
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 28: Red-Black Trees

mailto:epmikida@buffalo.edu

Announcements

● WA4 due Sunday Tuesday!
● Classes cancelled Monday for the Eclipse

○ Recitation next week is midterm review, no attendance required
○ If you have recitation on Monday but still want to attend, you may attend a

Tuesday recitation (as long as there is space)
● TA hiring starting soon – If you want to join 250 course staff email me!
● DivTech Women in STEM event tonight! (see Marian's post on Piazza)

2

BST Operations

What is the runtime in terms of n? O(n)

log(n) ≤ d ≤ n

Operation Runtime

find O(d)

insert O(d)

remove O(d)

3

AVL Trees

An AVL tree (Adelson-Velsky and Landis) is a BST
where every subtree is depth-balanced

Remember: Tree depth = height(root)

Balanced: |height(root.right) - height(root.left)| ≤ 1

4

AVL Trees

Define balance(v) = height(v.right) - height(v.left)

Goal: Maintaining balance(v) ∈ { -1, 0, 1 }

● balance(v) = 0 → "v is balanced"
● balance(v) = -1 → "v is left-heavy"
● balance(v) = 1 → "v is right-heavy"

5

An Important Note About Height!

The height of a tree is the number of edges that need to be followed to get
to the deepest leaf
● Therefore the depth of a single node tree is 0
● As a convention, the depth of an empty tree is -1

6

AVL Trees - Depth Bounds

Question: Does the AVL property result in any guarantees about depth?

YES! Depth balance forces a maximum possible depth of log(n)

Proof Idea: An AVL tree with depth d has "enough" nodes

7

AVL Trees - Enforcing the Depth Bound

Key Observations:

● Adding a node to an AVL tree can increase subtree height by at most 1
● Removing a node can decrease subtree height by at most 1
● Both of these modifications only affect ancestors
● A rotation maintains ordering, and changes tree height by at most +/-1

8

Enforcing the AVL Constraint: Case 1

A

B

X Y Z

balance = +2 (too right heavy)

balance = +1 (right heavy)

height = hheight = h - 1height = h - 1

How can we fix this?

Z is the tallest of X, Y, Z

9

Enforcing the AVL Constraint: Case 1

balance = 0 ✓

height = hheight = h - 1height = h - 1

How can we fix this? rotate(A,B)

A

B

X Y Z

balance = 0 ✓

10

Enforcing the AVL Constraint: Case 2

A

B

X Y Z

balance = +2 (too right heavy)

balance = 0 (balanced)

height = hheight = hheight = h - 1

How can we fix this?

Y and Z are taller than X

11

Enforcing the AVL Constraint: Case 2

How can we fix this? rotate(A,B)balance = -1 ✓

height = hheight = hheight = h - 1

A

B

X Y Z

balance = 1 ✓

12

Enforcing the AVL Constraint: Case 3

A

B

X Y Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hheight = h - 1

How can we fix this?

13

Y is the tallest of X, Y, Z

Enforcing the AVL Constraint: Case 3

How can we fix this?
Will just a single left rotation work? No

balance = -2 ✘

height = h - 1height = hheight = h - 1

A

B

X Y Z

balance = 1 ✓

14

Enforcing the AVL Constraint: Case 3

A

B

X Y Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hheight = h - 1

How can we fix this?
Will just a single left rotation work? No

15

Let's expand Y to figure out what to do

Enforcing the AVL Constraint: Case 3

A

B

X Y1 Z

balance = +2 (too right heavy)

balance = -1 (left heavy)

height = h - 1height = hy1height = h - 1

How can we fix this?

C

Y2
height = hy2

Height of C we know must be h

Therefore At least one of hy1 or hy2 must be h - 1

The other can be h - 2, or h - 1

16

Enforcing the AVL Constraint: Case 3

A

B

X Y1 Z

balance = +2 (too right heavy)

balance = +1 or +2

height = h - 1height = hy1height = h - 1

How can we fix this?
Rotate right first: rotate(B,C)

C

Y2
height = hy2

Height of C we know must be h

Therefore At least one of hy1 or hy2 must be h - 1

The other can be h - 2, or h - 1

17

Enforcing the AVL Constraint: Case 3

A B

X Y1 Z

balance = 0 ✓

balance = 0 or +1 ✓

height = h - 1height = hy1height = h - 1

How can we fix this?
Rotate right first: rotate(B,C)
Then right left: rotate(A,C)

C

Y2
height = hy2

balance = 0 or -1 ✓

Height of C we know must be h

Therefore At least one of hy1 or hy2 must be h - 1

The other can be h - 2, or h - 1

18

Enforcing the AVL Constraint

● If too right heavy (balance == +2)
○ If right child is right heavy (balance == +1) or balanced (balance == 0)

■ rotate left around the root
○ If right child is left heavy (balance == -1)

■ rotate right around right child, then rotate left around root
● If too left heavy (balance == -2)

○ Same as above but flipped

Therefore if we have a balance factor that is off, but all children are
AVL trees, we can fix the balance factor in at most 2 rotations

19

Inserting Records

To insert a record into an AVL Tree:

1. Find the insertion point (remember it is a BST) O(d) = O(log n)
2. Insert the new leaf and set balance factor to 0 O(1)
3. Trace path back up to root and update balance factors O(d) = O(log n)

a. If a balance factor becomes +/-2 then rotate to fix O(1)

20

Inserting New Nodes

21

1

2

3

4

5

6

7

8

9

10

11

12

13

public void insert(T value, AVLTreeNode<T> root) {

 // Use normal logic for inserting into a BST, then set heavy flags

 AVLTreeNode<T> newNode = insertIntoBST(value, root);

 newNode.isLeftHeavy = newNode.isRightHeavy = false;

 while (newNode.parent.isPresent()) {

 if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 } else {

 // Fix issues that occur from inserting into parents right subtree

 }

 newNode = newNode.parent.get();

 }

}

Inserting New Nodes

22

1

2

3

4

5

6

7

8

9

10

11

12

13

public void insert(T value, AVLTreeNode<T> root) {

 // Use normal logic for inserting into a BST, then set heavy flags

 AVLTreeNode<T> newNode = insertIntoBST(value, root);

 newNode.isLeftHeavy = newNode.isRightHeavy = false;

 while (newNode.parent.isPresent()) {

 if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 } else {

 // Fix issues that occur from inserting into parents right subtree

 }

 newNode = newNode.parent.get();

 }

}

Find insertion point and create the new
leaf O(d) = O(log n)

Inserting New Nodes

23

1

2

3

4

5

6

7

8

9

10

11

12

13

public void insert(T value, AVLTreeNode<T> root) {

 // Use normal logic for inserting into a BST, then set heavy flags

 AVLTreeNode<T> newNode = insertIntoBST(value, root);

 newNode.isLeftHeavy = newNode.isRightHeavy = false;

 while (newNode.parent.isPresent()) {

 if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 } else {

 // Fix issues that occur from inserting into parents right subtree

 }

 newNode = newNode.parent.get();

 }

}

O(d) = O(log n) iterations

Inserting New Nodes

24

1

2

3

4

5

6

7

8

9

10

11

12

13

public void insert(T value, AVLTreeNode<T> root) {

 // Use normal logic for inserting into a BST, then set heavy flags

 AVLTreeNode<T> newNode = insertIntoBST(value, root);

 newNode.isLeftHeavy = newNode.isRightHeavy = false;

 while (newNode.parent.isPresent()) {

 if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 } else {

 // Fix issues that occur from inserting into parents right subtree

 }

 newNode = newNode.parent.get();

 }

}

What is the cost of each iteration?
How exactly do we fix the issues? (next slide)

Inserting New Nodes

25

1

2

3

4

5

6

7

8

9

10

11

12

13

if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 if (newNode.parent.get().isRightHeavy) {

 newNode.parent.get().isRightHeavy = false;

 return

 } else if (newNode.parent.get().isLeftHeavy) {

 if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();

 else newNode.parent.get().rotateLeftRight();

 return

 } else {

 newNode.parent.get().isLeftHeavy = true;

 }

}

Inserting New Nodes

26

1

2

3

4

5

6

7

8

9

10

11

12

13

if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 if (newNode.parent.get().isRightHeavy) {

 newNode.parent.get().isRightHeavy = false;

 return

 } else if (newNode.parent.get().isLeftHeavy) {

 if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();

 else newNode.parent.get().rotateLeftRight();

 return

 } else {

 newNode.parent.get().isLeftHeavy = true;

 }

}

If we inserted into the left of a
right heavy subtree, then the

subtree is no longer right heavy
and we can stop here

Inserting New Nodes

27

1

2

3

4

5

6

7

8

9

10

11

12

13

if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 if (newNode.parent.get().isRightHeavy) {

 newNode.parent.get().isRightHeavy = false;

 return

 } else if (newNode.parent.get().isLeftHeavy) {

 if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();

 else newNode.parent.get().rotateLeftRight();

 return

 } else {

 newNode.parent.get().isLeftHeavy = true;

 }

}

If we inserted into the left of a left
heavy subtree, then we just

created imbalance, and need to
rotate. But then we can stop.

Inserting New Nodes

28

1

2

3

4

5

6

7

8

9

10

11

12

13

if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 if (newNode.parent.get().isRightHeavy) {

 newNode.parent.get().isRightHeavy = false;

 return

 } else if (newNode.parent.get().isLeftHeavy) {

 if (newNode.isLeftHeavy) newNode.parent.get().rotateRight();

 else newNode.parent.get().rotateLeftRight();

 return

 } else {

 newNode.parent.get().isLeftHeavy = true;

 }

}

If we inserted into the left of a
balanced subtree, then we mark it

as now being left heavy, and
continue up the tree

Inserting New Nodes

29

1

2

3

4

5

6

7

8

9

10

11

12

13

public void insert(T value, AVLTreeNode<T> root) {

 // Use normal logic for inserting into a BST, then set heavy flags

 AVLTreeNode<T> newNode = insertIntoBST(value, root);

 newNode.isLeftHeavy = newNode.isRightHeavy = false;

 while (newNode.parent.isPresent()) {

 if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 } else {

 // Fix issues that occur from inserting into parents right subtree

 }

 newNode = newNode.parent.get();

 }

}

What is the cost of each iteration? O(1)

Inserting New Nodes

30

1

2

3

4

5

6

7

8

9

10

11

12

13

public void insert(T value, AVLTreeNode<T> root) {

 // Use normal logic for inserting into a BST, then set heavy flags

 AVLTreeNode<T> newNode = insertIntoBST(value, root);

 newNode.isLeftHeavy = newNode.isRightHeavy = false;

 while (newNode.parent.isPresent()) {

 if (newNode.parent.get().leftChild.orElse(null) == newNode) {

 // Fix issues that occur from inserting into parents left subtree

 } else {

 // Fix issues that occur from inserting into parents right subtree

 }

 newNode = newNode.parent.get();

 }

} Therefore, our total insertion cost is O(d) = O(log(n))

Removing Records

● Removal follows essentially the same process as insertion
○ Do a normal BST removal
○ Go back up the tree adjusting balance factors
○ If you discover a balance factor that goes to +2/-2, rotate to fix

31

AVL Summary

● We want shallow BSTs (it makes find, insert, remove faster)

32

AVL Summary

● We want shallow BSTs (it makes find, insert, remove faster)
● Enforcing AVL constraints makes our BSTs shallow

○ The constraints are |height(right) - height(left)| ≤ 1
○ It will guarantee d = O(log(n))

33

AVL Summary

● We want shallow BSTs (it makes find, insert, remove faster)
● Enforcing AVL constraints makes our BSTs shallow

○ The constraints are |height(right) - height(left)| ≤ 1
○ It will guarantee d = O(log(n))

● Adding/removing from a BST changes height by at most 1
● A rotation can also change a BST height by at most 1

34

AVL Summary

● We want shallow BSTs (it makes find, insert, remove faster)
● Enforcing AVL constraints makes our BSTs shallow

○ The constraints are |height(right) - height(left)| ≤ 1
○ It will guarantee d = O(log(n))

● Adding/removing from a BST changes height by at most 1
● A rotation can also change a BST height by at most 1
● Therefore after insert/remove into an AVL tree, we can reinforce AVL

constraints with one (or two) rotations
○ We only need to make one trip back up the tree to do so
○ Therefore insert/remove is still O(d) = O(log(n)) 35

AVL Tree

What was our initial goal?

36

AVL Tree

What was our initial goal? To constrain the depth of the tree

37

AVL Tree

What was our initial goal? To constrain the depth of the tree

How did we accomplish it?

38

AVL Tree

What was our initial goal? To constrain the depth of the tree

How did we accomplish it? By keeping the tree balanced
(subtree heights within 1 of each other)

39

AVL Tree

What was our initial goal? To constrain the depth of the tree

How did we accomplish it? By keeping the tree balanced
(subtree heights within 1 of each other)

This approach is indirect, and a bit more restrictive than it has to be

40

Maintaining Balance - Another Approach

Enforcing height-balance is too strict (May do “unnecessary” rotations)

Weaker (and more direct) restriction:
● Balance the depth of empty tree nodes
● If a, b are EmptyTree nodes, then enforce that for all a, b:

○ depth(a) ≥ (depth(b) ÷ 2)

or

○ depth(b) ≥ (depth(a) ÷ 2)

41

Like with all BST properties
we've discussed, this also has
to hold true for ALL subtrees

Depth Balancing

A

B C

D E F G

H I

J

5 5

4 4

3 3 3 3 3 3

Does this tree meet the depth constraints?

42

4

Depth Balancing

A

B C

D E F G

H I

J

5 5

4 4

3 3 3 3 3 3

EmptyTree nodes

This tree meets the constraints for EmptyTree
node depth (3 ≥ 5/2) ✓

Does this tree meet the depth constraints? YES

43

4

Depth Balancing

A

B C

D E F

H I

J

5 5

4 4

3 3 3 3

2

Not OK!

Does this tree meet the depth constraints?

44

4

Depth Balancing

A

B C

D E F

H I

J

5 5

4 4

3 3 3 3

2

Not OK!

Does this tree meet the depth constraints? NO

45

4

Depth Balancing

d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

A

B d-1

d d
46

Depth Balancing

d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

A

B d-1

d d

If no empty node has depth less than d/2, then
this part of the tree must be full. n ≥ 2d/2 nodes

47

Depth Balancing

d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

A

B d-1

d d

log(n) ≥ d/2
2 log(n) ≥ d → d ∈ O(log(n))

If no empty node has depth less than d/2, then
this part of the tree must be full. n ≥ 2d/2 nodes

48

Depth Balancing

d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

A

B d-1

d d

log(n) ≥ d/2
2 log(n) ≥ d → d ∈ O(log(n))

Therefore enforcing these constraints means that
tree depths is O(log(n))...

So how do we enforce them (efficiently)?

If no empty node has depth less than d/2, then
this part of the tree must be full. n ≥ 2d/2 nodes

49

Red-Black Trees

To Enforce the Depth Constraint on empty nodes:

1. Color each node red or black
a. The # of black nodes from each empty node to root must be same
b. The parent of a red node must always be black

2. On insertion (or deletion)
a. Inserted nodes are red (won't break 1a)
b. Repair violations of 1b by rotating and/or recoloring

i. Make sure repairs don't break 1a

50

Red-Black Trees

To Enforce the Depth Constraint on empty nodes:

1. Color each node red or black
a. The # of black nodes from each empty node to root must be same
b. The parent of a red node must always be black

2. On insertion (or deletion)
a. Inserted nodes are red (won't break 1a)
b. Repair violations of 1b by rotating and/or recoloring

i. Make sure repairs don't break 1a

IMPORTANT: Just like with BSTs and AVL Trees, these
constraints must hold true for EVERY node in the tree.

AKA every subtree in a Red-Black tree must also be a
Red-Black Tree!

51

Red-Black Trees

A

B C

D E F G

H I

J

3 3

3 3

3 3 3 3 3 3

52

Red-Black Trees

A

B C

D E F G

H I

J

3 3

3 3

3 3 3 3 3 3

Label each empty node with the number of black nodes
along the path back to the root. All 3 in this case ✓

53

3

Red-Black Trees

A

B C

D E F G

H I

J

3 3

3 3

3 3 3 3 3 3

Label each EmptyTree with the number of black nodes
along the path back to the root. All 3 in this case ✓

Confirm no red nodes have red parents ✓ 54

3

Red-Black Trees

How does this coloring relate to our depth constraint?

55

Red-Black Trees

Assume we have a valid Red-Black tree with X black nodes from on each
path from empty node to root

What is the shallowest possible depth of an empty node?

56

Red-Black Trees

Assume we have a valid Red-Black tree with X black nodes from on each
path from empty node to root

What is the shallowest possible depth of an empty node?

X black nodes in a row = X

57

Red-Black Trees

Assume we have a valid Red-Black tree with X black nodes from on each
path from empty node to root

What is the shallowest possible depth of an empty node?

X black nodes in a row = X

What is the deepest possible depth of an empty node?

58

Red-Black Trees

Assume we have a valid Red-Black tree with X black nodes from on each
path from empty node to root

What is the shallowest possible depth of an empty node?

X black nodes in a row = X

What is the deepest possible depth of an empty node?

X black nodes with 1 red node between each one = 2X

59

Red-Black Trees

Now we have:

1. If we color nodes red and black with the rules described, then the
shallowest empty node will be at least half the depth of the deepest

2. If the shallowest empty node is at least half the depth of the deepest
then the depth of our tree is O(log(n))

60

Red-Black Trees

Now we have:

1. If we color nodes red and black with the rules described, then the
shallowest empty node will be at least half the depth of the deepest

2. If the shallowest empty node is at least half the depth of the deepest
then the depth of our tree is O(log(n))

So how do we build/color our tree?

61

Red-Black Trees

After insertion or deletion, what situations can we encounter?

62

Red-Black Trees

After insertion or deletion, what situations can we encounter?

A
Triangles represent valid
Red-Black tree fragments

Case 1a: Our root is red, we're all good! ✓

63

Red-Black Trees

After insertion or deletion, what situations can we encounter?

A
Triangles represent valid
Red-Black tree fragments

Case 1b: Our root is black, we're all good! ✓

64

Red-Black Trees

After insertion or deletion, what situations can we encounter?

A Triangles represent valid
Red-Black tree fragments

Case 2: The node we are checking is red…

65

Red-Black Trees

After insertion or deletion, what situations can we encounter?

A

Triangles represent valid
Red-Black tree fragments

Case 2: The node we are checking is red…
and it's parent is black. We are all good! ✓

B

66

Red-Black Trees

After insertion or deletion, what situations can we encounter?

A

Case 3: The node we are checking is red…
and it's parent is red. Now we have to fix the
tree. B

67

Red-Black Trees

After insertion or deletion, what situations can we encounter?

A

Case 3a: The node we are checking is red…
and it's parent is red. That node's parent is
black and it's sibling is red… B

C

D

68

Red-Black Trees

After insertion or deletion, what situations can we encounter?

A

Case 3a: The node we are checking is red…
and it's parent is red. That node's parent is
black and it's sibling is red…

Recolor B,C,D. Are we all good?

B

C

D

69

Red-Black Trees

After insertion or deletion, what situations can we encounter?

A

Case 3a: The node we are checking is red…
and it's parent is red. That node's parent is
black and it's sibling is red…

Recolor B,C,D. Are we all good?

B

C

D

The # of black nodes
on every path remains
unchanged! ✓

C's parent may be red.
Move up and repeat
this process! ✓

70

Red-Black Trees

After insertion or deletion, what situations can we encounter?

A

Case 3a: The node we are checking is red…
and it's parent is red. That node's parent is
black and it's sibling is red…

Recolor B,C,D. Are we all good?

Note: This also works if A is right child of B
and/or B is right child of C

B

C

D

The # of black nodes
on every path remains
unchanged! ✓

C's parent may be red.
Move up and repeat
this process! ✓

71

Red-Black Trees

After insertion or deletion, what situations can we encounter?

A

Case 3b: The node we are checking is red…
and it's parent is red. That node's parent is
black and it's sibling is black… B

C

D

72

Red-Black Trees

After insertion or deletion, what situations can we encounter?

A

Case 3b: The node we are checking is red…
and it's parent is red. That node's parent is
black and it's sibling is black…

Rotate(B,C)

B

C

D

73

Red-Black Tree

After insertion or deletion, what situations can we encounter?

A

Case 3b: The node we are checking is red…
and it's parent is red. That node's parent is
black and it's sibling is black…

Rotate(B,C)

B

C

D

Same # of black
nodes to the root
from this part of
tree

1 less black node
to root for this part
of the tree… 74

Red-Black Trees

After insertion or deletion, what situations can we encounter?

A

Case 3b: The node we are checking is red…
and it's parent is red. That node's parent is
black and it's sibling is black…

Rotate(B,C)
Recolor(B,C)

B

C

D

Same # of black
nodes to the root for
whole subtree! ✓

No need to continue
fixing, a black node
can have any color
parent! ✓

75

Red-Black Trees

After insertion or deletion, what situations can we encounter?

A

Case 3c: The node we are checking is red…
and it's parent is red. That node's parent is
black and it's sibling is black…but A is the
right child of B

B

C

D

76

Red-Black Trees

After insertion or deletion, what situations can we encounter?

Case 3c: The node we are checking is red…
and it's parent is red. That node's parent is
black and it's sibling is black…but A is the
right child of B

Rotate(B,A) now we are back to 3b A

B

C

D

77

Red-Black Trees

Note: Each insertion creates at most one red-red parent-child conflict
● O(1) time to recolor/rotate to repair the parent-child conflict
● May create a red-red conflict in grandparent

○ Up to d/2 = O(log(n)) repairs required, but each repair is O(1)
● Insertion therefore remains O(log(n))

Note: Each deletion removes at most one black node (red doesn't matter)
● O(1) time to recolor/rotate to preserve black-depth
● May require recoloring (grand-)parent from black to red

○ Up to d = O(log(n)) repairs required
● Deletion therefore remains O(log(n))

78

BST Operations

The tree operations on a BST are always O(d) (they involve a constant
number of trips from root to leaf at most).

The balanced varieties (AVL and Red-Black) constrain the depth

Operation BST AVL Red-Black

find O(d) = O(n) O(d) = O(log n) O(d) = O(log n)

insert O(d) = O(n) O(d) = O(log n) O(d) = O(log n)

remove O(d) = O(n) O(d) = O(log n) O(d) = O(log n)

79

