CSE-250 Recitation

Sept 11-Sept 12: PA1 Testing, Inequalities

Introduction/Questions?

- Java?
- PA1?
- Summations?
- Asymptotic Analysis?

PA1: Getting Started

- **PA1** will revolve around linked lists and how to implement them
- We will start **PA1** by writing tests
- Why Test Driven Development?
 - Deepens your understanding of the problem
 - Enables you to test your code without submitting to Autolab
 - Writing code before thinking about the problem will lead to disaster

PA1: Getting Started

- Remember, **understanding the expected behavior** of each method is more important than how to make your implementation when writing tests
- Some of the best tests are going to be written by asking "What situations could break my code"
- Let's try to come up with some good linked lists for testing
 - **Side note:** how can we make these lists without relying on methods like insert

Inequalities Cheat Sheet

- 1. $f(n) \ge g(n)$ is true if $f(n)/a \ge g(n)/a$ (for any a > 0)
- 2. $f(n) \ge g(n)$ is true if $f(n)*a \ge g(n)*a$ (for any a > 0)
- 3. $x + a \ge y + b$ is true if $x \ge y$ and $a \ge b$ (for any a, b)
- 4. $x \ge y$ is true if $x \ge a$ and $a \ge y$ (for any a)

Prove $3n + n^2 \in O(n^2)$

First...what is the definition of big-O?

Prove $3n + n^2 \in O(n^2)$

First...what is the definition of big-O?

 $3n + n^2 \le c n^2$

for some c > 0 and all n greater than some non-negative n_0

Now prove that inequality using the tricks we just mentioned

Prove $3n + n^2 \in \Omega(n^2)$

First...what is the definition of big- Ω ?

Prove $3n + n^2 \in \Omega(n^2)$

First...what is the definition of big- Ω ?

 $3n + n^2 \ge c n^2$

for some c > 0 and all n greater than some non-negative n_0

Now prove that inequality using the tricks we just mentioned

More Examples

Prove the following:

```
12\log(10\times 2^n) \in \textit{O}(n)
```

```
n^2 + n \log(n) \in O(2^n)
```

 $n^2 + 15n^3 \in \Omega(n)$

```
\sum_{i=1}^n i \in \Omega(n^2)
```