separate orderings (s, s, <, ...)
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Transformations

We can transform orderings:
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Transformations

We can transform orderings:

Reverse: If x =, y then definey =_x
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Transformations

We can transform orderings:
Reverse: If x =, y then definey =_x

Lexical: Given S, S, S5

o ifxs ythenxs y

o elseifx=yandxs,ythenxs y
e elseifx=,yandxs,ythenxs y
L
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Examples of Lexical Ordering

Names: First letter, then second letter, then third...
Movies: Average of reviews, then number of reviews...
Tuples: First field, then second field, then third...

Sports Teams: Games won, points scored, speed of victory...
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Ordering Over Keys

< can be described as an ordering over a key derived from the element:
X S gq0 ¥ Iff weight(x) = weight(y)

X S e ¥ ITf N@Me(x) s, name(y)
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Ordering Over Keys

< can be described as an ordering over a key derived from the element:
X S gq0 ¥ Iff weight(x) = weight(y)

X S e ¥ ITf N@Me(x) s, name(y)

We say that weight/name are keys
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Topological Sort

A Topological Sort of partial order (A, <) is any total order (A,s,) that
‘agrees” with (A, s.):

For any two elements x,y in A:
ifxs ythenxs,y
ifys, xthenys, x
Otherwise, either x =, y ory <, x
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Topological Sort

The following are all topological sorts over our partial order from earlier:

e CSE 115, CSE 116, CSE 191, CSE 241, CSE 250
e (CSE 241,CSE115,CSE 116, CSE 191, CSE 250
e CSE 115, CSE 191, CSE 116, CSE 250, CSE 241
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Topological Sort

The following are all topological sorts over our partial order from earlier:

e CSE 115, CSE 116, CSE 191, CSE 241, CSE 250
e (CSE 241,CSE115,CSE 116, CSE 191, CSE 250
e CSE 115, CSE 191, CSE 116, CSE 250, CSE 241

(In this case, the partial ordering is a schedule requirement, and each
topological sort is a possible schedule)
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And now for an ordering-based ADT...



A New ADT...PriorityQueue

PriorityQueue<T>

void add(T value)
Insert value into the priority queue

T poll()
Remove the highest priority value in the priority queue

T peek()
Peek at the highest priority value in the priority queue
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A New ADT...PriorityQueue

PriorityQueue<T>
In Java, by default the
void add(T value) smallest element has the
Insert value into the priority queue highest priority
T poll()

Remove the highest priority value in the priority queue

T peek()
Peek at the highest priority value in the priority queue
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Sorted Lists

Note this is not the first time we've seen an ordering-based data structure

Consider our SortedList from PAT1...
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How do we store

the following—




How do we store

the following—

add(5)
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How do we store

the following—

add(5)
add(9)
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How do we store

the following—

add(5)
add(9)
add(2)
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How do we store

the following—

add(5)
add(9)
add(2)
add(7)
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How do we store

the following—

add(5)
add(9)
add(2)
add(7)
peek()
poll()

// Should be 9
// should be 9
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// Should be 9

How do we store // should be 9
. / hould b
the following— e e




// Should be 9

How do we store // should be 9
. / hould b
the following— e e

// 7
// 5
// 2




How do we store
the following—

add(5)
add(9)
add(2)
add(7)
peek()
poll()

size()

peek()
poll()
poll()

poll()
isEmpty() // should be

// Should be
// should be
// should be
// should be
// 7
// 5
// 2




How do we store
the following—

Insertion Order? 509,72
Sorted Order? 2,5,7,9
Reverse Sorted Order? 9,752

add(5)
add(9)
add(2)
add(7)
peek()
poll()

size()

peek()
poll()
poll()

poll()
isEmpty() // should be

// Should be
// should be
// should be
// should be
// 7
// 5
// 2




Priority Queues

Two mentalities...
Lazy: Keep everything a mess

Proactive: Keep everything organized
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Priority Queues

Two mentalities...
Lazy: Keep everything a mess ("Selection Sort")

Proactive: Keep everything organized
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Priority Queues

Two mentalities...
Lazy: Keep everything a mess ("Selection Sort")

Proactive: Keep everything organized ("Insertion Sort")
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Lazy Priority Queue

Base Data Structure: Linked List

void add(T value)
Append value to the end of the linked list.

T peek()/T poll()
Traverse the list to find the smallest value.
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Lazy Priority Queue

Base Data Structure: Linked List

void add(T value)
Append value to the end of the linked list.  ©(1)

T peek()/T poll()
Traverse the list to find the smallest value. 0(n)
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Sorting with Our Priority Queue

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); }
while (!pg.isEmpty()) { out.add(pq.poll()); }
return out;

N o v b Wi R
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Sorting with Our Priority Queue

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); } <« Add everything to a priority queue
while (!pg.isEmpty()) { out.add(pq.poll()); }
return out;

N o v b Wi R
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Sorting with Our Priority Queue

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); }
while (!pq.isEmpty()) { out.add(pq.poll()); } <« Remove it all (and add to out)
return out;

N o v b Wi R
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Selection Sort
(w/"Lazy" PriorityQueue)

List

PriorityQueue

Input

(7,4,8,2,5,3,9)

()
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Selection Sort
(w/"Lazy" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
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Selection Sort
(w/"Lazy" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
Step 2 (8,2,5,3,9) (7,4)
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Selection Sort
(w/"Lazy" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
Step 2 (8,2,5,3,9) (7,4)
Step n () (7,4,8,2,5,3,9)
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Selection Sort
(w/"Lazy" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
Step 2 (8,2,5,3,9) (7,4)
Step n () (7,4,8,2,5,3,9)
Stepn + 1 2, . ] (7,4,8,5,3,9)
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Selection Sort
(w/"Lazy" PriorityQueue)

Input
Step 1

Step 2

Step n
Stepn+ 1

Stepn+2

List
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)

(8,2,5,3,9)

PriorityQueue

()
(7)
(7.,4)

(7,4,8,2,5,3,9)

(7,4,8,5,3,9)

(7,4,8,5,9)




Selection Sort
(w/"Lazy" PriorityQueue)

Input
Step 1

Step 2

Step n
Stepn+ 1
Stepn+2

Stepn+3

List
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)

(8,2,5,3,9)

PriorityQueue

()
(7)
(7.,4)

(7,4,8,2,5,3,9)

(7,4,8,5,3,9)

(7,4,8,5,9)

(7,8,5,9)




Selection Sort
(w/"Lazy" PriorityQueue)

Input
Step 1

Step 2

Step n
Stepn+ 1
Stepn+2
Stepn+3

Stepn +4

List
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)

(8,2,5,3,9)

[2,3,4,5,_,_,_]

PriorityQueue

()
(7)
(7.,4)

(7,4,8,2,5,3,9)

(7,4,8,5,3,9)

(7,4,8,5,9)
(7,8,5,9)

(7,8,9)




Selection Sort
(w/"Lazy" PriorityQueue)

Input
Step 1

Step 2

Step n
Stepn+ 1
Stepn+2
Stepn+3

Stepn +4

Step 2n

List
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)

(8,2,5,3,9)

[2,3,4,5,_,_,_]

[2,3,4,5,7,8,9]

PriorityQueue

()
(7)
(7.,4)

(7,4,8,2,5,3,9)

(7,4,8,5,3,9)

(7,4,8,5,9)
(7,8,5,9)

(7,8,9)




Selection Sort (w/"Lazy" PriorityQueue)

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); }
while (!pg.isEmpty()) { out.add(pq.poll()); }
return out;

N o v b Wi R

What is the complexity?
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Selection Sort (w/"Lazy" PriorityQueue)

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); }
while (!pq.isEmpty()) { out.add(pq.poll()); } <« poll() is an O(n) operation
return out;

N o v b Wi R

What is the complexity? O(n?)
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Proactive Priority Queue

Base Data Structure: Linked List

void add(T value)
Insert value in ascending sorted order.

T peek()/T poll()
Get the first value in the list.

75



Proactive Priority Queue

Base Data Structure: Linked List

void add(T value)
Insert value in ascending sorted order. O(n)

T peek()/T poll()
Get the first value in the list. (1)
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Insertion Sort

(w/"Proactive" PriorityQueue)

List

PriorityQueue

Input

(7,4,8,2,5,3,9)

()
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Insertion Sort

(w/"Proactive" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
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Insertion Sort

(w/"Proactive" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
Step 2 (8,2,5,3,9) 4,7)
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Insertion Sort

(w/"Proactive" PriorityQueue)

List PriorityQueue
Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
Step 2 (8,2,5,3,9) 4,7)
Step 3 (2,5,3,9) (4,7,8)
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Insertion Sort

(w/"Proactive" PriorityQueue)

List PriorityQueue

Input
Step 1
Step 2
Step 3

Step 4

Step n

(7,4,8,2,5,3,9) 0
(4,8,2,5,3,9) (7)
(8,2,5,3,9) (4,7)
(2,5,3,9) (4,7,8)
(5,3,9) (2,4,7,8)

Lo 1 (2,3,4,57,8,9)
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Insertion Sort

(w/"Proactive" PriorityQueue)

Input
Step 1
Step 2
Step 3

Step 4

Step n

Stepn+2

List PriorityQueue
(7,4,8,2,5,3,9) ()
(4,8,2,5,3,9) (7)
(8,2,5,3,9) (4,7)

(2,5,3,9) (4,7,8)

(5,3,9) (2,4,7,8)

Lo 1 (2,3,4,57,8,9)

2, ., . . . _] (3,4,5,7,8,9)




Insertion Sort

(w/"Proactive" PriorityQueue)

Input
Step 1
Step 2
Step 3

Step 4

Step n
Stepn+2

Stepn+3

List
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)
(8,2,5,3,9)
(2,5,3,9)

(5,3,9)

Lo ]
2, ]

PriorityQueue

()
(7)
(4,7)
(4,7,8)

(2,4,7,8)

(2,3,4,5,7,8,9)

(3,4,5,7,8,9)

(4,5,7,8,9)




Insertion Sort

(w/"Proactive" PriorityQueue)

Input
Step 1
Step 2
Step 3

Step 4

Step n

Stepn+2

Stepn+3

Step 2n

List
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)
(8,2,5,3,9)

(2,5,3,9)

[2,3,4,5,7,8,9]

PriorityQueue

()
(7)
(4,7)
(4,7,8)

(2,4,7,8)

(2,3,4,5,7,8,9)

(3,4,5,7,8,9)

(4,5,7,8,9)




Insertion Sort (w/"Proactive" PriorityQueue)

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); }
while (!pg.isEmpty()) { out.add(pq.poll()); }
return out;

N o v b Wi R

What is the complexity?
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Insertion Sort (w/"Proactive" PriorityQueue)

public List<T> PQueueSort(List<T> input) {
List<T> out = new ArraylList<>();
PriorityQueue<T> pg = new PriorityQueue<>();
for (T item : input) { pqg.add(item); } <« add() is an O(n) operation
while (!pg.isEmpty()) { out.add(pq.poll()); }
return out;

N o v b Wi R

What is the complexity? O(n?)
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Priority Queues

Operation Lazy Proactive
enqueue O(1) O(n)
dequeue O(n) O(1)

head O(n) O(1)
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Priority Queues

Operation Lazy Proactive
enqueue O(1) O(n)
dequeue O(n) O(1)

head O(n) O(1)

Can we do better?
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Priority Queues

Lazy - Fast Enqueue, Slow Dequeue

Proactive - Slow Enqueue, Fast Dequeue
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Priority Queues

Lazy - Fast Enqueue, Slow Dequeue
Proactive - Slow Enqueue, Fast Dequeue

??? - Fast(-ish) Enqueue, Fast(-ish) Dequeue
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Priority Queues

Idea: Keep the priority queue "kinda" sorted.
Hopefully "kinda" sorted is cheaper to maintain than a full sort,

but still gives us some of the benefits.
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