CSE 250

Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 28: Red-Black Trees

Announcements

- WA4 due Sunday Tuesday!
- Classes cancelled Monday for the Eclipse
- Recitation next week is midterm review, no attendance required
- If you have recitation on Monday but still want to attend, you may attend a Tuesday recitation (as long as there is space)
- TA hiring starting soon - If you want to join 250 course staff email me!
- DivTech Women in STEM event tonight! (see Marian's post on Piazza)

BST Operations

Operation	Runtime
find	$O(d)$
insert	$O(d)$
remove	$O(d)$
What is the runtime in terms of $n ? O(n)$	
$\log (n) \leq d \leq n$	

AVL Trees

An AVL tree (Adelson-V्Velsky and Landis) is a BST where every subtree is depth-balanced Remember: Tree depth = height(root)
Balanced: |height(root.right) - height(root.left)| ≤ 1

AVL Trees

Define balance(v) = height(v.right) - height(v.Left)
Goal: Maintaining balance $(v) \in\{-1,0,1\}$

- balance $(v)=0 \quad \rightarrow$ " v is balanced"
- balance(v) = -1 \rightarrow " v is left-heavy"
- balance $(v)=1 \rightarrow$ " v is right-heavy"

An Important Note About Height!

The height of a tree is the number of edges that need to be followed to get to the deepest leaf

- Therefore the depth of a single node tree is 0
- As a convention, the depth of an empty tree is -1

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth? YES! Depth balance forces a maximum possible depth of $\log (n)$

AVL Trees - Enforcing the Depth Bound

Key Observations:

- Adding a node to an AVL tree can increase subtree height by at most 1
- Removing a node can decrease subtree height by at most 1
- Both of these modifications only affect ancestors
- A rotation maintains ordering, and changes tree height by at most +/-1

Enforcing the AVL Constraint: Case 1

Enforcing the AVL Constraint: Case 1

How can we fix this? rotate (A, B)

Enforcing the AVL Constraint: Case 2

Enforcing the AVL Constraint: Case 2

Enforcing the AVL Constraint: Case 3

Enforcing the AVL Constraint: Case 3

How can we fix this?
Will just a single left rotation work? No

Enforcing the AVL Constraint: Case 3

Enforcing the AVL Constraint: Case 3

How can we fix this?

Height of \mathbf{C} we know must be \boldsymbol{h}
Therefore At least one of $\boldsymbol{h}_{\mathbf{y} 1}$ or $\boldsymbol{h}_{\mathrm{y} 2}$ must be $\boldsymbol{h} \mathbf{- 1}$
The other can be $\boldsymbol{h} \mathbf{- 2}$, or $\boldsymbol{h} \mathbf{- 1}$

Enforcing the AVL Constraint: Case 3

> How can we fix this?
> Rotate right first: rotate (B, C)

Height of \mathbf{C} we know must be \boldsymbol{h}
Therefore At least one of $\boldsymbol{h}_{\mathbf{y} 1}$ or $\boldsymbol{h}_{\mathrm{y} 2}$ must be $\boldsymbol{h} \mathbf{- 1}$
The other can be $\boldsymbol{h} \mathbf{- 2}$, or $\boldsymbol{h} \mathbf{- 1}$

Enforcing the AVL Constraint: Case 3

How can we fix this?
Rotate right first: rotate (B, C)
Then right left: rotate (A, C)

Height of \mathbf{C} we know must be \boldsymbol{h}
Therefore At least one of $\boldsymbol{h}_{\mathbf{y} 1}$ or $\boldsymbol{h}_{\mathrm{y} 2}$ must be $\boldsymbol{h} \mathbf{- 1}$
The other can be $\boldsymbol{h} \mathbf{- 2}$, or $\boldsymbol{h} \mathbf{- 1}$

Enforcing the AVL Constraint

- If too right heavy (balance $==+2$)
- If right child is right heavy (balance $==+1$) or balanced (balance $==0$)
- rotate left around the root
- If right child is left heavy (balance $==-1$)
- rotate right around right child, then rotate left around root
- If too left heavy (balance $==-2$)
- Same as above but flipped

Therefore if we have a balance factor that is off, but all children are AVL trees, we can fix the balance factor in at most 2 rotations

Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST)
2. Insert the new leaf and set balance factor to 0
3. Trace path back up to root and update balance factors a. If a balance factor becomes $+/-2$ then rotate to fix
$O(d)=O(\log n)$
O(1)
$O(d)=O(\log n)$ $0(1)$

Inserting New Nodes

```
1 public void insert(T value, AVLTreeNode<T> root) {
2 // Use normal Logic for inserting into a BST, then set heavy flags
3 AVLTreeNode<T> newNode = insertIntoBST(value, root);
4 newNode.isLeftHeavy = newNode.isRightHeavy = false;
5 \text { while (newNode.parent.isPresent()) \{}
        }

\section*{Inserting New Nodes}


\section*{Inserting New Nodes}
```

1 public void insert(T value, AVLTreeNode<T> root) {
2 // Use normal logic for inserting into a BST, then set heavy flags
3 AVLTreeNode<T> newNode = insertIntoBST(value, root);
4 newNode.isLeftHeavy = newNode.isRightHeavy = false;
5 ~ w h i l e ~ (n e w N o d e . p a r e n t . i s P r e s e n t ()) ~ \{ ,
if (newNode.parent.get().leftChild.orElse(null) == newNode) {
// Fix issues that occur from inserting into parents left subtree
} else {
// Fix issues that occur from inserting into parents right subtree
}
newNode = newNode.parent.get();
}
1 3

```

\section*{Inserting New Nodes}
\begin{tabular}{|c|c|}
\hline \multirow[b]{12}{*}{2
3
4
5
6
7
8
9
10
11
12} & public void insert(T value, AVLTreeNode<T> root) \{ \\
\hline & // Use normal logic for inserting into a BST, then set heavy flags \\
\hline & AVLTreeNode<T> newNode = insertIntoBST(value, root); \\
\hline & newNode.isLeftHeavy = newNode.isRightHeavy = false; \\
\hline & while (newNode.parent.isPresent()) \{ \\
\hline & if (newNode.parent.get().leftChild.orElse(null) == newNode) \{ \\
\hline & // Fix issues that occur from inserting into parents left subtree \\
\hline & \} else \{ \\
\hline & // Fix issues that occur from inserting into parents right subtree \\
\hline & \\
\hline & newNode = newNode.parent.get(); \\
\hline & \begin{tabular}{l|l} 
\} & \begin{tabular}{l} 
What is the cost of each iteration? \\
How exactly do we fix the issues? (next slide)
\end{tabular}
\end{tabular} \\
\hline
\end{tabular}

\section*{Inserting New Nodes}
```

if (newNode.parent.get().leftChild.orElse(null) == newNode) {
// Fix issues that occur from inserting into parents left subtree
if (newNode.parent.get().isRightHeavy) {
newNode.parent.get().isRightHeavy = false;
return
} else if (newNode.parent.get().isLeftHeavy) {
if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();
else newNode.parent.get().rotateLeftRight();
return
} else {
newNode.parent.get().isLeftHeavy = true;
}
1 3

```

\section*{Inserting New Nodes}
```

1 if (newNode.parent.get().leftChild.orElse(null) == newNode) {
2 // Fix issues that occur from inserting into parents left subtree

```

\section*{Inserting New Nodes}
```

 1 if (newNode.parent.get().leftChild.orElse(null)
 2 // Fix issues that occur from inserting into
if (newNode.parent.get().isRightHeavy) {
newNode.parent.get().isRightHeavy = false;

$$
\begin{aligned}
& \text { If we inserted into the left of a left } \\
& \text { heavy subtree, then we just } \\
& \text { created imbalance, and need to } \\
& \text { rotate. But then we can stop. }
\end{aligned}
$$

 } else if (newNode.parent.get().isLeftHeavy) {
 if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();
 else newNode.parent.get().rotateLeftRight();
 return
 } else {
 newNode.parent.get().isLeftHeavy = true;
 }
 }

```

\section*{Inserting New Nodes}


\section*{Inserting New Nodes}


\section*{Inserting New Nodes}
```

1 public void insert(T value, AVLTreeNode<T> root) {
2 // Use normal logic for inserting into a BST, then set heavy flags
3
AVLTreeNode<T> newNode = insertIntoBST(value, root);
newNode.isLeftHeavy = newNode.isRightHeavy = false;
while (newNode.parent.isPresent()) {
if (newNode.parent.get().leftChild.orElse(null) == newNode) {
// Fix issues that occur from inserting into parents left subtree
} else {
// Fix issues that occur from inserting into parents right subtree
}
newNode = newNode.parent.get();
}
}
Therefore, our total insertion cost is O(d)=O(log(n))

```

\section*{Removing Records}
- Removal follows essentially the same process as insertion
- Do a normal BST removal
- Go back up the tree adjusting balance factors
- If you discover a balance factor that goes to \(+2 /-2\), rotate to fix

\section*{AVL Summary}
- We want shallow BSTs (it makes find, insert, remove faster)

\section*{AVL Summary}
- We want shallow BSTs (it makes find, insert, remove faster)
- Enforcing AVL constraints makes our BSTs shallow
- The constraints are |height(right) - height(left) \(\mid \leq 1\)
- It will guarantee \(\boldsymbol{d}=\mathbf{O}(\log (n))\)

\section*{AVL Summary}
- We want shallow BSTs (it makes find, insert, remove faster)
- Enforcing AVL constraints makes our BSTs shallow
- The constraints are |height(right) - height(left) \(\mid \leq 1\)
- It will guarantee \(\boldsymbol{d}=\mathbf{O}(\log (n))\)
- Adding/removing from a BST changes height by at most 1
- A rotation can also change a BST height by at most 1

\section*{AVL Summary}
- We want shallow BSTs (it makes find, insert, remove faster)
- Enforcing AVL constraints makes our BSTs shallow
- The constraints are |height(right) - height(left) \(\mid \leq 1\)
- It will guarantee \(\boldsymbol{d}=\mathbf{O}(\log (n))\)
- Adding/removing from a BST changes height by at most 1
- A rotation can also change a BST height by at most 1
- Therefore after insert/remove into an AVL tree, we can reinforce AVL constraints with one (or two) rotations
- We only need to make one trip back up the tree to do so
- Therefore insert/remove is still \(\mathbf{O}(d)=\mathbf{O}(\log (n))\)

\section*{AVL Tree}

What was our initial goal?

\section*{AVL Tree}

What was our initial goal? To constrain the depth of the tree

\section*{AVL Tree}

What was our initial goal? To constrain the depth of the tree How did we accomplish it?

\section*{AVL Tree}

What was our initial goal? To constrain the depth of the tree
How did we accomplish it? By keeping the tree balanced (subtree heights within 1 of each other)

\section*{AVL Tree}

What was our initial goal? To constrain the depth of the tree
How did we accomplish it? By keeping the tree balanced (subtree heights within 1 of each other)

This approach is indirect, and a bit more restrictive than it has to be

\section*{Maintaining Balance - Another Approach}

Enforcing height-balance is too strict (May do "unnecessary" rotations)
Weaker (and more direct) restriction:
- Balance the depth of empty tree nodes
- If \(\boldsymbol{a}, \boldsymbol{b}\) are EmptyTree nodes, then enforce that for all \(\boldsymbol{a}, \boldsymbol{b}\) :
- \(\quad \operatorname{depth}(\boldsymbol{a}) \geq(\operatorname{depth}(\boldsymbol{b}) \div 2)\)
or
- \(\operatorname{depth}(b) \geq(\operatorname{depth}(\mathbf{a}) \div 2)\)

> Like with all BST properties we've discussed, this also has to hold true for ALL subtrees

\section*{Depth Balancing}


\section*{Depth Balancing}

Does this tree meet the depth constraints? YES


This tree meets the constraints for EmptyTree node depth \((3 \geq 5 / 2) ~ \checkmark\)

\section*{Depth Balancing}


\section*{Depth Balancing}


\section*{Depth Balancing}


\section*{Depth Balancing}


\section*{Depth Balancing}


\section*{Depth Balancing}


\section*{Red-Black Trees}

\section*{To Enforce the Depth Constraint on empty nodes:}
1. Color each node red or black
a. The \# of black nodes from each empty node to root must be same
b. The parent of a red node must always be black
2. On insertion (or deletion)
a. Inserted nodes are red (won't break 1a)
b. Repair violations of 1b by rotating and/or recoloring
i. Make sure repairs don't break 1a

\section*{Red-Black Trees}

\section*{To Enforce the Depth Constraint on empty nodes:}
1. Color each node red or black
a. The \# of black nodes from each empty node to root must be same
b. The parent of a red node must always be black
2. On insertion (ordalation)
a. Inserted nod
b. Repair violati
i. Make su

IMPORTANT: Just like with BSTs and AVL Trees, these constraints must hold true for EVERY node in the tree.

AKA every subtree in a Red-Black tree must also be a Red-Black Tree!

\section*{Red-Black Trees}


\section*{Red-Black Trees}


\section*{Red-Black Trees}


Label each EmptyTree with the number of black nodes along the path back to the root. All 3 in this case \(\checkmark\)

Confirm no red nodes have red parents \(\checkmark\)

\section*{Red-Black Trees}

How does this coloring relate to our depth constraint?

\section*{Red-Black Trees}

Assume we have a valid Red-Black tree with X black nodes from on each path from empty node to root

What is the shallowest possible depth of an empty node?

\section*{Red-Black Trees}

Assume we have a valid Red-Black tree with X black nodes from on each path from empty node to root

What is the shallowest possible depth of an empty node?
\(X\) black nodes in a row \(=\mathbf{X}\)

\section*{Red-Black Trees}

Assume we have a valid Red-Black tree with X black nodes from on each path from empty node to root

What is the shallowest possible depth of an empty node?
X black nodes in a row \(=\mathbf{X}\)
What is the deepest possible depth of an empty node?

\section*{Red-Black Trees}

Assume we have a valid Red-Black tree with X black nodes from on each path from empty node to root

What is the shallowest possible depth of an empty node?
X black nodes in a row \(=\mathbf{X}\)
What is the deepest possible depth of an empty node?
\(X\) black nodes with 1 red node between each one \(=2 X\)

\section*{Red-Black Trees}

\section*{Now we have:}
1. If we color nodes red and black with the rules described, then the shallowest empty node will be at least half the depth of the deepest
2. If the shallowest empty node is at least half the depth of the deepest then the depth of our tree is \(\mathrm{O}(\log (\mathrm{n}))\)

\section*{Red-Black Trees}

\section*{Now we have:}
1. If we color nodes red and black with the rules described, then the shallowest empty node will be at least half the depth of the deepest
2. If the shallowest empty node is at least half the depth of the deepest then the depth of our tree is \(\mathrm{O}(\log (\mathrm{n}))\)

So how do we build/color our tree?

\section*{Red-Black Trees}

After insertion or deletion, what situations can we encounter?

\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

Case 1a: Our root is red, we're all good! \(\checkmark\)


Triangles represent valid Red-Black tree fragments

\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

Case 1b: Our root is black, we're all good! \(\checkmark\)


Triangles represent valid Red-Black tree fragments

\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

Case 2: The node we are checking is red...


Triangles represent valid Red-Black tree fragments

\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

Case 2: The node we are checking is red... and it's parent is black. We are all good! \(\sqrt{ }\)


\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

Case 3: The node we are checking is red... and it's parent is red. Now we have to fix the tree.


\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

Case 3a: The node we are checking is red... and it's parent is red. That node's parent is black and it's sibling is red...


\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

Case 3a: The node we are checking is red... and it's parent is red. That node's parent is black and it's sibling is red...

Recolor B,C,D. Are we all good?


\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

C's parent may be red.
Move up and repeat

Case 3a: The node we are checking is red... and it's parent is red. That node's parent is black and it's sibling is red...

Recolor B,C,D. Are we all good?


\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

C's parent may be red.
Move up and repeat this process! \(\downarrow\)

Case 3a: The node we are checking is red... and it's parent is red. That node's parent is black and it's sibling is red...

Recolor B,C,D. Are we all good?
Note: This also works if \(A\) is right child of \(B\) and/or \(B\) is right child of \(C\)


The \# of black nodes on every path remains unchanged! \(\checkmark\)

\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

Case 3b: The node we are checking is red... and it's parent is red. That node's parent is black and it's sibling is black...


\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

Case 3b: The node we are checking is red... and it's parent is red. That node's parent is black and it's sibling is black...

Rotate(B,C)


\section*{Red-Black Tree}

\section*{After insertion or deletion, what situations can we encounter?}

Case 3b: The node we are checking is red... and it's parent is red. That node's parent is black and it's sibling is black...

Rotate(B,C)

1 less black node to root for this part of the tree...


\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

Case 3b: The node we are checking is red... and it's parent is red. That node's parent is black and it's sibling is black...

\section*{Rotate(B,C)} Recolor(B,C)


\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

Case 3c: The node we are checking is red... and it's parent is red. That node's parent is black and it's sibling is black...but A is the right child of \(B\)


\section*{Red-Black Trees}

\section*{After insertion or deletion, what situations can we encounter?}

Case 3c: The node we are checking is red... and it's parent is red. That node's parent is black and it's sibling is black...but A is the right child of B

Rotate(B,A) now we are back to 3b


\section*{Red-Black Trees}

Note: Each insertion creates at most one red-red parent-child conflict
- O(1) time to recolor/rotate to repair the parent-child conflict
- May create a red-red conflict in grandparent
- Up to \(\mathrm{d} / 2=0(\log (\mathrm{n}))\) repairs required, but each repair is \(\mathrm{O}(1)\)
- Insertion therefore remains \(\mathbf{O}(\log (\mathrm{n}))\)

Note: Each deletion removes at most one black node (red doesn't matter)
- O(1) time to recolor/rotate to preserve black-depth
- May require recoloring (grand-)parent from black to red
- Up to \(d=O(\log (n))\) repairs required
- Deletion therefore remains \(\mathbf{O}(\log (n))\)

\section*{BST Operations}
\begin{tabular}{c|c|c|c} 
Operation & BST & AVL & Red-Black \\
\hline find & \(O(d)=O(n)\) & \(O(d)=O(\log n)\) & \(O(d)=O(\log n)\) \\
insert & \(O(d)=O(n)\) & \(O(d)=O(\log n)\) & \(O(d)=O(\log n)\) \\
remove & \(O(d)=O(n)\) & \(O(d)=O(\log n)\) & \(O(d)=O(\log n)\)
\end{tabular}

The tree operations on a BST are always \(\mathbf{O ( d )}\) (they involve a constant number of trips from root to leaf at most).

The balanced varieties (AVL and Red-Black) constrain the depth```

