
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 33: Hash Table Use Cases
1

mailto:epmikida@buffalo.edu


Announcements

● PA3 Implementation due Sunday
● Implementation AutoLab coming soon

2



HashTables as Sets

We've now seen HashTable's as an implementation of Sets

● HashSet in Java -> Expected O(1) runtime for add, contains, remove

What about HashMap? What is a map??

3



HashTables as Sets

We've now seen HashTable's as an implementation of Sets

● HashSet in Java -> Expected O(1) runtime for add, contains, remove

What about HashMap? What is a map??

● A map IS as set. It is a set of key-value pairs!

4



HashSets vs HashMaps

A F G H…B … Z

This was an example of a HashSet that stored movie titles (with 
a bad hash function…but ignore that for now)

HalloweenGet OutBabadook Friday the 
13th

5



HashSets vs HashMaps

A F G H…B … Z

This is an example of a HashMap that stores key value pairs where the 
key is a movie title and the value is the movie object associated with that 
title

(Halloween,⃞)(Get Out,⃞)(Babadook,⃞) (Friday the 
13th,⃞)

6

name: "Babadook"
runtime: 92
year: 2014

name: "Friday the 13th"
runtime: 95
year: 1980

name: "Get Out"
runtime: 103
year: 2017

name: "Halloween"
runtime: 91
year: 1978



Data Science is Everywhere

● The Corporate World (ie MANGA)
● Open Data → Civic Computing
● Science
● Internet of Things
● …etc

7



Data is BIG

Remember: O(f(n)) tells us the behavior of an algorithm as n gets big

Real world problems are BIG → 100s of MBs, GBs, TBs or more of data
● Think about how much data Facebook, Google, etc have access to
● Recall the OpenData map of Buffalo…that was JUST Buffalo
● How many atoms in a bucket of water? How many stars in the galaxy?
● How many smart devices in this room? at UB?

8



Data is BIG

Remember: O(f(n)) tells us the behavior of an algorithm as n gets big

Real world problems are BIG → 100s of MBs, GBs, TBs or more of data
● Think about how much data Facebook, Google, etc have access to
● Recall the OpenData map of Buffalo…that was JUST Buffalo
● How many atoms in a bucket of water? How many stars in the galaxy?
● How many smart devices in this room? at UB?

Today we'll look at a few common patterns that deal with big data      (that 
will be especially useful for PA3…) 9



Usage Pattern 1 (in MANGA)

Dataset: Sales - A sequence of purchase records
● productID: Int

● date: Date

● volume: Int

Objective: Find the 100 most purchased products from the last month

10



Usage Pattern 1 (in Open Data)

Dataset: Traffic Violations - A sequence of infraction records
● blockID: Int

● infraction: InfractionType

● date: Date

Objective: Find the fraction of parking tickets that were issued in each 
block over the last year

11



Usage Pattern 1 (in Science)

Dataset: Vaccinations - Records on COVID vaccination data
● patientID: Int

● doseVolume: Double

● contractedCOVID: Boolean

Objective: Find the dosage that minimizes the rate of contracting COVID

12



Usage Pattern 1 (in IoT)

Dataset: Train Logistics - Logs related to train travel distances
● engineID: Int

● date: Date

● kmTraveledToday: Double

Objective: If a train engine must be serviced every 30,000km, determine 
which train engines currently need service

13



Usage Pattern 1

What do all these use cases have in common?

What basic task do we need to do to meet these objectives?

14



Usage Pattern 1 - Aggregation!

What do all these use cases have in common?

What basic task do we need to do to meet these objectives?

We need to aggregate data spread across multiple records with a 
common ID

15



Usage Pattern 1: Aggregation

Examples:
● "sum up __, for each __"
● "find the average __, by __"
● "count the number of __, for __"
● "what is the biggest/smallest __, for each __"

Pattern:
1. (Optionally) Group records by a common "Group By" key
2. For each group, compute a statistic (ie sum, count, avg, min, max)

16



Usage Pattern 1: Aggregation

How might we accomplish this efficiently? How much time is required?

17



Usage Pattern 1: Aggregation

An example of the aggregation pattern for the MANGA use case described previously

18

1

2

3

4

5

6

7

8

Map<Integer, Integer> groupBySum(List<SaleRecord> records) {

  HashMap<Integer, Integer> result = new HashMap<>();

  for (SaleRecord record : records) {

    result.put(record.productId,

        result.getOrDefault(record.productId, 0) + record.quantity);

  }

  return result;

}



Usage Pattern 1: Aggregation

An example of the aggregation pattern for the MANGA use case described previously

1

2

3

4

5

6

7

8

Map<Integer, Integer> groupBySum(List<SaleRecord> records) {

  HashMap<Integer, Integer> result = new HashMap<>();

  for (SaleRecord record : records) {

    result.put(record.productId,

        result.getOrDefault(record.productId, 0) + record.quantity);

  }

  return result;

}

For each record in the data set…

19



Usage Pattern 1: Aggregation

An example of the aggregation pattern for the MANGA use case described previously

1

2

3

4

5

6

7

8

Map<Integer, Integer> groupBySum(List<SaleRecord> records) {

  HashMap<Integer, Integer> result = new HashMap<>();

  for (SaleRecord record : records) {

    result.put(record.productId,

        result.getOrDefault(record.productId, 0) + record.quantity);

  }

  return result;

}

For each record in the data set…
…hash it by the desired key…

20



Usage Pattern 1: Aggregation

1

2

3

4

5

6

7

8

Map<Integer, Integer> groupBySum(List<SaleRecord> records) {

  HashMap<Integer, Integer> result = new HashMap<>();

  for (SaleRecord record : records) {

    result.put(record.productId,

        result.getOrDefault(record.productId, 0) + record.quantity);

  }

  return result;

}

An example of the aggregation pattern for the MANGA use case described previously

For each record in the data set…

…and update the value based on the desired aggregation 
operation (ie sum)

21

…hash it by the desired key…



Usage Pattern 1: Aggregation

An example of the aggregation pattern for the MANGA use case described previously

22

1

2

3

4

5

6

7

8

Map<Integer, Integer> groupBySum(List<SaleRecord> records) {

  HashMap<Integer, Integer> result = new HashMap<>();

  for (SaleRecord record : records) {

    result.put(record.productId,

        result.getOrDefault(record.productId, 0) + record.quantity);

  }

  return result;

} Complexity?



Usage Pattern 1: Aggregation

An example of the aggregation pattern for the MANGA use case described previously

23

1

2

3

4

5

6

7

8

Map<Integer, Integer> groupBySum(List<SaleRecord> records) {

  HashMap<Integer, Integer> result = new HashMap<>();

  for (SaleRecord record : records) {

    result.put(record.productId,

        result.getOrDefault(record.productId, 0) + record.quantity);

  }

  return result;

} Complexity? expected O(|data|) (each update is expected O(1))



Potential Issues

Issue 1: Data is too big to fit in memory
● ie All of Amazon or Google's users

24



Potential Issues

Issue 1: Data is too big to fit in memory
● ie All of Amazon or Google's users

Idea: Use disk for storage
● Problem: Group-by keys are not in any specific order…
● Idea: Do an initial O(n) pass to organize the data

25



Buffered Writer

Consider a BufferedWriter

It has a fixed size, we can add to it, and when it becomes full, it empties 
itself to disk…

26



Buffered Writer

Consider a BufferedWriter

It has a fixed size, we can add to it, and when it becomes full, it empties 
itself to disk…

27



Buffered Writer

Consider a BufferedWriter

It has a fixed size, we can add to it, and when it becomes full, it empties 
itself to disk…

Disk

28



Buffered Writer

Consider a BufferedWriter

It has a fixed size, we can add to it, and when it becomes full, it empties 
itself to disk…

29



Hash Partitioning

Create multiple buffered writers for specific keys…

hash(key) % N = 0

hash(key) % N = 1

hash(key) % N = N-1 30



Hash Partitioning

Create multiple buffered writers for specific keys…

hash(key) % N = 0

hash(key) % N = 1

hash(key) % N = N-1

File N-1

31



Hash Partitioning

Each writer will result in a file…and all instances of a key will be in the 
same file

O(n) total writes to disk

File 0 File 1 File 2 File N-1…

32



Hash Partitioning

Can load a single file and compute aggregate for just that file before 
moving to the next file

O(n) total reads from disk

File 0

33



Potential Issues

Issue 2: Data is too big to even fit on one computer!

Solution: Use multiple computers (distributed computation)
● Idea 1: Compute each aggregate locally, then send those partial 

results to be aggregated together
● Idea 2: Hash partition (shuffle) to each computer then compute locally

34



Usage Pattern 2 (in MANGA)

Dataset 1: Sales - A sequence of purchase records
● productID: Int

● date: Date

● volume: Int

Dataset 2: Pricing - A sequence of product IDs and their price
● productID: Int

● price: Double

Objective: Find the 100 products with the highest gross profit
35



Usage Pattern 2 (in Open Data)

Dataset 1: Traffic Violations - A sequence of infraction records
● blockID: Int

● infraction: InfractionType

● date: Date

Dataset 2: Tax Assessments - A sequence of building tax assessments
● buildingOwner: String

● blockID: Int

● assessment: Double

Objective: Plot total taxes vs number of tickets for a given block 36



Usage Pattern 2 (in Science)

Dataset 1: Trials - A sequence of vaccination doses
● patientID: Int

● doseVolume: Double

Dataset 2: Infections - A sequence COVID infection reports
● patientID: String

● date: Date

Objective: Find the dosage that minimizes the rate of contracting COVID

37



Usage Pattern 2 (in IoT)

Dataset: Train Logistics - Logs related to train travel distances
● engineID: Int
● date: Date
● kmTraveledToday: Double
● locationID: Int

Dataset 2: Locations - A list of locations with service stations
● locationID: Int
● serviceCapacity: Int

Objective: Determine if any locations have more trains in need of service 
than they have capacity for.

38



Usage Pattern 2

What do all these use cases have in common?

What basic task do we need to do to meet these objectives?

39



Usage Pattern 2: Joins

What do all these use cases have in common?

What basic task do we need to do to meet these objectives?

We need to join multiple different datasets to match up corresponding 
records in each based on some common attribute

40



Usage Pattern 2: Joins

Examples:
● "combine these datasets"
● "look up __ for each __"
● "join __ and __ on __"

Pattern:
1. For each record in one dataset…

a. Find the corresponding record(s) in the second dataset
2. Output each pair of matched records

41



Usage Pattern 2: Joins

How might we accomplish this efficiently? How much time is required?

42



1

2

3

4

5

6

7

8

9

10

11

List<Record> NLJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  List<Record> result = new ArrayList<>();

  for (SaleRecord s : sales) {

    for (ProductRecord p : prices) {

      if (s.productId == p.productId) {

        result.add(new Record(s,p));

      }

    }

  }

  return result;

}

Nested-Loop Join

43



1

2

3

4

5

6

7

8

9

10

11

List<Record> NLJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  List<Record> result = new ArrayList<>();

  for (SaleRecord s : sales) {

    for (ProductRecord p : prices) {

      if (s.productId == p.productId) {

        result.add(new Record(s,p));

      }

    }

  }

  return result;

}

Nested-Loop Join

44

For each record in the first table…

…search the second table for all records that 
match on the common key



1

2

3

4

5

6

7

8

9

10

11

List<Record> NLJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  List<Record> result = new ArrayList<>();

  for (SaleRecord s : sales) {

    for (ProductRecord p : prices) {

      if (s.productId == p.productId) {

        result.add(new Record(s,p));

      }

    }

  }

  return result;

}

Nested-Loop Join

45

For each record in the first table…

…search the second table for all records that 
match on the common key

Complexity?



1

2

3

4

5

6

7

8

9

10

11

List<Record> NLJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  List<Record> result = new ArrayList<>();

  for (SaleRecord s : sales) {

    for (ProductRecord p : prices) {

      if (s.productId == p.productId) {

        result.add(new Record(s,p));

      }

    }

  }

  return result;

}

Nested-Loop Join

46

For each record in the first table…

…search the second table for all records that 
match on the common key

Complexity? O(|sales| * |prices|)



1

2

3

4

5

6

7

8

9

10

11

List<Record> NLJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  List<Record> result = new ArrayList<>();

  for (SaleRecord s : sales) {

    for (ProductRecord p : prices) {

      if (s.productId == p.productId) {

        result.add(new Record(s,p));

      }

    }

  }

  return result;

}

Nested-Loop Join

47

For each record in the first table…

…search the second table for all records that 
match on the common key

Complexity? O(|sales| * |prices|)

Can we do better? What makes this approach so expensive?



Sort Merge Join

Idea: In merge sort, we saw that the combine step only cost O(n) because 
the two pieces were already sorted…

48



Sort Merge Join

49

1

2

3

4

5

6

7

8

9

10

11

12

List<Record> SMJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  List<Record> result = new ArrayList<>();

  Collections.sort(sales);

  Collections.sort(prices);

  /* Initialize iterators to the start of both lists */

  while (/* More items in both lists */) {

    /* If the current ID in each iterator matches, add to result */

    /* If not, advance whichever iterator points to the smallest ID */

  }

  return result;

}



Sort Merge Join

50

1

2

3

4

5

6

7

8

9

10

11

12

List<Record> SMJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  List<Record> result = new ArrayList<>();

  Collections.sort(sales);

  Collections.sort(prices);

  /* Initialize iterators to the start of both lists */

  while (/* More items in both lists */) {

    /* If the current ID in each iterator matches, add to result */

    /* If not, advance whichever iterator points to the smallest ID */

  }

  return result;

}

Sort both lists by the join key…



Sort Merge Join

51

1

2

3

4

5

6

7

8

9

10

11

12

List<Record> SMJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  List<Record> result = new ArrayList<>();

  Collections.sort(sales);

  Collections.sort(prices);

  /* Initialize iterators to the start of both lists */

  while (/* More items in both lists */) {

    /* If the current ID in each iterator matches, add to result */

    /* If not, advance whichever iterator points to the smallest ID */

  }

  return result;

}

Perform a variation of merge on 
both lists to build result



Sort Merge Join

52

1

2

3

4

5

6

7

8

9

10

11

12

List<Record> SMJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  List<Record> result = new ArrayList<>();

  Collections.sort(sales);

  Collections.sort(prices);

  /* Initialize iterators to the start of both lists */

  while (/* More items in both lists */) {

    /* If the current ID in each iterator matches, add to result */

    /* If not, advance whichever iterator points to the smallest ID */

  }

  return result;

}

Perform a variation of merge on 
both lists to build result

Complexity?



Sort Merge Join

53

1

2

3

4

5

6

7

8

9

10

11

12

List<Record> SMJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  List<Record> result = new ArrayList<>();

  Collections.sort(sales);

  Collections.sort(prices);

  /* Initialize iterators to the start of both lists */

  while (/* More items in both lists */) {

    /* If the current ID in each iterator matches, add to result */

    /* If not, advance whichever iterator points to the smallest ID */

  }

  return result;

}

Perform a variation of merge on 
both lists to build result

Complexity? O(n log(n))...but we can still do better



Hash Join

Final Idea: How can we skip the "search" for common keys?

54



Hash Join

Final Idea: How can we skip the "search" for common keys? A HashTable!

55



Hash Join

56

1

2

3

4

5

6

7

8

9

10

11

12

13

List<Record> hashJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  HashMap<Integer, ProductRecord> priceTable = new HashMap<>();

  for (ProductRecord p : prices) { 

    priceTable.put(productId, p);

  }

  List<Record> result = new ArrayList<>();

  for (SaleRecord s : sales) {

    if (priceTable.containsKey(s.productId)) {

      result.add(new Record(s, priceTable.get(s.productId));

    }

  }

  return result;

}



Hash Join

57

1

2

3

4

5

6

7

8

9

10

11

12

13

List<Record> hashJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  HashMap<Integer, ProductRecord> priceTable = new HashMap<>();

  for (ProductRecord p : prices) { 

    priceTable.put(productId, p);

  }

  List<Record> result = new ArrayList<>();

  for (SaleRecord s : sales) {

    if (priceTable.containsKey(s.productId)) {

      result.add(new Record(s, priceTable.get(s.productId));

    }

  }

  return result;

}

Build a hash table for the first dataset…



Hash Join

58

1

2

3

4

5

6

7

8

9

10

11

12

13

List<Record> hashJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  HashMap<Integer, ProductRecord> priceTable = new HashMap<>();

  for (ProductRecord p : prices) { 

    priceTable.put(productId, p);

  }

  List<Record> result = new ArrayList<>();

  for (SaleRecord s : sales) {

    if (priceTable.containsKey(s.productId)) {

      result.add(new Record(s, priceTable.get(s.productId));

    }

  }

  return result;

}

Build a hash table for the first dataset…

…then for each element in the second dataset, probe the HashTable to find matches
(in expected O(1) time per record)



Hash Join

59

1

2

3

4

5

6

7

8

9

10

11

12

13

List<Record> hashJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  HashMap<Integer, ProductRecord> priceTable = new HashMap<>();

  for (ProductRecord p : prices) { 

    priceTable.put(productId, p);

  }

  List<Record> result = new ArrayList<>();

  for (SaleRecord s : sales) {

    if (priceTable.containsKey(s.productId)) {

      result.add(new Record(s, priceTable.get(s.productId));

    }

  }

  return result;

}

Build a hash table for the first dataset…

…then for each element in the second dataset, probe the HashTable to find matches
(in expected O(1) time per record)

Complexity?



Hash Join

60

1

2

3

4

5

6

7

8

9

10

11

12

13

List<Record> hashJoin(List<SaleRecord> sales, List<ProductRecord> prices) {

  HashMap<Integer, ProductRecord> priceTable = new HashMap<>();

  for (ProductRecord p : prices) { 

    priceTable.put(productId, p);

  }

  List<Record> result = new ArrayList<>();

  for (SaleRecord s : sales) {

    if (priceTable.containsKey(s.productId)) {

      result.add(new Record(s, priceTable.get(s.productId));

    }

  }

  return result;

}

Build a hash table for the first dataset…

…then for each element in the second dataset, probe the HashTable to find matches
(in expected O(1) time per record)

Complexity? expected O(|prices| + |sales|)



Potential Issues

Issue 1: Too much data to fit in memory
● Solution: Hash Partition both datasets on the join key

Issue 2: Too much data to fit on one computer
● Solution 1: Hash Partition both datasets on the join key
● Solution 2: Send only relevant data using a Bloom Filter…

61



For More Info…

CSE 305: How to build compilers / languages that can easily express 
common data science patterns

CSE 460: How to organize data to make it easier to find, and apply tricks to 
make common data science patterns more efficient

CSE 462: How to build systems that automatically pick the best data 
structure/algorithm for each data science pattern

CSE 486: How to build systems that do these computations at scale

62


