
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 34: Spatial Data Structures (pt 1)

mailto:epmikida@buffalo.edu

Announcements

● PA3 due Sunday (AutoLab is up and running)
● Course Evaluations are Open! TA evaluations are as well!

○ If 85% of the class does the course evaluation, we will release an exam
question early

○ See Piazza for details, void where prohibited

2

Some Problems are REALLY Big

ESA/Hubble and NASA: http://www.spacetelescope.org/images/potw1006a/ 3

http://www.spacetelescope.org/images/potw1006a/

Some Problems are REALLY Small

Molecular Dynamics Simulation of Liquid Water
https://commons.wikimedia.org/wiki/File:A_Molecular_Dynamics_Simulation_of_Liquid_Water_at_298_K.webm

4

https://commons.wikimedia.org/wiki/File:A_Molecular_Dynamics_Simulation_of_Liquid_Water_at_298_K.webm

Some Problems are REALLY Detailed

This is NOT a photo. It is a
computer generated image.

https://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29#/media/File:Glasses_800_edit.png
5

https://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29#/media/File:Glasses_800_edit.png

What do these things have in common?

6

What do these things have in common?

The have MANY elements (celestial bodies, molecules, mesh cells, etc)
which are organized spatially

What "bodies" (other planets, molecules, etc) are close to each other?

Which object(s) will a ray of light bounce/projectile hit?

What points are closest to a given point?

Which points fall within a given range?

How can we organize these elements in a way that allows us to efficiently
answer these questions?

7

What do these things have in common?

The have MANY elements (celestial bodies, molecules, mesh cells, etc)
which are organized spatially

What "bodies" (other planets, molecules, etc) are close to each other?

Which object(s) will a ray of light bounce/projectile hit?

What objects are closest to a given point?

Which objects fall within a given range?

How can we organize these elements in a way that allows us to efficiently
answer these questions?

8

What do these things have in common?

The have MANY elements (celestial bodies, molecules, mesh cells, etc)
which are organized spatially

What "bodies" (other planets, molecules, etc) are close to each other?

Which object(s) will a ray of light bounce/projectile hit?

What objects are closest to a given point?

Which objects fall within a given range?

How can we organize these elements in a way that allows us to efficiently
answer these questions?

9

Related Problems

Mapping
● What’s within ½ mile of me?
● What’s within 2 minutes of my route?

Games
● What objects are close enough that they might need to be rendered?

Science
● “Big Brain Project”: Neuron A fired, so what other neurons are close enough to be

stimulated?
● "Astronomy"/"MD": What forces are affecting a particular body, and what forces

can we ignore/estimate?

10

Organizing/Storing Our Data

Can we use a HashTable to allow us to efficiently answer these questions?

Idea: What if we organize our data in a BST

11

Organizing/Storing Our Data

Can we use a HashTable to allow us to efficiently answer these questions?

No. HashTables help us find EXACT matches very quickly, but these types
of questions are not looking for exact matches. HashTables do not keep

our data "organized".

Idea: What if we organize our dta in a BST

12

Organizing/Storing Our Data

What data structure have we seen already that lets us efficiently
organize/store "sorted" data?

Idea: What if we organize our data in a BST

13

Organizing/Storing Our Data

What data structure have we seen already that lets us efficiently
organize/store "sorted" data?

Idea: What if we organize our data in a BST

14

Binary Search Trees (for one dimension)

Insert

● Find the right spot: O(d)
● Create and insert the node: O(1)

Find

● Find the right node: O(d)
● Return the value if it is present: O(1)

If the tree is balanced, O(d) = O(log(n))

64

56 77

5848 9370

15

Multiple Dimensions

This worked for 1-dimensional data…How could we change it to work with
2-dimensional data, ie (x,y) coordinates?

16

Multiple Dimensions

Goal: Create a data structure that
can answer:

1. Find points with a specific x
coordinate

2. Find me points with a specific
y coordinate

3. Find me points with a specific
(x,y) coordinate

17

Multiple Dimensions

Goal: Create a data structure that
can answer:

1. Find points with a specific x
coordinate

2. Find me points with a specific
y coordinate

3. Find me points with a specific
(x,y) coordinate

Idea 1: BST over x coordinates
- 2 is O(n)
- 3 is O(log(n) + |points with same x|)

18

Multiple Dimensions

Goal: Create a data structure that
can answer:

1. Find points with a specific x
coordinate

2. Find me points with a specific
y coordinate

3. Find me points with a specific
(x,y) coordinate

Idea 1: BST over x coordinates
- 2 is O(n)
- 3 is O(log(n) + |points with same x|)

Idea 2: BST over y coordinates
- 1 is O(n)
- 3 is O(log(n) + |points with same y|)

19

Multiple Dimensions

Goal: Create a data structure that
can answer:

1. Find points with a specific x
coordinate

2. Find me points with a specific
y coordinate

3. Find me points with a specific
(x,y) coordinate

Idea 1: BST over x coordinates
- 2 is O(n)
- 3 is O(log(n) + |points with same x|)

Idea 2: BST over y coordinates
- 1 is O(n)
- 3 is O(log(n) + |points with same y|)

Idea 3: BST over x, then y (lexical order)
- 2 is still O(n)

20

Why did it fail?

Ideas 1 & 2

BST works by grouping “nearby”
values together in the same
subtree….

… but “near” in one dimension
says nothing about the other!

Idea 3

BST works by partitioning the
data…

… but lexical order partitions fully
on one dimension before
partitioning on the other.

21

Instead of Partitioning on One Dimension…

Possible Values
(one dimension)

Left subtree
(Smaller values)

Right subtree
(Bigger values)

22

Attempt 1 - Partition on BOTH dimensions

Po
ss

ib
le

 V
al

ue
s

(d
im

en
si

on
 2

)
HH subtreeLH subtree

LL subtree HL subtree

23Possible Values
(dimension 1)

Attempt 1 - Partition on BOTH dimensions

5,4

24

Attempt 1 - Partition on BOTH dimensions

5,4

25
insert((9,5))?

Attempt 1 - Partition on BOTH dimensions

5,4

9,5

26
insert((9,5))

empty trees shown to emphasize which
child we inserted to

Attempt 1 - Partition on BOTH dimensions

5,4

9,5

27
insert((8,3))?

Attempt 1 - Partition on BOTH dimensions

5,4

9,58,3

28
insert((8,3))

Attempt 1 - Partition on BOTH dimensions

5,4

9,5

6,7

8,3

29
insert((6,7))

Attempt 1 - Partition on BOTH dimensions

5,4

3,8 9,5

6,7

8,3

30
insert((3,8))

Attempt 1 - Partition on BOTH dimensions

5,4

3,8 9,5

1,7 6,7

8,3

31
insert((1,7))

Attempt 1 - Partition on BOTH dimensions

5,4

3,8 9,5

4,91,7 6,7

8,3

32
insert((4,9))

Attempt 1 - Partition on BOTH dimensions

5,4

3,8 9,5

4,91,7 6,7

8,3

33
Where would (7,8) go?

Attempt 1 - Partition on BOTH dimensions

5,4

3,8 9,5

4,91,7 6,7

8,3

34
Where would (7,8) go?

7 > 5
 8 > 4

Attempt 1 - Partition on BOTH dimensions

5,4

3,8 9,5

4,91,7 6,7

8,3

35
Where would (7,8) go?

7 > 5
 8 > 4

7 < 9
 8 > 5

Attempt 1 - Partition on BOTH dimensions

5,4

3,8 9,5

4,91,7 6,7

8,3

36
Where would (7,8) go?

7 > 5
 8 > 4

7 < 9
 8 > 5

7,8
7 < 6
 8 > 7

(7,8)

Quadary Trees

“Binary” Search Tree
● Bin - Prefix meaning “2”
● Each node has (at most) 2 children

“Quadary” Search Tree
● Quad - Prefix meaning 4
● Each node has (at most) 4 children
● Usually say: “Quad-Tree” instead

37

Quad Trees - Find Node

38

1

2

3

4

5

6

7

8

9

10

11

public QuadNode findNode(QuadNode root, Integer x, Integer y) {

 if (root == null || root.x == x && root.y == y) { return root; }

 if (x < root.x) {

 if (y < root.y) return findNode(root.llChild, x, y);

 else return findNode(root.lhChild, x, y);

 } else {

 if (y < root.y) return findNode(root.hlChild, x, y);

 else return findNode(root.hhChild, x, y);

 }

}

Quad Trees - Find Node

39

1

2

3

4

5

6

7

8

9

10

11

public QuadNode findNode(QuadNode root, Integer x, Integer y) {

 if (root == null || root.x == x && root.y == y) { return root; }

 if (x < root.x) {

 if (y < root.y) return findNode(root.llChild, x, y);

 else return findNode(root.lhChild, x, y);

 } else {

 if (y < root.y) return findNode(root.hlChild, x, y);

 else return findNode(root.hhChild, x, y);

 }

}

Complexity?

Quad Trees - Find Node

40

1

2

3

4

5

6

7

8

9

10

11

public QuadNode findNode(QuadNode root, Integer x, Integer y) {

 if (root == null || root.x == x && root.y == y) { return root; }

 if (x < root.x) {

 if (y < root.y) return findNode(root.llChild, x, y);

 else return findNode(root.lhChild, x, y);

 } else {

 if (y < root.y) return findNode(root.hlChild, x, y);

 else return findNode(root.hhChild, x, y);

 }

}

Complexity? O(d)

Quad Trees - Other Operations

What if I want to find a range of points instead of just one point?

range(xlow, xhigh, ylow, yhigh)

● …?

41

Attempt 1 - Partition on BOTH dimensions

5,4

3,8 9,5

4,91,7 6,7

8,3

42
range(4,7,4.5,7.5)?

Attempt 1 - Partition on BOTH dimensions

5,4

3,8 9,5

4,91,7 6,7

8,3

43
range(4,7,4.5,7.5)?

Do I need to search all subtrees?

Attempt 1 - Partition on BOTH dimensions

5,4

3,8 9,5

4,91,7 6,7

8,3

44
range(4,7,4.5,7.5)?

Do I need to search all subtrees? NO!

Attempt 1 - Partition on BOTH dimensions

5,4

3,8 9,5

4,91,7 6,7

8,3

45
range(4,7,4.5,7.5)?

✗ ✗✗ ✗ ✗The greyed out
subtrees don't
intersect my
search range so I
can ignore them!

✗ ✗✗

Quad Trees - Range

46

1

2

3

4

5

6

7

8

9

public void range(QuadNode root, Rectangle target, List<QuadNode> list) {

 if (root == null || !target.intersects(root.region)) { return; }

 if (target.contains(root.x, root.y)) { list.add(root); }

 range(root.llChild, target, list);

 range(root.lhChild, target, list);

 range(root.hlChild, target, list);

 range(root.hhChild, target, list);

}

Quad Trees - Range

47

1

2

3

4

5

6

7

8

9

public void range(QuadNode root, Rectangle target, List<QuadNode> list) {

 if (root == null || !target.intersects(root.region)) { return; }

 if (target.contains(root.x, root.y)) { list.add(root); }

 range(root.llChild, target, list);

 range(root.lhChild, target, list);

 range(root.hlChild, target, list);

 range(root.hhChild, target, list);

}

If root does not exist, or the
region it belongs to does not
intersect our target area, we can
ignore it!

The region a node belongs to can be set when the node is inserted into the tree

Quad Trees - Range

48

1

2

3

4

5

6

7

8

9

public void range(QuadNode root, Rectangle target, List<QuadNode> list) {

 if (root == null || !target.intersects(root.region)) { return; }

 if (target.contains(root.x, root.y)) { list.add(root); }

 range(root.llChild, target, list);

 range(root.lhChild, target, list);

 range(root.hlChild, target, list);

 range(root.hhChild, target, list);

}

Otherwise…if the root is in the
target region, add it to the list of
nodes and…

The region a node belongs to can be set when the node is inserted into the tree

Quad Trees - Range

49

1

2

3

4

5

6

7

8

9

public void range(QuadNode root, Rectangle target, List<QuadNode> list) {

 if (root == null || !target.intersects(root.region)) { return; }

 if (target.contains(root.x, root.y)) { list.add(root); }

 range(root.llChild, target, list);

 range(root.lhChild, target, list);

 range(root.hlChild, target, list);

 range(root.hhChild, target, list);

}

…recursively explore it's children

The region a node belongs to can be set when the node is inserted into the tree

Quad Trees - Challenges

50

Quad Trees - Challenges

Creating a balanced Quad Tree is hard
● Impossible to always split elements evenly

across all four subtrees
(though depth = O(log(n)) still possible)

Worst Case:
No possible way to create nodes
with >2 nonempty subtrees

51

Quad Trees - Challenges

Creating a balanced Quad Tree is hard
● Impossible to always split elements evenly

across all four subtrees
(though depth = O(log(n)) still possible)

Keeping the quad tree balanced after updates
is significantly harder
● No “simple” analog for rotate left/right.

Worst Case:
No possible way to create nodes
with >2 nonempty subtrees

52

Quad Trees - Challenges

Problem: Every node has 4 children!

53

Revisiting Lexical Order

Problem: Searches on lexical order partitions all of one dimension first

(ie fully partitions based on the yellow dimension first, then blue)

54

Revisiting Lexical Order

Idea: Alternate dimensions

(ie partition a little bit on yellow dimension, then a
little bit on blue, then a little on yellow, etc…)

55

k-D Tree Example

10,4
Nodes at level 1 will
partition on the first
dimension, x

Smaller x
values will go
to the left

Larger x
values will go
to the right

56

k-D Tree Example - insert(5,4)

10,4

5,4

5 < 10, so insert into the
left subtree

(5,4) is at level 2 so it will
partition it's children on
the second dimension, y

x < 10, y < 4

x < 10, y > 4

57

k-D Tree Example - insert(1,6)

10,4

5,4

1,6

1 < 10, so insert into
the left subtree

6 > 4 so insert into
the right subtree

(1,6) is at level 3 so it will
partition it's children on
the first dimension, x

58

k-D Tree Example - insert(19,10)

10,4

5,4 19, 10

1,6

59

k-D Tree Example - insert(9,1)

10,4

5,4 19, 10

9,1 1,6

60

k-D Tree Example - insert(16,15)

10,4

5,4 19, 10

9,1 1,6 16,15

61

k-D Tree Example - insert(13,6)

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

62

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public KDNode findNode(KDNode root, Integer x, Integer y) {

 KDNode current = root;

 Integer depth = 0;

 while (current != null && (current.x != x || current.y != y)) {

 if(depth % 2 == 0) {

 if(x < current.x) { current = current.left; }

 else { current = current.right; }

 } else {

 if(y < current.y) { current = current.left; }

 else { current = current.right; }

 }

 depth += 1;

 }

 return current

}

63k-D Trees - Find Node

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public KDNode findNode(KDNode root, Integer x, Integer y) {

 KDNode current = root;

 Integer depth = 0;

 while (current != null && (current.x != x || current.y != y)) {

 if(depth % 2 == 0) {

 if(x < current.x) { current = current.left; }

 else { current = current.right; }

 } else {

 if(y < current.y) { current = current.left; }

 else { current = current.right; }

 }

 depth += 1;

 }

 return current

}

64k-D Trees - Find Node

If depth is even, act like a BST that
partitions on x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public KDNode findNode(KDNode root, Integer x, Integer y) {

 KDNode current = root;

 Integer depth = 0;

 while (current != null && (current.x != x || current.y != y)) {

 if(depth % 2 == 0) {

 if(x < current.x) { current = current.left; }

 else { current = current.right; }

 } else {

 if(y < current.y) { current = current.left; }

 else { current = current.right; }

 }

 depth += 1;

 }

 return current

}

65k-D Trees - Find Node

Complexity?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

public KDNode findNode(KDNode root, Integer x, Integer y) {

 KDNode current = root;

 Integer depth = 0;

 while (current != null && (current.x != x || current.y != y)) {

 if(depth % 2 == 0) {

 if(x < current.x) { current = current.left; }

 else { current = current.right; }

 } else {

 if(y < current.y) { current = current.left; }

 else { current = current.right; }

 }

 depth += 1;

 }

 return current

}

66k-D Trees - Find Node

Complexity? O(d)

Nearest Neighbor

What if we want to find the closest point to our target?

Problem: Can't just do normal find; the target may not be in the tree at all

Idea: Search like normal until we hit a leaf, then go back up the tree and
see if there's a possibility we missed something.

67

Nearest Neighbor

What if we want to find the closest point to our target?

Problem: Can't just do normal find; the target may not be in the tree at all

Idea: Search like normal until we hit a leaf, then go back up the tree and
see if there's a possibility we missed something.

68

Nearest Neighbor

What if we want to find the closest point to our target?

Problem: Can't just do normal find; the target may not be in the tree at all

Idea: Search like normal until we hit a leaf, then go back up the tree and
see if there's a possibility we missed something.

69

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

What point is
closest to (3, 8)

70

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

What point is
closest to (3, 8)

3 < 10, go left

71

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

What point is
closest to (3, 8)

3 < 10, go left

8 > 4, go right

72

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

What point is
closest to (3, 8)

3 < 10, go left

8 > 4, go right

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target 73

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

What point is
closest to (3, 8)

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

Now we must go back up the
tree to make sure there isn't a

closer point!

74

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

What point is
closest to (3, 8)

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

Is it possible for something in
the other child of 5,4 to be

closer?

75

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

Is it possible for something in
the other child of 5,4 to be

closer?No! Look at the area
defined our target and our
current best.

76

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

Is it possible for something in
the other child of 5,4 to be

closer?

It does not reach the splitting line
that partitions the children of 5,4,
so nothing in the other child can
be closer

77

No! Look at the area
defined our target and our
current best.

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

Moving up to 10,4 is it
possible that a closer point is

in it's other child?

78

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

Moving up to 10,4 is it
possible that a closer point is

in it's other child?
No! Same logic applies. Our
current best radius does not
reach the splitting line

79

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

We've reached the root, so the
closest point is (1,6)!

80

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

What is the closest
point to (11,9)?

81

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

As before we travel
down to a leaf and
treat that as our
current best

82

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

As before we travel
down to a leaf and
treat that as our
current best

This also defines
our current
search radius

83

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

As we travel back up
the tree, do we need
to check the other
child of 19,10?

84

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

As we travel back up
the tree, do we need
to check the other
child of 19,10?

Yes! The splitting line
intersects our current
radius!

85

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

When we check the
other child tree, we do
find a closer point so
we can update our
radius.

86

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

Now we are back at
the root…do we need
to check the left
subtree?

87

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

Now we are back at
the root…do we need
to check the left
subtree?

Yes :(
Our search radius intersects with the
splitting line, so it's possible there are
points in the other subtree closer to us…

 ? ?
 ? ?
 ??
 ?

88

Generalization: k-Nearest Neighbors

Finding one point can be as fast as O(log(n)), but as slow as O(n)...

What if we want to find the k-Nearest Neighbors instead?

Idea: Keep a list of the k-nearest points, and the furthest point defines our
"search radius"

89

k-D Trees

Can generalize to k>2 dimensions
○ Depth 0: Partition on Dimension 0
○ Depth 1: Partition on Dimension 1
○ …
○ Depth k-1: Partition on Dimension k-1
○ Depth k: Partition on Dimension 0
○ Depth k+1: Partition on Dimension 1
○ Depth i: Partition on Dimension (i mod k)

In practice, range() and knn() become ~ O(n) for k > 3
○ If a subtree’s range overlaps with the target in even one dimension, we

need to search it. (Curse of Dimensionality)

The name k-D tree comes from
this generalization

(k-Dimensional Tree)

90

https://en.wikipedia.org/wiki/Curse_of_dimensionality

