CSE 250

Data Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 30: Introduction to Hash Tables

Announcements

- Recitations DO NOT meet this week
- Recitations DO meet next week
- PA3 out now

Sets

> A Set is an unordered collection of unique elements.
> (order doesn't matter, and at most one copy of each item)

Sets

A Set is an unordered collection of unique elements.
 (order doesn't matter, and at most one copy of each item key)

The Set ADT

void add(T element)
Store one copy of element if not already present
boolean contains(T element)
Return true if element is present in the set
boolean remove(T element)
Remove element if present, or return false if not

Implementing Sets/Bags

	add	contains	remove
ArrayList	$O(n)$	$O(n)$	$O(n)$
LinkedList	$O(n)$	$O(n)$	$O(n)$
Sorted ArrayList	$O(n)$	$O(\log (n))$	$O(n)$
Sorted LinkedList	$O(n)$	$O(n)$	$O(n)$

Implementing Sets/Bags

	add	contains	remove
ArrayList	$O(n)$	$O(n)$	$O(n)$
LinkedList	$O(n)$	$O(n)$	$O(n)$
Sorted ArrayList	$O(n)$	$O(\log (n))$	$O(n)$
Sorted LinkedList	$O(n)$	$O(n)$	$O(n)$
General BST	$? ?$	$? ?$	$? ?$
Balanced BST	$? ?$	$? ?$	$? ?$

Implementing Sets/Bags

	add	contains	remove
ArrayList	$O(n)$	$O(n)$	$O(n)$
LinkedList	$O(n)$	$O(n)$	$O(n)$
Sorted ArrayList	$O(n)$	$O(\log (n))$	$O(n)$
Sorted LinkedList	$O(n)$	$O(n)$	$O(n)$
General BST	$O(d)=O(n)$	$O(d)=O(n)$	$O(d)=O(n)$
Balanced BST	$O(d)=O(\log (n))$	$O(d)=O(\log (n))$	$O(d)=O(\log (n))$

Implementing Sets/Bags

	add	contains	remove
ArrayList	$O(n)$	$O(n)$	$O(n)$
LinkedList	$O(n)$	$O(n)$	$O(n)$
Sorted ArrayList	$O(n)$	$O(\log (n))$	$O(n)$
Sorted LinkedList	Can we improve on this even further?		
General BST	$O(d)=O(n)$	$O(d)=O(n)$	$O(d)=O(n)$
Balanced BST	$O(d)=O(\log (n))$	$O(d)=O(\log (n))$	$O(d)=O(\log (n))$

Finding Items

When implementing these operations with a BST where is most of "cost" of each algorithm coming from?

Finding Items

When implementing these operations with a BST where is most of "cost" of each algorithm coming from? Finding the element
contains => find the element
add
=> find the insertion point, then add (the add is often $\mathrm{O}(1)$)
remove => find the element, then remove (the remove is often $\mathrm{O}(1)$)

Finding Items

When implementing these operations with a BST where is most of "cost" of each algorithm coming from? Finding the element
contains => find the element
add $\quad=>$ find the insertion point, then add (the add is often $O(1)$)
remove => find the element, then remove (the remove is often $\mathrm{O}(1)$)
What if we could just...skip the find step?
What if we knew exactly where the element would be?

Assigning Bins

Which data structure has constant lookup if we know where our element is in a sequence?

Assigning Bins

Which data structure has constant lookup if we know where our element is in a sequence? An Array

Assigning Bins

Which data structure has constant lookup if we know where our element is in a sequence? An Array

Idea: What if we could assign each record to a location in an Array

- Create and array of size \mathbf{N}
- Pick an $\mathbf{O}(1)$ function to assign each record a number in $[0, N)$ - ie: creating a set of movies stored by first letter of title, String $\rightarrow[0,26)$

Assigning Bins

A	\mathbf{B}	\ldots	F	\mathbf{G}	\mathbf{H}	\ldots	\mathbf{Z}

Assigning Bins

add("Halloween")

A	\mathbf{B}	\ldots	F	\mathbf{G}	\mathbf{H}	\ldots	\mathbf{Z}

Assigning Bins

$$
\text { add("Halloween") } \rightarrow \text { "Halloween"[0] == "H" == } 7
$$

		- ■ -			Halloween	■■■

Assigning Bins

$$
\text { add("Halloween") } \rightarrow \text { "Halloween"[0] == "H" == } 7
$$

This computation is $\mathbf{O (1)}$

\mathbf{A}	\mathbf{B}	\ldots	F	\mathbf{G}	\ldots	\ldots	\mathbf{Z}

Assigning Bins

add("Friday the 13th") \rightarrow "Friday the 13th"[0] == "F" == 5

Assigning Bins

add("Get Out") \rightarrow "Get Out"[0] == "G" == 6

A B \quad B

Assigning Bins

$$
\text { add("Babadook") } \rightarrow \text { "Babadook"[0] == "B" == } 1
$$

| \boldsymbol{A} | Babadook | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Assigning Bins

contains("Get Out") \rightarrow "Get Out"[0] == "G" == 6
Find in constant time!

Assigning Bins

contains("Scream") \rightarrow "Scream"[0] == "S" == 18

Determine that "Scream" is not in the Set in constant time!

	Babadook	- ■ -	Friday the 13th	Get Out	Halloween	- - -	

Assigning Bins

What about: contains("Hereditary")?

Assigning Bins

What about: contains("Hereditary")?

Once we know the location, we still need to check for an exact match. "Hereditary"[0] == "H" == 7, Array[7] != "Hereditary"

Assigning Bins

Pros (so far...)

- O(1) add
- $O(1)$ contains
- O(1) remove

Cons?

Assigning Bins

Pros (so far...)

- O(1) add
- O(1) contains
- $\mathbf{O}(1)$ remove

Cons

- Wasted space (4/26 slots used in the example, will we ever use "Z"?)
- Duplication (What about inserting Erankenstein)

Bin-Based Organization

Wasted Space

- Not ideal...but not wrong
- $O(1)$ access time might be worth it
- Also depends on the choice of hash function

Duplication

- We need to be able to handle duplicates!

Bin-Based Organization

Wasted Space

- Not ideal...but not wrong
- $O(1)$ access time might be worth it
- Also depends on the choice of hash function

Duplication

- We need to be able to handle duplicates!

What about "buckets" that can store multiple items?

Handling "Duplicates"

How can we store multiple items at each location?

Bigger Buckets

Fixed Size Buckets (B elements)
Pros

- Can deal with up to \boldsymbol{B} dupes
- Still O(1) find

Cons

- What if more than \boldsymbol{B} dupes?

Arbitrarily Large Buckets (List)

Pros

- No limit to number of dupes

Cons

- $O(n)$ worst-case find

Assigning Bins

add("Frankenstein")?

	Babadook	- - ■	Friday the 13th	Get Out	Halloween	- ■ -	
\varnothing	\varnothing	- \cdot	\varnothing	\varnothing	\varnothing	- .	\varnothing

Assigning Bins

add("Frankenstein")?

Assigning Bins

add("Freddy vs Jason")?

Assigning Bins

add("Final Destination")?

LinkedList Bins

Now we can handle as many duplicates as we need. But are we losing our constant time operations?

How many elements are we expecting to end up in each bucket?

LinkedList Bins

Now we can handle as many duplicates as we need. But are we losing our constant time operations?

How many elements are we expecting to end up in each bucket?
Depends partially on our choice of Hash Function

Picking a Hash Function

Required features for $h(x)$:

- $\boldsymbol{h}(\boldsymbol{x})$ must always return the same value for the same \boldsymbol{x}

Desirable features for $h(x)$:

- Fast - should be $\mathbf{O}(1)$
- "Unique" - As few duplicate bins as possible

Picking a Hash Function

Picking a Hash Function

An ideal hash function would distribute the elements to buckets perfectly evenly contains(k) is $O(1)$

Picking a Hash Function

An ideal hash function would distribute the elements to buckets perfectly evenly
...but is unachievable contains (k) is $O(1)$

Picking a Hash Function

Picking a Hash Function

Worst case is a hash function that puts all items in a single bucket...what would be the runtime of contains?

Picking a Hash Function

Worst case is a hash function that puts all items in a single bucket...what would be the runtime of contains?
contains(k) is $O(n)$

Picking a Hash Function

Picking a Hash Function

An almost ideal hash function would distribute the elements to buckets somewhat evenly
contains(k) is something like $O(1)$?

Picking a Hash Function

An almost ideal hash function would distribute the elements to buckets somewhat evenly ...this IS achievable!
contains(k) is something like $O(1)$?

Example Hash Functions

First Letter of UBIT Name

- Unevenly distributed, $\mathbf{O}(\boldsymbol{n})$ worst case apply

Distribution of UBIT Names to Buckets based on first letter

Distribution of UBIT Names to Buckets based on first letter

Other Functions

First Letter of UBIT Name

- Unevenly distributed, $\mathbf{O}(\boldsymbol{n})$ worst case apply

Identity Function on UBIT \#

- Need a $\mathbf{N}=50 \mathrm{~m}+$ element array

Other Functions

First Letter of UBIT Name

- Unevenly distributed, $\mathbf{O}(\boldsymbol{n})$ worst case apply

Identity Function on UBIT \#

- Need a $\boldsymbol{N}=50 \mathrm{~m}+$ element array
- Problem: For reasonable \mathbf{N}, identity function returns something $>\boldsymbol{N}$

Other Functions

First Letter of UBIT Name

- Unevenly distributed, $\mathbf{O}(\boldsymbol{n})$ worst case apply

Identity Function on UBIT \#

- Need a $\mathbf{N}=50 \mathrm{~m}+$ element array
- Problem: For reasonable \mathbf{N}, identity function returns something > \mathbf{N}
- Solution: Cap return value of function to \mathbf{N} with modulus
- return h(x) \% N

Distribution of Person \# \% 26

Person \# \% 26 More even distribution

First letter of UBIT name

Hash Function Comparison

Person \# \% 26

More even distribution
(does rely on Person \#s being somewhat "randomly" distributed)

First letter of UBIT name

Hash Function Comparison

Picking a Hash Function

What else could we use that would evenly distribute values to locations? (assume for now we just care about distributing them...not looking them up)

Picking a Hash Function

What else could we use that would evenly distribute values to locations?
Wacky Idea: Have $h(x)$ return a random value in $[0, N)$
(This makes contains impossible...but bear with me)

Random Hash Function

$$
\begin{gathered}
n=\text { number of elements in any bucket } \\
N=\text { number of buckets } \\
b_{i, j}= \begin{cases}1 & \text { if element } i \text { is assigned to bucket } j \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Random Hash Function

$n=$ number of elements in any bucket

$$
N=\text { number of buckets }
$$

$b_{i, j}=\left\{\begin{array}{l}1 \quad \text { if element } i \text { is assigned to bucket } j\end{array}\right.$ 0 otherwise

$$
\mathbb{E}\left[b_{i, j}\right]=\frac{1}{N}
$$

Random Hash Function

$n=$ number of elements in any bucket

$N=$ number of buckets

$b_{i, j}= \begin{cases}1 & \text { if element } i \text { is assigned to bucket } j\end{cases}$ 0 otherwise

$$
\mathbb{E}\left[\sum_{i=0}^{n} b_{i, j}\right]=\frac{n}{N}
$$

Random Hash Function

$n=$ number of elements in any bucket
 $N=$ number of buckets

$b_{i, j}= \begin{cases}1 & \text { if element } i \text { is assigned to bucket } j \\ 0 & \text { otherwise }\end{cases}$
\(\left.$$
\begin{array}{l}\underset{i=0}{\text { Only true if }} \begin{array}{l}\mathrm{b}_{\mathrm{i}, \mathrm{j}} \text { and bi'j are } \\
\text { uncorrelated for any } \mathrm{i} \neq \mathrm{i},\end{array}
$$

\mathbb{E}\end{array} b_{i, j}\right]=\frac{n}{N} \xrightarrow{\)| The expected |
| :--- |
| number of elements |
| in any bucket j |$}$

Random Hash Function

$n=$ number of elements in any bucket
 $N=$ number of buckets

$b_{i, j}= \begin{cases}1 & \text { if element } i \text { is assigned to bucket } j \\ 0 & \text { otherwise }\end{cases}$

...given this information, what do the
(h(i) can't be related to h(i'))

Random Hash Function

$n=$ number of elements in any bucket
$N=$ number of buckets
$b_{i, j}= \begin{cases}1 & \text { if element } i \text { is assigned to bucket } j \\ 0 & \text { otherwise }\end{cases}$
Expected runtime of add, contains, remove: $O(n / N)$
Worst-Case runtime of add, contains, remove: $O(n)$

Hash Functions In the Real-World

Examples

- SHA256
- MD5, BCRYPT \leftarrow Used by unix login, apt
- MurmurHash3 \leftarrow Used by Scala
hash (\boldsymbol{x}) is pseudo-random
- hash (x) ~ uniform random value in [0, INT_MAX)
- hash(x) always returns the same value for the same x
- hash(x) is uncorrelated with hash(y) for all $x \neq y$

Hash Functions + Buckets

Everything is: $O\left(\frac{n}{N}\right) \quad$ Let's call $\alpha=\frac{n}{N}$ the load factor.

Hash Functions + Buckets

Everything is: $O\left(\frac{n}{N}\right) \quad$ Let's call $\alpha=\frac{n}{N}$ the load factor.
Idea: Make α a constant

Hash Functions + Buckets

Everything is: $O\left(\frac{n}{N}\right) \quad$ Let's call $\alpha=\frac{n}{N}$ the load factor.

Idea: Make α a constant
Fix an $\alpha_{\text {max }}$ and start requiring that $\alpha \leq \alpha_{\text {max }}$

Hash Functions + Buckets

Everything is: $O\left(\frac{n}{N}\right) \quad$ Let's call $\alpha=\frac{n}{N}$ the load factor.

Idea: Make α a constant
Fix an $\alpha_{\text {max }}$ and start requiring that $\alpha \leq \alpha_{\text {max }}$

What do we do when this constraint is violated?

Hash Functions + Buckets

Everything is: $O\left(\frac{n}{N}\right) \quad$ Let's call $\alpha=\frac{n}{N}$ the load factor.

Idea: Make α a constant
Fix an $\alpha_{\text {max }}$ and start requiring that $\alpha \leq \alpha_{\text {max }}$

What do we do when this constraint is violated? Resize!

