
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 250
Data Structures

Lec 35: Spatial Data Structures (pt 2)

mailto:epmikida@buffalo.edu


Announcements

● PA3 due Sunday
● Do your course (and TA) evaluations!

2



Some Problems are REALLY Big

ESA/Hubble and NASA: http://www.spacetelescope.org/images/potw1006a/ 3

http://www.spacetelescope.org/images/potw1006a/


Some Problems are REALLY Small

Molecular Dynamics Simulation of Liquid Water 
https://commons.wikimedia.org/wiki/File:A_Molecular_Dynamics_Simulation_of_Liquid_Water_at_298_K.webm 

4

https://commons.wikimedia.org/wiki/File:A_Molecular_Dynamics_Simulation_of_Liquid_Water_at_298_K.webm


Some Problems are REALLY Detailed

This is NOT a photo. It is a 
computer generated image.

https://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29#/media/File:Glasses_800_edit.png 
5

https://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29#/media/File:Glasses_800_edit.png


Summary from Last Time

● We used Quad Trees and k-D Trees to organize multidimensional 
points of data (ie (x,y) coordinates)

● To find points in either data structure, we could search in the same 
way we would search a BST, with small tweaks to handle >1 dimension
○ Quad Trees have 4 children per node to handle 2 dimensions
○ k-D Trees still have 2 children per node, but alternate which dimension is 

used to partition the data at each level of the tree
● Basic searching was therefore O(d) (O(log(n)) if trees are balanced)

6



Summary from Last Time

● We also looked at more complex questions we could as: what points 
fall within a given range, what points are closest to a target point

● Common theme: prune the search space as much as we can
○ In both cases we could come up with an O(1) check to determine whether 

we needed to explore a subtree further
○ This means in some scenarios we can ignore large parts of the tree

● Depending on the data and structure of the tree, these searches can be 
done in O(log(n)) if they can ignore significant parts of the tree

7



Summary from Last Time

● We also looked at more complex questions we could as: what points 
fall within a given range, what points are closest to a target point

● Common theme: prune the search space as much as we can
○ In both cases we could come up with an O(1) check to determine whether 

we needed to explore a subtree further
○ This means in some scenarios we can ignore large parts of the tree

● Depending on the data and structure of the tree, these searches can be 
done in O(log(n)) if they can ignore significant parts of the tree

8

We'll see this more today as well!



Other Problems: N-Body Problem

What if we want to compute interactions between one body and every 
other body? How long would we expect that to take?

9



Other Problems: N-Body Problem

What if we want to compute interactions between one body and every 
other body? How long would we expect that to take?

Naively, this would take O(n2)...but likely we don't care as much about 
interactions with bodies that are very very far away.

10



Other Problems: N-Body Problem

Idea: Divide our points into a 
quadtree (or octree in 3 dimensions)

Do full calculation for points closeby 
(in the same box)

Compute a summary (ie total force 
and center of mass) for each box 
that can be applied to far away 
boxes

A point here

has very little 
effect on a 
point over 

here…

Target runtime: ~O(nlog(n)) 11



Example

This diagram contains 10 bodies interacting with one another…

O(n2) = ~100 interactions (arrows)

12



Example

This diagram contains 10 bodies interacting with one another…

O(n2) = ~100 interactions (arrows)

Idea: Estimate the interactions between far away points

13



Example

This diagram contains 10 bodies interacting with one another…

O(n2) = ~100 interactions (arrows)

Idea: Estimate the interactions between far away points

14

How can we do this systematically?



Quad/Oct Trees Revisited

Idea: Let's organize the data (spatially) in a tree structure
● 2D space → use a quad tree
● 3D space → use an oct tree (each node has at most 8 children)

Unlike last time, let's partition the space we are simulating, rather than 
the points in the space

15



Space Partitioning - 2D Example

Create a quad-tree by recursively 
partitioning the space

● Divide the space evenly until there 
is only one element per partition

● Internal tree nodes represent the 
partitions, leaves are the actual 
elements

16



Space Partitioning - 2D Example

Create a quad-tree by recursively 
partitioning the space

● Divide the space evenly until there 
is only one element per partition

● Internal tree nodes represent the 
partitions, leaves are the actual 
elements

17



Space Partitioning - 2D Example

Create a quad-tree by recursively 
partitioning the space

● Divide the space evenly until there 
is only one element per partition

● Internal tree nodes represent the 
partitions, leaves are the actual 
elements

18



Space Partitioning - 2D Example

Create a quad-tree by recursively 
partitioning the space

● Divide the space evenly until there 
is only one element per partition

● Internal tree nodes represent the 
partitions, leaves are the actual 
elements

19



Space Partitioning - 2D Example

20



Space Partitioning - 2D Example

21



Space Partitioning - 2D Example

22

∅ ∅



Space Partitioning - 2D Example

23

∅ ∅

∅



Space Partitioning - 2D Example

24

(x1,y1)
m1

(x3,y3)
m3

(x2,y2)
m2

(x4,y4)
m4

∅ ∅

∅

For each internal node, we can compute the center of mass 
and total mass



Barnes-Hut Algorithm (simplified)

25

(x1,y1)
m1

(x3,y3)
m3

(x2,y2)
m2

(x4,y4)
m4

∅ ∅

∅

Now to use the tree:

For a body with coordinates (xb, yb):

1. Start at the root
2. If (x1, y1) is "far" from (xb, yb) then 

just treat it as a single body with 
mass m1, no need to "open the box"

3. If it is "close", then repeat this 
process with the children…What's in 
the box?

close to (xb, yb)?



Barnes-Hut Algorithm (simplified)

So what is considered "far", and what is considered "close"
● Find the ratio s/d where s is the width of the region 

in question and d is the distance from the body to 
the center of mass of that region

● Pick a threshold, 𝜃
○ If s/d > 𝜃 then we are close enough to check children in more detail
○ If s/d < 𝜃 then we are far away and can treat the region as a single body

● Larger 𝜃 means more fudging the numbers, but faster execution (~O(n log n) 
to process all n bodies)

● 𝜃 = 0 means finding an exact answer, but at a cost of O(n2) 26

d

s



Trees as a Hierarchy

In the n-body problem, we used a tree to hierarchically organize our data
● When using this hierarchy, for each internal node we could decide 

whether or not to explore further with a very cheap O(1) check
○ This allows us to avoid checking all n elements in a systematic fashion
○ We saw a similar idea with range() and nearestNeighbor() last time

● This style of algorithm has other applications as well

27



Other Problems: Ray/Path Tracing

Which object does this ray of light hit?
Do we have to check every single object?
How can we organize these objects?

28



Other Problems: Ray/Path Tracing

Idea: Build a hierarchy of bounding boxes
(BVH - Bounding volume hierarchy)

29



Other Problems: Ray/Path Tracing

Idea: Build a hierarchy of bounding boxes
(BVH - Bounding volume hierarchy)

30



Other Problems: Ray/Path Tracing

Idea: Build a hierarchy of bounding boxes
(BVH - Bounding volume hierarchy)

31



Other Problems: Ray/Path Tracing

32

Idea: Build a hierarchy of bounding boxes
(BVH - Bounding volume hierarchy)



Other Problems: Ray/Path Tracing

33

These bounding boxes form a tree…
We can check if the ray intersects a bounding box.

If it does, explore its children.
If not, ignore it.



Other Problems: Ray/Path Tracing

34

These bounding boxes form a tree…
We can check if the ray intersects a bounding box.

If it does, explore its children.
If not, ignore it.

?



Other Problems: Ray/Path Tracing

35

These bounding boxes form a tree…
We can check if the ray intersects a bounding box.

If it does, explore its children.
If not, ignore it.

✓



Other Problems: Ray/Path Tracing

36

These bounding boxes form a tree…
We can check if the ray intersects a bounding box.

If it does, explore its children.
If not, ignore it.

✓

? ?



Other Problems: Ray/Path Tracing

37

These bounding boxes form a tree…
We can check if the ray intersects a bounding box.

If it does, explore its children.
If not, ignore it.

✓

✓ ✗



Other Problems: Ray/Path Tracing

38

These bounding boxes form a tree…
We can check if the ray intersects a bounding box.

If it does, explore its children.
If not, ignore it.

✓

✓ ✗

? ?



Other Problems: Ray/Path Tracing

39

These bounding boxes form a tree…
We can check if the ray intersects a bounding box.

If it does, explore its children.
If not, ignore it.

✓

✓ ✗

✓ ✓



Other Problems: Ray/Path Tracing

40

These bounding boxes form a tree…
We can check if the ray intersects a bounding box.

If it does, explore its children.
If not, ignore it.

✓

✓ ✗

✓ ✓✓



Other Problems: Ray/Path Tracing

41

● By using a bounding-volume hierarchy, we can avoid checking all n 
objects for collisions
○ When we are projecting millions+ rays of light, this is a huge savings

● In practice, we hope to end up with a runtime of ~O(m log n) where m 
is the number of rays and n is the number of objects
○ This depends on how effectively we can build our BVH

● In both ray tracing and Barnes-Hut, the exact structure of the hierarchy 
will vary based on the specific data we are using



Taking it a Step Further

The data in these problems can get HUGE…

What if it gets so big we can't fit all the data on one computer? Or even if we 
could, it would take forever to compute?

42



Taking it a Step Further

The data in these problems can get HUGE…

What if it gets so big we can't fit all the data on one computer? Or even if we 
could, it would take forever to compute?

Distribute the data (and computation) across multiple computers!

43



An Example from my Past

ChaNGa (the Charm++ N-Body Gravity solver)
● Uses Barnes-Hut to simulate various cosmological phenomena
● Breaks up the Oct-Tree across multiple compute cores
● Has been run on at least 512,000 cores (as of 2015)

44http://faculty.washington.edu/trq/hpcc/homepage/picture/picture.html 

This image took 100,000 core-hours to simulate! →

This video simulated over 50 million particles

http://faculty.washington.edu/trq/hpcc/homepage/picture/picture.html
http://faculty.washington.edu/trq/hpcc/nbody/cosmo/dwf1.mpg


More Details

If that kind of stuff seems interesting to you:

● CSE 429 - Algorithms for modern architectures
● CSE 470 - Parallel and Distributed Processing
● CSE 486 - Distributed computing
● CSE 633 - Parallel Algorithms

45



High-Level Summary

● We've seen both trees and hash tables as effective ways to organize 
our data if we know we are going to be searching it often

● HashTables can be great for exact lookups
○ Think PA3: you may want to lookup a person with an exact (bday, zipcode) 

pair, and HashTable lets you do that very fast
● Trees and tree like structures work very well for "fuzzier" searches

○ What is "close" to this point? What object might this projectile hit? etc
○ The input to your search is not necessarily an exact element in your tree, 

but the tree organizes the data in a way that effectively directs the search

46


