
UBIT: Version A CSE 250 — Fall 2023

Part a: Data Structure Design

Imagine that you’re designing the data capture software for a large piece of scientific equipment (like the Large Hadron
Collider). Data arrives at the system in a burst of a large number of records (we don’t know how many will arrive ahead
of time), and needs to be stored immediately (via the List.add(value) method). It is critical that each record be stored
immediately, any delays on a single call to List.add will cause data loss (potentially ruining a few million dollars worth
of experimental setup). No other access to the data will be required until after the data collection burst ends.

Question 1 [5 points]

Which of the List data structures that we have discussed so far in class would you select for this use case and (in
at most one sentence), why?

Answer

A Linked List.
ArrayList.add() is amortized O(1), but individual calls could still take O(N).

Point Breakdown

� (3 pt) Selecting the Linked List
� (1 pt) Identifying theO(1) runtime of LinkedList’s addmethod as a reason to use it. OR Identifying
the O(N) runtime of ArrayList’s add method as a reason not to use it.

� (1 pt) Mentioning the fact that the O(1) runtime of ArrayList is amortized.

Once the burst is finished, the software has an opportunity to reorganize the data into a new data structure for preliminary
analysis. This preliminary analysis will require random access to the data (i.e., repeated calls to the List.get method).

Question 2 [5 points]

Which of the List data structures that we have discussed in class would you select for this phase and (in at most
one sentence), why?

Answer

An Array List
LinkedList.get() is O(N).

Point Breakdown

� (3 pt) Selecting the Array List
� (2 pt) Identifying the O(1) runtime of ArrayList’s get method as a reason to use it OR Identifying
the O(N) runtime of LinkedList’s get method as a reason not to use it

1

UBIT: Version A CSE 250 — Fall 2023

Question 3 [5 points]

State the tight worst-case runtime bound of generating the data structure in your answer to Question 2 from the
data structure in your answer to part Question 1.

Answer

O(N); Every element in the linked list must be copied to the array.

Point Breakdown

� (5 pt) The answer is correct for the pair of data structures given above. In general, this means O(N)
if the data structures are different, and O(1) if they are the same.

2

UBIT: Version A CSE 250 — Fall 2023

Part b: Complexity

For each of the following formulas, state the Big-O, Big-Ω, and Big-θ bounds (or indicate that the bound does not exist)

Question 1 [5 points]

f1(N) = 5N · 2log(N) + 63 log(N) +N log(N)

O(f1):

Ω(f1):

θ(f1):

Answer

� O(N2), Ω(N2), θ(N2) for variants A, B
� O(N3), Ω(N3), θ(N3) for variants C, D

Point Breakdown

� (2 pt) Big-O bound is correct
� (2 pt) Big-Ω bound is correct
� (1 pt) Big-θ bound is consistent with Big-O and Big-Ω answers.

Question 2 [5 points]

f2(N) =

N∑
i=1

2i + 2i

O(f2):

Ω(f2):

θ(f2):

Answer

� O(2N), Ω(2N), θ(2N) for variants A, C
� O(N2), Ω(N2), θ(N2) for variants B, D

Point Breakdown

� (2 pt) Big-O bound is correct
� (2 pt) Big-Ω bound is correct
� (1 pt) Big-θ bound is consistent with Big-O and Big-Ω answers.

3

UBIT: Version A CSE 250 — Fall 2023

Question 3 [5 points]

f3(N) =

N∑
i=1

i∑
j=1

6

O(f3):

Ω(f3):

θ(f3):

Answer

� O(N2), Ω(N2), θ(N2) for all variants

Point Breakdown

� (2 pt) Big-O bound is correct
� (2 pt) Big-Ω bound is correct
� (1 pt) Big-θ bound is consistent with Big-O and Big-Ω answers.

Question 4 [5 points]

f4(N) =

{
N2 if N is even

N if N is odd

O(f4):

Ω(f4):

θ(f4):

Answer

� O(N2), Ω(N), no θ bound for variant A
� O(N2), Ω(1), no θ bound for variants B, D
� O(N), Ω(1), no θ bound for variant C

Point Breakdown

� (2 pt) Big-O bound is correct
� (2 pt) Big-Ω bound is correct
� (1 pt) Big-θ bound is consistent with Big-O and Big-Ω answers.

4

UBIT: Version A CSE 250 — Fall 2023

Part c: Asymptotic Bounds

For each of the following claims, use the inequality definition of Big-O, Big-Ω, or Big-θ to either prove or disprove the
claim. For each question, your answer must show, using the inequalities equivalent to the claim, and the rules given in
the cheat sheet at the front of the exam, one of the following:

� ... that there exists a constant (write down such a constant) for which the inequality(ies) must hold for a sufficiently
large N ; OR

� ... that the inequality(ies) does not hold for any constant and large values of N (e.g., by reducing the inequality to
an invalid inequality e.g., c > N).

Question 1 [5 points]

2N + 5N + 1 ∈ Ω(N2)

Answer

Variants A, B
We need to show

2N + 5N + 1
?
> c ·N2

(pick a+ b+ d = c > 0)

2N + 5N + 1
?
> (a+ b+ d) ·N2

It suffices to show:

� 2N
?
> a ·N2

� 5N
?
> b ·N2

� 1
?
> d ·N2

Pick a = 1
2N > N2

Given (True for N > 4); Pick b = 0
5N > 0 ·N2 = 0

Given (True for N > 1); Pick d = 0
1 > 0 ·N2 = 0

Given (True); Since a+ b+ d > 0, we have

2N + 5N + 1 > 1 ·N2

QED.

Variants C, D
We need to show

2N + 5N + 1
?
< c ·N2

We know 2N < 2N + 5N + 1, so if 2N > c ·N2, then we have a contradiction.

2N > c ·N2

Given. QED.

Point Breakdown

� (1 pt) Valid selection of constants; Correct counter-example picked.
� (4 pt) Work shown to derive the constants/counter-example.

5

UBIT: Version A CSE 250 — Fall 2023

Question 2 [5 points]

N2 + 12N + log(N) ∈ O(N)

Answer

Variants A, B
We need to show

N2 + 12N + log(N)
?
< c ·N

We know N2 < N2 + 12N + log(N), so if N2 > c ·N , then we have a contradiction.

N2 > c ·N

Given. QED.
Variants C, D
We need to show

N2 + 12N + log(N)
?
> c ·N

(pick a+ b+ d = c > 0)

N2 + 12N + log(N)
?
> (a+ b+ d) ·N

It suffices to show:

� N2
?
> a ·N

� 12N
?
> b ·N

� log(N)
?
> d ·N

Pick a = 1
N2 > N

Given (True for N > 1); Pick b = 0
12N > 0 ·N = 0

Given (True for N > 1); Pick d = 0
log(N) > 0 ·N2 = 0

Given (True); Since a+ b+ d = 1 > 0, we have

N2 + 12N + log(N) > 1 ·N2

QED.

Point Breakdown

� (1 pt) Valid selection of constants; Correct counter-example picked.
� (4 pt) Work shown to derive the constants/counter-example.

6

UBIT: Version A CSE 250 — Fall 2023

Question 3 [5 points]

({
N2 if n is even

N if n is odd

)
∈ θ(N)

Answer

To show that the function is not in θ(N) or θ(N2), we need to show that one of the Big-O or Big-Ω bounds.
Variants A, C
We can show that the function is not in O(N)({

N2 if N is even

N if N is odd

)
≤ c ·N

({
N if N is even

1 if N is odd

)
≤ c · 1

This is false for any even value of N > c.
Variants B, D

We can show that the function is not in Ω(N2)({
N2 if N is even

N if N is odd

)
≥ c ·N2

({
N if N is even

1 if N is odd

)
≥ c ·N

This is false for any odd value of N > c.

Point Breakdown

� (1 pt) Valid selection of constants; Correct counter-example picked.
� (4 pt) Work shown to derive the constants/counter-example.

7

UBIT: Version A CSE 250 — Fall 2023

Part d: Project Review

Recall the SortedList structure that you completed for PA1. Consider the following new data structure, consisting of

� A SortedList (over strings that store names)

� A 26-element array named hints.

hints[0] contains the first node of the sorted list that starts with an ‘A’ or Option.empty() if no nodes start with ‘A’.
hints[1] does the same for nodes starting with ‘B’, hints[2] for ‘C’, etc. . .

Whenever we want to search for or insert a new name into the list, we first check hints to see if a node starting with the
same letter as our target exists. If it does, we use that element as the hint to our search/insert. Otherwise, we use the
closest non-empty element of the hints array, or the unhinted version if it is empty. If the operation was an insert, we
also update hints as needed.

Question 1 [5 points]

What is the asymptotic complexity of updating and retrieving hints from the hints array?

Answer

O(1)

Point Breakdown

� (5 pt) The answer is O(1)

Question 2 [5 points]

What is the unqualified worst-case complexity of finding an element in the list when using a hint retrieved from
hints. You may assume that the hint in hints was not Option.empty() and that the hinted version of the search
is used.

Answer

O(N26) = O(N)

Point Breakdown

� (5 pt) The answer is O(N)

8

UBIT: Version A CSE 250 — Fall 2023

Part e: Data Structure Performance

Think about a scrolling list on your phone (e.g., Instas, Emails, Piazza Posts). This list is populated ‘lazily’; that is, as
you scroll down, the system automatically fetches the next batch of entries in the list (e.g., posts) and appends them to
one of the data structures we’ve discussed in class. Once it loads an element, it is never forgotten: the app keeps all of
the entries around forever (or at least until you close the app).

Users complain about the app, that scrolling down is usually smooth, but occasionally the interface freezes for about a
second.

Question 1 [5 points]

Name one of the data structures that we’ve discussed in class that the app is probably using to store the list
entries. Explain in at most two sentences, why the app is probably lagging.

Answer

The symptoms suggest that List.add(item) is occasionally very slow. Although ArrayList.add(item)

is amortized O(1), individual calls to the method may still be O(N).

Point Breakdown

� (2 pt) The answer correctly identifies the ArrayList.
� (3 pt) The answer correctly identifies the amortized runtime of add(item) as the problem.

9

UBIT: Version A CSE 250 — Fall 2023

Part f: Algorithm Runtimes

In Java, addAll is a method that combines two lists by adding the elements of one of the lists to the end of the other
list. For example, if l1 is a list containing the elements [1,4,7], and l2 is a list containing [2,2,6], then calling
l1.addAll(l2) would result in l1 being a list containing the elements [1,4,7,2,2,6], and l2 a list containing [2,2,6].

Now let’s say you want to define a variant of this method called takeAll which also removes all of the elements from the
second list. So in the above example, after calling l1.takeAll(l2), l1 would contain [1,4,7,2,2,6] and l2 would be
empty.

Question 1 [3 points]

Describe an algorithm to efficiently implement takeAll when both l1 and l2 are ArrayLists.

Answer

l1.addAll(l2)

l2.clear()

Point Breakdown

� (1 pt) The algorithm ends with all elements of l2 appended to l1.
� (1 pt) The the algorithm ends with l2 empty.
� (1 pt) The above two requirements are both met, and the algorithm runs in O(|l2|).

Question 2 [2 points]

State the runtime of your algorithm by giving the unqualified tight upper (Big-O) bound.

Answer

O(|l2|) or O(N)

Point Breakdown

� (2 pt) The answer is correct for the algorithm described in the answer to Question 1.

10

UBIT: Version A CSE 250 — Fall 2023

Question 3 [3 points]

Describe an algorithm to efficiently implement takeAll when both l1 and l2 are LinkedLists. You may assume
that there is a reference to the tail of each list.

Answer

1. Redirect the next pointer of l1’s tail element to the head element of l2.
2. Set the tail pointer of l1 to the tail element of l2
3. Set the head and tail pointers of l2 to null.

l1.addAll(l2)

l2.clear()

Point Breakdown

� (1 pt) The algorithm ends with all elements of l2 appended to l1.
� (1 pt) The the algorithm ends with l2 empty.
� (1 pt) The above two requirements are both met, and the algorithm runs in O(1).

Question 4 [2 points]

State the runtime of your algorithm by giving the unqualified tight upper (Big-O) bound.

Answer

O(1)

Point Breakdown

� (2 pt) The answer is correct for the algorithm described in the answer to Question 1.

11

