
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 30: Introduction to Hash Tables

mailto:epmikida@buffalo.edu


Announcements

● Recitations DO NOT meet this week
● Recitations DO meet next week
● PA3 out now

2



Sets

A Set is an unordered collection of unique elements.

(order doesn't matter, and at most one copy of each item)

3



Sets

A Set is an unordered collection of unique elements.

(order doesn't matter, and at most one copy of each item key)

4



The Set ADT

void add(T element)

Store one copy of element if not already present

boolean contains(T element)

Return true if element is present in the set

boolean remove(T element)

Remove element if present, or return false if not

5



Implementing Sets/Bags

6

add contains remove

ArrayList O(n) O(n) O(n)

LinkedList O(n) O(n) O(n)

Sorted ArrayList O(n) O(log(n)) O(n)

Sorted LinkedList O(n) O(n) O(n)



Implementing Sets/Bags

7

add contains remove

ArrayList O(n) O(n) O(n)

LinkedList O(n) O(n) O(n)

Sorted ArrayList O(n) O(log(n)) O(n)

Sorted LinkedList O(n) O(n) O(n)

General BST ?? ?? ??

Balanced BST ?? ?? ??



Implementing Sets/Bags

8

add contains remove

ArrayList O(n) O(n) O(n)

LinkedList O(n) O(n) O(n)

Sorted ArrayList O(n) O(log(n)) O(n)

Sorted LinkedList O(n) O(n) O(n)

General BST O(d) = O(n) O(d) = O(n) O(d) = O(n)

Balanced BST O(d) = O(log(n)) O(d) = O(log(n)) O(d) = O(log(n))



Implementing Sets/Bags

9

add contains remove

ArrayList O(n) O(n) O(n)

LinkedList O(n) O(n) O(n)

Sorted ArrayList O(n) O(log(n)) O(n)

Sorted LinkedList O(n) O(n) O(n)

General BST O(d) = O(n) O(d) = O(n) O(d) = O(n)

Balanced BST O(d) = O(log(n)) O(d) = O(log(n)) O(d) = O(log(n))

Can we improve on this even further?



Finding Items

When implementing these operations with a BST where is most of "cost" of 
each algorithm coming from?

So…let's skip the search

10



Finding Items

When implementing these operations with a BST where is most of "cost" of 
each algorithm coming from? Finding the element

So…let's skip the search
contains => find the element
add => find the insertion point, then add (the add is often O(1))
remove => find the element, then remove (the remove is often O(1))

11



Finding Items

When implementing these operations with a BST where is most of "cost" of 
each algorithm coming from? Finding the element

So…let's skip the search
contains => find the element
add => find the insertion point, then add (the add is often O(1))
remove => find the element, then remove (the remove is often O(1))

What if we could just…skip the find step?
What if we knew exactly where the element would be? 12



Assigning Bins

Which data structure has constant lookup if we know where our element is 
in a sequence? An Array

Idea: What if we could assign each record to a location in an Array

● Create and array of size N
● Pick an O(1) function to assign each record a number in [0,N)

○ ie: If our records are names, first letter of name → [0,26)

13



Assigning Bins

Which data structure has constant lookup if we know where our element is 
in a sequence? An Array

Idea: What if we could assign each record to a location in an Array

● Create and array of size N
● Pick an O(1) function to assign each record a number in [0,N)

○ ie: If our records are names, first letter of name → [0,26)

14



Assigning Bins

Which data structure has constant lookup if we know where our element is 
in a sequence? An Array

Idea: What if we could assign each record to a location in an Array

● Create and array of size N
● Pick an O(1) function to assign each record a number in [0,N)

○ ie: creating a set of movies stored by first letter of title, String →[0,26)

15



Assigning Bins

A F G H…B … Z

16



Assigning Bins

A F G H…B … Z

add("Halloween")

17



Assigning Bins

A F G H…B … Z

add("Halloween") → "Halloween"[0] == "H" == 7

Halloween

18



Assigning Bins

A F G H…B … Z

add("Halloween") → "Halloween"[0] == "H" == 7

Halloween

This computation is O(1)

19



Assigning Bins

A F G H…B … Z

add("Friday the 13th") → "Friday the 13th"[0] == "F" == 5

HalloweenFriday the 
13th

20



Assigning Bins

A F G H…B … Z

add("Get Out") → "Get Out"[0] == "G" == 6

HalloweenGet OutFriday the 
13th

21



Assigning Bins

A F G H…B … Z

add("Babadook") → "Babadook"[0] == "B" == 1

HalloweenGet OutBabadook Friday the 
13th

22



Assigning Bins

A F G H…B … Z

contains("Get Out") → "Get Out"[0] == "G" == 6

HalloweenGet OutBabadook Friday the 
13th

Find in constant time!

23



Assigning Bins

A F G H…B … Z

contains("Scream") → "Scream"[0] == "S" == 18

HalloweenGet OutBabadook Friday the 
13th

Determine that "Scream" is not in the Set in constant time!

24



Assigning Bins

A F G H…B … Z

What about: contains("Hereditary")?

HalloweenGet OutBabadook Friday the 
13th

25



Assigning Bins

A F G H…B … Z

What about: contains("Hereditary")?

HalloweenGet OutBabadook Friday the 
13th

Once we know the location, we still need to check for an exact match.

"Hereditary"[0] == "H" == 7, Array[7] != "Hereditary"

Determine that "Hereditary" is not in the Set in constant time! 26



Assigning Bins

Pros (so far…)
● O(1) add
● O(1) contains
● O(1) remove

Cons?

27



Assigning Bins

Pros (so far…)
● O(1) add
● O(1) contains
● O(1) remove

Cons
● Wasted space (4/26 slots used in the example, will we ever use "Z"?)
● Duplication (What about inserting Frankenstein)

28



Bin-Based Organization

Wasted Space
● Not ideal…but not wrong
● O(1) access time might be worth it
● Also depends on the choice of hash function

Duplication
● We need to be able to handle duplicates!

29



Bin-Based Organization

Wasted Space
● Not ideal…but not wrong
● O(1) access time might be worth it
● Also depends on the choice of hash function

Duplication
● We need to be able to handle duplicates!

What about "buckets" that can store multiple items?
30



Handling "Duplicates"

How can we store multiple items at each location?

31



Bigger Buckets

Fixed Size Buckets (B elements)

Pros
● Can deal with up to B dupes
● Still O(1) find

Cons
● What if more than B dupes?

Arbitrarily Large Buckets (List)

Pros
● No limit to number of dupes

Cons
● O(n) worst-case find

32



Assigning Bins

A F G H…B … Z

add("Frankenstein")?

HalloweenGet OutBabadook Friday the 
13th

∅ ∅ ∅ ∅… ∅ … ∅

33



Assigning Bins

A F G H…B … Z

add("Frankenstein")?

HalloweenGet OutBabadook Friday the 
13th

∅ ∅ ∅… ∅ … ∅

FFrankenstein

∅
34



Assigning Bins

A F G H…B … Z

add("Freddy vs Jason")?

HalloweenGet OutBabadook Friday the 
13th

∅ ∅ ∅… ∅ … ∅

FFrankenstein FFreddy vs 
Jason

∅
35



Assigning Bins

A F G H…B … Z

add("Final Destination")?

HalloweenGet OutBabadook Friday the 
13th

∅ ∅ ∅… ∅ … ∅

FFrankenstein FFreddy vs 
Jason FFinal 

Destination

∅
36



LinkedList Bins

Now we can handle as many duplicates as we need. But are we losing our 
constant time operations?

How many elements are we expecting to end up in each bucket?

37



LinkedList Bins

Now we can handle as many duplicates as we need. But are we losing our 
constant time operations?

How many elements are we expecting to end up in each bucket?

Depends partially on our choice of Hash Function

38



Picking a Hash Function

Required features for h(x):
● h(x) must always return the same value for the same x

Desirable features for h(x):
● Fast — should be O(1)
● "Unique" – As few duplicate bins as possible

39



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t

40



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t

An ideal hash function would distribute the 
elements to buckets perfectly evenly

contains(k) is O(1)

41



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t

An ideal hash function would distribute the 
elements to buckets perfectly evenly

contains(k) is O(1)
…but is unachievable

42



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t

43



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t Worst case is a hash function that puts all 

items in a single bucket…what would be the 
runtime of contains?

44



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t Worst case is a hash function that puts all 

items in a single bucket…what would be the 
runtime of contains?

contains(k) is O(n)

45



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t

46



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t

An almost ideal hash function would distribute the 
elements to buckets somewhat evenly

contains(k) is something like O(1)?

47



Picking a Hash Function

Buckets

El
em

en
ts

/B
uc

ke
t

An almost ideal hash function would distribute the 
elements to buckets somewhat evenly

contains(k) is something like O(1)?

…this IS achievable!

48



Example Hash Functions

First Letter of UBIT Name
● Unevenly distributed, O(n) worst case apply

49



Distribution of UBIT Names to Buckets based on first letter 50



Distribution of UBIT Names to Buckets based on first letter 51

Over 40 in the 
"a" bucket

Nothing in the 
"u" bucket



Distribution of UBIT Names to Buckets based on first letter 52

Over 40 in the 
"a" bucket

Nothing in the 
"u" bucket

How else could we decide to "hash" UB students 
that might yield a better distribution?



Other Functions

First Letter of UBIT Name
● Unevenly distributed, O(n) worst case apply

Identity Function on UBIT #
● Need a N = 50m+ element array

53



Other Functions

First Letter of UBIT Name
● Unevenly distributed, O(n) worst case apply

Identity Function on UBIT #
● Need a N = 50m+ element array
● Problem: For reasonable N, identity function returns something > N

54



Other Functions

First Letter of UBIT Name
● Unevenly distributed, O(n) worst case apply

Identity Function on UBIT #
● Need a N = 50m+ element array
● Problem: For reasonable N, identity function returns something > N
● Solution: Cap return value of function to N with modulus

○ return h(x) % N

55



Distribution of Person # % 26 56



Hash Function Comparison 57

Person # % 26
More even distribution

First letter of UBIT name



Hash Function Comparison 58

Person # % 26
More even distribution

(does rely on Person #s being 
somewhat "randomly" distributed)

First letter of UBIT name



Picking a Hash Function

What else could we use that would evenly distribute values to locations?

(assume for now we just care about distributing them…not looking them up)

59



Picking a Hash Function

What else could we use that would evenly distribute values to locations?

Wacky Idea: Have h(x) return a random value in [0,N)

(This makes contains impossible…but bear with me)

60



Random Hash Function

61



Random Hash Function

62



Random Hash Function

63



Random Hash Function

64



Random Hash Function

…given this information, what do the 
runtimes of our operations look like?65



Random Hash Function

Expected runtime of add, contains, remove: O(n/N)

Worst-Case runtime of add, contains, remove: O(n)

66



Hash Functions In the Real-World

Examples
● SHA256 ← Used by GIT
● MD5, BCRYPT ← Used by unix login, apt
● MurmurHash3 ← Used by Scala

hash(x) is pseudo-random
● hash(x) ~ uniform random value in [0, INT_MAX)
● hash(x) always returns the same value for the same x
● hash(x) is uncorrelated with hash(y) for all x ≠ y

67



Hash Functions + Buckets

68



Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated?

69



Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated?

70



Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated?

71



Hash Functions + Buckets

Idea: Make 𝛼 a constant

Fix an 𝛼max and start requiring that 𝛼 ≤ 𝛼max

What do we do when this constraint is violated? Resize!

72


