CSE-250 Recitation

Sept 11-Sept 12: PA1 Testing, Inequalities

Introduction/Questions?

- Java?
- PA1?
- Summations?
- Asymptotic Analysis?

PA1: Getting Started

- PA1 will revolve around linked lists and how to implement them
- We will start PA1 by writing tests
- Why Test Driven Development?
- Deepens your understanding of the problem
- Enables you to test your code without submitting to Autolab
- Writing code before thinking about the problem will lead to disaster

PA1: Getting Started

- Remember, understanding the expected behavior of each method is more important than how to make your implementation when writing tests
- Some of the best tests are going to be written by asking "What situations could break my code"
- Let's try to come up with some good linked lists for testing
- Side note: how can we make these lists without relying on methods like insert

Inequalities Cheat Sheet

1. $f(n) \geq g(n)$ is true if $f(n) / a \geq g(n) / a$ (for any $a>0$)
2. $f(n) \geq g(n)$ is true if $f(n) * a \geq g(n) * a$ (for any $a>0$)
3. $x+a \geq y+b$ is true if $x \geq y$ and $a \geq b$ (for any a, b)
4. $x \geq y$ is true if $x \geq a$ and $a \geq y$ (for any a)

Examples

Prove $3 n+n^{2} \in O\left(n^{2}\right)$
First...what is the definition of big-0?

Examples

Prove $3 n+n^{2} \in O\left(n^{2}\right)$
First...what is the definition of big-0?

$$
3 n+n^{2} \leq c n^{2}
$$

for some c > 0 and all n greater than some non-negative \boldsymbol{n}_{0}
Now prove that inequality using the tricks we just mentioned

Examples

Prove $3 n+n^{2} \in \boldsymbol{\Omega}\left(n^{2}\right)$
First...what is the definition of big- Ω ?

Examples

Prove $3 n+n^{2} \in \boldsymbol{\Omega}\left(n^{2}\right)$
First...what is the definition of big- Ω ?

$$
3 n+n^{2} \geqq c n^{2}
$$

for some c>0 and all n greater than some non-negative \boldsymbol{n}_{0}
Now prove that inequality using the tricks we just mentioned

More Examples

Prove the following:
$12 \log \left(10 \times 2^{n}\right) \in O(n)$
$\mathrm{n}^{2}+\mathrm{n} \log (\mathrm{n}) \in O\left(2^{\mathrm{n}}\right)$
$\mathrm{n}^{2}+15 \mathrm{n}^{3} \in \boldsymbol{\Omega}(\mathrm{n})$
$\sum_{i=1}^{n} i \in \Omega\left(n^{2}\right)$

